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Abstract

We show that the spectral gap problem is undecidable. Specifically, we
construct families of translationally-invariant, nearest-neighbour Hamilto-
nians on a 2D square lattice of d-level quantum systems (d constant), for
which determining whether the system is gapped or gapless is an undecid-
able problem. This is true even with the promise that each Hamiltonian is
either gapped or gapless in the strongest sense: it is promised to either have
continuous spectrum above the ground state in the thermodynamic limit, or
its spectral gap is lower-bounded by a constant in the thermodynamic limit.
Moreover, this constant can be taken equal to the local interaction strength of
the Hamiltonian.
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1 Introduction
Quantum spin lattice models are ubiquitous in mathematical physics. They play
a central role in condensed matter physics, in quantum computation and even in
high energy physics, where one route to deal with the continuum is by considering
quantum many body systems on a lattice and later sending the lattice spacing to
zero.

In all these contexts, one often starts from a description of the microscopic
interactions that govern the system. The question is then how to infer the relevant
observable macroscopic properties that emerge when the system size (number of
particles) is very large. This type of question can be traced back to Hilbert’s 6th
problem, which asked about developing mathematically the limiting processes
which lead from the atomistic view to the laws of motion of continua, and further
back through much of modern science, arguably to Democritus [Dem40].

Amongst the most important properties of a quantum many-body system is its
spectral gap, defined as the difference between the two smallest energy levels in
the system. The minimum possible energy level is called the ground state energy,
and the associated states are called ground states. A quantum spin system is said to
be gapped if the spectral gap can be uniformly bounded from below by a quantity
which does not depend on the system size.

The behaviour of the spectral gap is intimately related to the phase diagram
of a quantum many-body system, with quantum phase transitions occurring at
critical points where the gap vanishes. The intuitive reason is that the spectral gap
protects the ground state properties of the system against small perturbations, since
an energy of the order of the gap must be pumped into the system to transition to a
different state. Formalising this intuition is a major open question. Recently Bravyi,
Hastings and Michalakis [BHM10] and Michalakis and Pytel [MP13] managed
to solve it for the particular case of “frustration free” systems satisfying certain
additional conditions.

The low-temperature physics of the system is also governed by the spectral gap:
gapped systems exhibit “non-critical” behaviour, with low-energy excitations that
behave as massive particles [Hae+13], preventing long-range correlations [HK06;
NS06]; gapless systems exhibit “critical” behaviour, with low-energy excitations
that behave as massless particles, allowing long-range correlations. This implies
that ground states of gapped systems are somehow less complex. That intuition has
been formalised in the so called “area law conjecture” [ECP10], which has been
proven for 1D spin systems [Has07b], and in 2D is certain additional hypothesis on
the spectrum are satisfied [Has07a]. This in turn translates into better algorithms
for computing properties of such systems [Orú14]. A paradigmatic example of
this line of thought is the recent proof [LVV13; Ara+16], based on an improved
version of the 1D area law theorem [Ara+13], that the ground state energy density
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problem for gapped quantum spin systems in 1D is in the complexity class P (i.e.
the run-time of the algorithm scales polyomially in the system size).

Because of its central importance to many-body quantum systems, many semi-
nal results in mathematical physics concern the spectral gap of specific systems.
Examples include the Lieb-Schultz-Mattis theorem showing that the Heisenberg
chain for half-integer spins is gapless [LSM64], extended to higher dimensional
bipartite lattices by Hastings [Has04], and the proof of a spectral gap for the 1D
AKLT model [Aff+88]. The same is true of some of the most important open
questions in the field. For instance, the “Haldane conjecture” [Hal83], formu-
lated in 1983, states that the integer-spin antiferromagnetic Heisenberg model in
1D has a non-vanishing spectral gap. Despite strong supporting evidence from
numerical simulations, a proof remains ellusive. The analogous question in 2D
for non-bipartite lattices can be traced back to the work of Anderson in 1973
[And73], where he suggested the existence of new type of materials, nowadays
called topological quantum spin liquids. The existence of minerals in nature, such
as herbertsmithite, whose interactions can be well approximated by the spin-1

2
antiferromagnetic Heisenberg model on the Kagome lattice – hence are compelling
candidates for systems with a topological quantum spin liquid phase [Han+12] –
brought the problem of its spectral gap to the forefront of physics. The existence
of a spectral gap in these systems is still disputed, even at the level of numerical
evidence (see e.g. [YHW11; IPB14]).

The main result of this paper is to show that the spectral gap for 2D transla-
tionally invariant, nearest-neighbour quantum spin systems on the square lattice,
both for open and periodic boundary conditions, is undecidable. In other words,
there cannot exist any algorithm – no matter how inefficient – which, given a
description of any such system, determines whether it is gapped or not. We also
show that spectral gap undecidability persists even if we restrict to models which
are arbitrary small perturbations of classical systems, and under the following very
strong promise: in the gapped case, the ground state is unique and the gap is at
least as large as the interaction strength; whereas, in the gapless case, the spectrum
becomes dense in the full real line as the systems size grows to infinity. Along the
way, we will also show undecidability of the ground state energy density.

This algorithmic undecidability is well known to imply axiomatic independence
of the spectral gap problem: if we pick some axiomatisation of mathematics, there
always exist Hamiltonians with all the properties just described for which neither
the presence nor the absence of a spectral gap is provable from those axioms.
Theorem 3 and Corollary 4 in Section 1.2 make all these claims precise.

The idea that some of the most difficult open problems in physics could be
mathematically proven to be “impossible to solve” is not new. Indeed, proving
such impossibility theorems is highlighted as one of the main open problems in
mathematical physics in the list published by the International Association of
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Mathematical Physics in the late 90’s, edited by Aizenman [Aiz98]. Our result,
then, can be seen as a major contribution to this.

Apart from the pioneering work of Komar in this direction in 1964 [Kom64],
stating undecidable properties in QFTs, and the influential paper of Anderson
entitled “More is different” [And72] in 1972, most of the initial connections be-
tween physical problems and undecidability arose in the 80s and 90s. In 1981,
[PER81] studied non-computable solutions to the wave equation. One year later,
[FT82] found undecidable questions in models of hard frictionless balls. In 1984,
Wolfram wrote the paper “Undecidability and Intractability in Theoretical Physics”
where, motivated by the emergent complexity of very simple cellular automata, he
conjectured that many natural problems in physics, and in particular in classical
statistical physics, should be undecidable. Many results in this direction – using
cellular automata to prove undecidability results in physical problems – have been
shown since then (e.g [DK84] or [Omo84]). The work of Gu, Weedbrook, Perales
and Nielsen [Gu+09] in 2009 found undecidable properties in the 2D classical
Ising model. Besides cellular automata, another natural connection between unde-
cidability and physics, that we will exploit in this paper, came from tiling problems,
shown to be undecidable by the works of Wang and Berger in the 60s [Wan61;
Ber66]. This idea has been exploited for instance in 1990 by Kanter [Kan90],
finding undecidable properties in anisotropic 1D Potts Hamiltonians. That same
year, in a completely different direction, Moore wrote one of the most influential
papers on undecidability in physics [Moo90], proving undecidability of the long-
term behaviour of a particle-in-a-box problem. (See also [Ben90] for a very nice
commentary on that paper.)

In recent years, mainly motivated by quantum information theory and the link it
established between physics and computer science, there has been a revival in the in-
terest of undecidability in quantum physics. Results in this direction have appeared
in several contexts, such as measurement and control [EMG12; WCPG11], tensor
networks [MB12; KGE14; Cue+16], measurement-based quantum computation
[NB08], channel capacities [EPG16], or Bell inequalities [Ben+16; Slo16].

A precursor of those results, due to Lloyd, appeared already in 1993 [Llo93;
Llo94] in the early days of quantum information theory. There, it is argued that
quantum computing implies certain spectral properties of quantum mechanical
operators are undecidable. More precisely, the unitary evolution U associated to the
evolution of a computer (classical or quantum) capable of universal computation
has invariant subspaces with discrete spectrum (roots of unity) and other invariant
subspaces with continuous spectrum (the whole unit sphere), corresponding respec-
tively to computations that halt and do not halt. Then, since the halting problem is
undecidable, Lloyd concludes that given a quantum state associated with a program
in the infinite dimensional space in which U is defined, it is undecidable to know
whether it has overlap with an invariant subspace having discrete spectrum or,
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conversely, it is supported on an invariant subspace in which the spectrum is the
full unit circle. See [Llo16; CPGW16] for a recent discussion between the relation
between Lloyd’s result and the result of this paper.

We refer to a forthcoming review paper in collaboration with Gu and Perales
[Cub+17] for an extensive analysis and discussion of all results mentioned above,
and many more, related to undecidability in physics.

A short version of this paper – including the main result, its implications, an
outline of the main ideas behind the proof, together with a sketch of the argument –
was published recently in Nature [CPGW15]. We encourage the reader to consult it
in order to gain some high-level intuition about the full, rigorous proof given here.

1.1 Definitions and notation
Let us start defining the setup we will be considering. We denote by Λ(L) :=
{1, . . . , L}2 the set of vertices (we call them sites) of a square lattice of size L ∈ N,
with L ≥ 2. E ⊂ Λ(L) × Λ(L) will denote the set of directed edges of the square
lattice, oriented so that (i, j) ∈ E implies that j lies north or east of i. We will
consider both periodic and open boundary conditions. In the first case, the outer
rows and columns are connected along the same direction as well, so that Λ(L)
becomes a square lattice on a torus. In the second case, these connections are not
made.

We associate to each site i ∈ Λ(L) a Hilbert space H (i) ' Cd and to to any
subset S ⊆ Λ(L), the tensor product

⊗
i∈S H

(i). We will consider interactions
between neighbouring pairs (i, j) ∈ E, which are just Hermitian operators h(i, j) ∈

B(H (i) ⊗ H ( j)). In addition, we may assign an on-site interaction given by a
Hermitian matrix h(k)

1 ∈ B(H (k)) to every site k ∈ Λ(L).
We will restrict in this paper to Hamiltonians that are built up from such nearest-

neighbour and possibly on-site terms in a translational invariant way. That is, when
identifying Hilbert spaces, h(k)

1 = h(l)
1 for all k, l ∈ Λ(L) and h(i′, j′) = h(i, j) if there is

a v ∈ Z2 so that (i′, j′) = (i + v, j + v). The total Hamiltonian

HΛ(L) :=
∑

(i, j)∈E

h(i, j) +
∑

k∈Λ(L)

h(k)
1 (1)

is then fully described for any system size L by three Hermitian matrices: a d × d
matrix h1 and two d2 × d2 matrices hrow and hcol, which describe the interactions
between neighbouring sites within any row and column respectively. Hence, it may
alternatively be written as

HΛ(L) =
∑
rows

∑
c

h(c,c+1)
row +

∑
columns

∑
r

h(r,r+1)
col +

∑
i∈Λ(L)

h(i)
1 . (2)

max{‖hrow‖, ‖hcol‖, ‖h1‖} is called the local interaction strength of the Hamiltonian
and can be normalised to be 1.
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The set of eigenvalues, or energy levels, of the Hamiltonian HΛ(L) will be
denoted by spec HΛ(L) := {λ0(HΛ(L)), λ1(HΛ(L)), . . . }. When the Hamiltonian is
clear from the context, we will remove it as an argument in the eigenvalues.
They are always assumed to be listed in increasing order λ0 < λ1 < . . .. The
smallest eigenvalue λ0(HΛ(L)) is called ground state energy and the corresponding
eigenvectors ground states. The ground state energy density is defined as

Eρ := lim
L→∞

Eρ(L), where Eρ(L) :=
λ0(HΛ(L))

L2 . (3)

It is not difficult to show [CPGW15] that this limit is well defined.
HΛ(L) is called frustration-free if its ground state energy is zero while all

h(i, j), h(k)
1 are positive semi-definite. That is, a ground state of a frustration-free

Hamiltonian minimises the energy of each interaction term individually. HΛ(L) is
called classical if its defining interactions h(i, j), h(k)

1 are diagonal in a given product
basis (e.g. the canonical one).

We can define now the main quantity under study: the spectral gap

∆(HΛ(L)) := λ1(HΛ(L)) − λ0(HΛ(L)). (4)

In this paper we are considering the behaviour of ∆(HΛ(L)) in the thermody-
namic limit, that is, when L→ ∞. For that, we introduce the following definitions:

Definition 1 (Gapped) We say that a family {HΛ(L)} of Hamiltonians, as described
above, characterises a gapped system if there is a constant γ > 0 and a system size
L0 such that for all L > L0, λ0(HΛ(L)) is non-degenerate and ∆(HΛ(L)) ≥ γ. In this
case, we say that the spectral gap is at least γ.

Definition 2 (Gapless) We say that a family {HΛ(L)} of Hamiltonians, as described
above, characterises a gapless system if there is a constant c > 0 such that for all
ε > 0 there is an L0 ∈ N so that for all L > L0 any point in [λ0(HΛ(L)), λ0(HΛ(L))+c]
is within distance ε from spec HΛ(L).

Note that gapped is not defined as the negation of gapless; there are systems
that fall into neither class. The reason for choosing such strong definitions is to
deliberately avoid ambiguous cases (such as systems with degenerate ground states).
Our constructions will allow us to use these strong definitions, because we are able
to guarantee that each instance falls into one of the two classes. Indeed, we could
further strengthen the definition of “gapless” without changing our undecidability
results or their proofs, below, by demanding that c = c(L) grows with L so that
limL→∞ c(L) = ∞.

The ideas and techniques for the proof will mainly come from quantum in-
formation theory. We will then use the usual notations in that field, like Dirac’s
notation for linear algebra operations, as one can find for instance in Chapter 2 of
the classic book of Nielsen and Chuang [NC00].
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1.2 Main results
For each natural number n, we define ϕ = ϕ(n) as the rational number whose binary
fraction expansion contains the digits of n in reverse order after the decimal. We
also fix one particular Universal Turing Machine and call it UTM.

Theorem 3 (Main theorem) For any given universal Turing Machine UTM, we
can construct explicitly a dimension d, d2 × d2 matrices A, A′, B,C,D,D′,Π and a
rational number β which can be as small as desired, with the following properties:

(i). A is diagonal with entries in Z.

(ii). A′ is Hermitian with entries in Z + 1
√

2
Z,

(iii). B,C have integer entries,

(iv). D is diagonal with entries in Z,

(v). D′ is hermitian with entries in Z.

(vi). Π is a diagonal projector.

For each natural number n, define:

h1(n) = α(n)Π,
hcol(n) = D + βD′, independent of n

hrow(n) = A + β
(
A′ + eiπϕB + e−iπϕB† + eiπ2−|ϕ|C + e−iπ2−|ϕ|C†

)
,

where α(n) ≤ β is an algebraic number computable from n. Then:

(i). The local interaction strength is bounded by 1, i.e.
max(‖h1(n)‖, ‖hrow(n)‖, ‖hcol(n)‖) ≤ 1.

(ii). If UTM halts on input n, then the associated family of Hamiltonians {HΛ(L)(n)}
is gapped in the strong sense of Definition 1 and, moreover, the gap γ ≥ 1.

(iii). If UTM does not halt on input n, then the associated family of Hamiltonians
{HΛ(L)(n)} is gapless in the strong sense of Definition 2.

Some comments are in order:

• Using the classic result of Turing Turing [Tur36] that the Halting Problem
for UTM on input n is undecidable, we can conclude that the spectral gap
problem is also undecidable.
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• The interaction terms in the Hamiltonians given in the Theorem are β-
perturbations of the classical Hamiltonian given by hrow = A, hcol = D.
Since β can be taken as small as desired, all interactions appearing in the
Theorem are arbitrary small quantum perturbations of a classical system.

• The only dependency on n in the interactions appears in some prefactors to
a set of fixed interactions.

• In the gapped case, the size of the gap is larger than or equal to the local
interaction strength and is then, as large as possible.

• It is straightforward (if tedious) to extract an explicit value for d in Theorem 3
and Corollary 4 from the construction described in this paper.

• By exploiting the well known connection between (algorithm) undecidability
and (axiomatic) independence (see e.g. [Poo14]) one obtains the following
corollary:

Corollary 4 (Axiomatic independence of the spectral gap) Let d ∈ N be a suf-
ficiently large constant. For any consistent formal system with a recursive set of
axioms, there exists a translationally invariant nearest-neighbour Hamiltonian on
a 2D lattice with local dimension d and algebraic entries for which neither the
presence nor the absence of a spectral gap is provable from the axioms.

Moreover, as a key intermediate step in the proof of Theorem 3, we will prove
that the ground state energy density problem is also undecidable, a result clearly
interesting on its own.

Theorem 5 (Undecidability of g.s. energy density) Let d ∈ N be sufficiently large
but fixed. We can explicitly construct a one-parameter family of translationally
invariant nearest-neighbour Hamiltonians on a 2D square lattice with open bound-
ary conditions, local Hilbert space dimension d, algebraic matrix entries, and
local interaction strengths bounded by 1 for which determining whether Eρ = 0 or
Eρ > 0 is an undecidable problem.

1.3 Implications of the results
As already discussed in the Nature paper [CPGW15], this result has a number
of implications for condensed matter and mathematical physics, that we briefly
recall here. It implies that one can write down models whose phase diagrams are
uncomputably complicated. The standard approach of trying to gain insight into
such models by solving numerically for larger and larger lattice sizes is doomed
to failure; the system could display all the features of a gapless model, with the
gap of the finite system decreasing monotonically with increasing size. Then, at
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some threshold size, it may suddenly switch to having a large gap. (In Section 2 we
also construct models exhibiting the opposite transition, from gapped to gapless.)
Not only can the threshold size be arbitrarily large; the threshold size itself is
uncomputable. In general, we can never know whether a large many-body system
is approaching the asymptotic behaviour of the thermodynamic limit – one more
row of particles may completely change its properties. In a recent paper [Bau+15],
we constructed very simple models with small local dimensions which exhibit
this type of “size-driven phase transition” (without, however, the undecidability
properties shown here).

Our findings also imply that a result showing robustness of the spectral gap
under perturbations, as for the case of frustration-free Hamiltonians in [MP13],
cannot hold for general gapped systems.

Phase diagrams with infinitely many phases are known in quantum systems in
connection with the quantum Hall effect, where fractal diagrams like the Hoftstadter
butterfly can be obtained [OA01; Hof76]. Since membership in many fractal sets is
not decidable (when formulated in the framework of real computation; see [BS93]),
it would be interesting to see whether quantum Hall systems could provide a
real-world manifestation of our findings.

Conjectures about the spectral gap, such as the Haldane conjecture, the 2D
AKLT conjecture, or the Yang-Mills mass gap conjecture in quantum field theory,
implicitly assume that these questions can be answered one way or the other. Our
results prove that the answer to the general spectral gap question is not determined
by the axioms of mathematics. Whilst our results are still a long way from proving
that any of these specific conjectures are axiomatically undecidable, they at least
open the door to the possibility that these – or similar – questions about physical
models may be provably unanswerable.

1.4 Brief overview of the proof
An extended overview and discussion of the ideas behing our proof can be found
in the Supplementary Material of the Nature paper [CPGW15]. We will simply
sketch here the four main steps of the proof, whose rigorous statements and proofs
are given, respectively, in Sections 3 to 6.
Step 1: write n on the tape.
In order to feed an arbitrary input n ∈ N to the UTM, and at the same time keep a
uniform upper bound on the local dimension of the Hilbert space of each site in the
final Hamiltonian, we need to construct a Quantum Turing Machine (QTM) with
a fixed number of internal states such that, when fed with an input given by any
sequence of 1’s larger than the size of n, writes n deterministically on the tape and
halts. We need also to keep strict control on the time and space required for this
computation. The precise result we prove along these lines is given in Theorem 10,
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and Section 3 is devoted to proving it. The idea is to construct explicitly the QTM
associated to the quantum phase estimation algorithm. To do this, we rely heavily
on results and ideas from [BV97].
Step 2: construct, for each n ∈ N, a 1D Hamiltonian whose ground state
energy on a finite chain depends on the behaviour of the UTM on input n.
For this, we heavily rely on the remarkable paper of Gotteman and Irani [GI09]
(see also [BCO17]), which can be seen as a milestone in a long history of papers
[KSV02; KKR06; OT08; Aha+09], dating back to Feynman [Fey85], relating
the ground state energy of a Hamiltonian with the time-evolution of a quantum
computation. In order to achieve the desired properties of our construction, we
have to modify the original construction of Gottesman and Irani, but most of the
essential ideas of this step appear already in [GI09].

After these two steps, we have for each n ∈ N a 1D translationally invariant
Hamiltonian whose ground state energy for a chain of size L and open boundary
conditions is 0 if the UTM does not halt on n in space less than O(L) and time less
than O(cL) (for any desired constant c). Otherwise, it has energy larger than c−L.
So there the difference in ground state energy depending on the halting behaviour
of the UTM on n vanishes exponentially fast with chain length, and is zero in the
thermodynamic limit. Theorem 32 states the precise result we obtain, and Section 4
is devoted to its proof.
Step 3: amplify the ground state energy difference.
For this, we turn to 2D lattices, and exploit the properties of an aperiodic tiling
of the 2D plane due to Robinson. The idea is to construct a Hamiltonian whose
ground state mimics the tiling pattern of Robinson’s tiling shown in Figure 7 and,
at the same time, places the ground state of the 1D Hamiltonian constructed in
Step 2 on top of each of the 1D borders appearing in this pattern. Using the fact
that there is a constant density of squares of size 4r for all r ∈ N, and making a
shift in energies, we manage to show for the resulting Hamiltonian that, if the UTM
halts on n, the ground state energy diverges to +∞, whereas in the non-halting
case it diverges to −∞. From there, we conclude undecidability of the ground state
energy density. Section 5 takes care of proving all the new results we require for
Robinson’s tiling. The rest of the proof, together with the final step, appears in
Section 6.
Step 4: from ground state energy difference to spectral gap.
The final step combines the Hamiltonian Hu constructed in Step 3 with two others:
a trivial Hamiltonian having ground state energy 0 and a constant spectral gap,
and a critical Hamiltonian Hd having ground state energy 0 and a spectrum that
becomes dense in [0,∞) as the system size goes to infinity. We couple these
Hamiltonians in such a way that the spectrum of the resulting Hamiltonian on Λ(L)
is

{0} ∪
[
spec(HΛ(L)

u ) + spec(HΛ(L)
d )

]
∪ S L,

12



with S L ≥ min
{
1, 1 + λ0(HΛ(L)

u )
}
. This, together with the spectral properties of Hu

shown in Step 3, completes the proof.

13



2 Unconstrained local Hilbert space dimension
Before starting in Section 3 on the proof of the main theorem, in this section we
will describe two approaches that exploit known undecidability results for tiling
and completion problems. Based on these, we can derive simpler but weaker
undecidability results for the spectral gap and for other low energy properties of
translationally invariant, nearest-neighbour Hamiltonians on a 2D square lattice,
defined by their local interactions {(hrow(n), hcol(n))}n∈N. In contrast to the main
theorem of this paper, however, the families of Hamiltonians that we construct here
have local Hilbert space dimension dn that differs for different elements n of the
family, with no upper bound on {dn}n∈N.

2.1 Undecidability of the spectral gap via tiling
As in the more sophisticated constructions that will appear later, the idea is to
reduce an undecidable ground state energy problem to the spectral gap problem. If
we do not constrain the local Hilbert space dimension, then this reduction can be
chosen such that it directly exploits the undecidability of a tiling problem. To this
end, we need two ingredients:

2.1.1 Ingredient 1: a tiling Hamiltonian
We start by recalling the notion of Wang tilings and tiling problems. A unit
square whose edges are coloured with colours chosen from a finite set is called
a Wang tile. A finite set K of Wang tiles is said to tile the plane Z2 if there is an
assignment Z2 → K such that abutting edges of adjacent tiles have the same colour.
(Rotations or reflections of the tiles are not allowed here.) It is a classic result of
Berger [Ber66] that, given any set of tiles as input, determining whether or not this
set can tile the plane is undecidable.

There is an easy way to rewrite any tiling problem as a ground state energy
problem for a classical Hamiltonian. If K = {1, . . . ,K} we assign a Hilbert space
H (i) ' CK to each site i of a square lattice, and define the local interactions via

h(i, j)
c :=

∑
(m,n)∈C(i, j)

|m〉〈m|(i) ⊗ |n〉〈n|( j) , (5)

where the set of constraints C(i, j) ⊆ K × K includes all pairs of tiles (m, n) which
are incompatible when placed on adjacent sites i and j. The overall Hamiltonian
on the lattice Λ(L) is then simply

HΛ(L)
c :=

∑
(i, j)∈E

h(i, j)
c . (6)

By construction, we have h(i, j)
c ≥ 0, HΛ(L)

c is translational invariant and its
spectrum is contained in N0. If there exists a tiling of the plane, then for open

14



boundary conditions ∀L : 0 ∈ spec HΛ(L)
c . Similarly, in the case of periodic

boundary conditions, the existence of a periodic tiling implies that 0 ∈ spec HΛ(L)
c

holds for an unbounded sequence of L’s. On the other hand, if there is no tiling,
then there is an L0 such that

∀L > L0 : spec HΛ(L)
c ≥ 1. (7)

2.1.2 Ingredient 2: a gapless frustration-free Hamiltonian
As a second ingredient we will use that there are frustration-free two-body Hamil-
tonians

HΛ(L)
q :=

∑
(i, j)∈E

h(i, j)
q , (8)

such that for L → ∞ we get spec HΛ(L)
q → R+ in the sense that the spectrum of

the finite system approaches a dense subset of R+ [FG+15]. We will denote the
corresponding single site Hilbert space by H (i)

q ' C
D and we can in fact choose

D = 2 for instance by assigning to each row of the lattice the XY-model with
transversal field taken at a gapless point with product ground state. Note that in
this case the entries of the matrices h(i, j)

q are rational.

2.1.3 Reducing tiling to spectral gap
In order to fruitfully merge the ingredients, we assign a Hilbert spaceH (i) := H (i)

0 ⊕

H
(i)
c ⊗H

(i)
q ' C

1 ⊕CK ⊗CD to each site i ∈ Λ(L). A corresponding orthonormal
set of basis vectors will be denoted by |0〉 ∈ C1 and |k, α〉 := |k〉 ⊗ |α〉 ∈ CK ⊗CD,
respectively. The Hamiltonian is then defined in terms of the two-body interactions

H(i, j) := |0〉〈0|(i) ⊗ 1( j)
cq + 1(i)

cq ⊗ |0〉〈0|
( j) (9)

+
∑

(m,n)∈C(i, j)

|m〉〈m|(i) ⊗ 1(i)
q ⊗ |n〉〈n|

( j)
⊗ 1( j)

q (10)

+

D∑
α,β,γ,δ=1

1(i)
c ⊗ |α〉〈β|

(i)
⊗ 1( j)

c ⊗ |δ〉〈γ|
( j)
〈α, δ|h(i, j)

q |β, γ〉. (11)

Here 1c,1q and 1cq denote the identity operators on Hc,Hq and Hc ⊗ Hq, re-
spectively. As before, we define the Hamiltonian on the square lattice Λ(L) as

HΛ(L) :=
∑

(i, j)∈E

H(i, j). (12)

Theorem 6 (Reducing tiling to spectral gap) Consider any set K of Wang tiles,
and the corresponding family of two-body Hamiltonians {HΛ(L)}L on square lattices
Λ(L) either with open or with periodic boundary conditions.
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(i). The family of Hamiltonians is frustration-free.

(ii). If K tiles the plane Z2, then in the case of open boundary conditions, we
have that spec HΛ(L) → R+ for L→ ∞, i.e., there is no gap and an excitation
spectrum that becomes dense inR+. Similarly, ifK tiles any torus, then in the
case of periodic boundary conditions spec HΛ(Li) → R+ for a subsequence
Li → ∞.

(iii). If K does not tile the plane, then there is an L0 such that for all L > L0 HΛ(L)

has a unique ground state and a spectral gap of size at least one, i.e.

spec HΛ(L) \ {0} ≥ 1. (13)

Proof Frustration-freeness is evident since H(i, j) ≥ 0 and HΛ(L) |0, . . . , 0〉 = 0. In
order to arrive at the other assertions, we decompose the Hamiltonian as HΛ(L) =:
H0 + Hc + Hq, where the three terms on the right are defined by taking the sum over
edges separately for the expressions in (9), (10) and (11), respectively. Let us now
assign a signature σ ∈ {0, . . . ,K}L

2
to every state of our computational product

basis, in the following way: |0〉(i) is assigned the signature σi = 0, and |k, α〉(i) is
assigned the signature σi = k irrespective of α. By collecting computational basis
states with the same signature we can then decompose the Hilbert space as⊗

i∈Λ

H (i) '
⊕
σ

Hσ. (14)

The Hamiltonian is block-diagonal w.r.t. this decomposition, i.e. it can be written
as

HΛ(L) =
⊕
σ

Hσ, and thus spec HΛ(L) =
⋃
σ

spec Hσ. (15)

In order to identify the spectra coming from different signatures we will distinguish
three cases:

(i). σ = (0, . . . , 0): this yields an eigenvalue 0 as already mentioned.

(ii). σ , (0, . . . , 0) but σi = 0 for some i: for any unit vector |ψσ〉 with such a
signature we have 〈ψσ|H0|ψσ〉 ≥ 1. We will denote the part of the spectrum
which corresponds to these signatures by S ⊂ R. The only property we will
use is that S ≥ 1.

(iii). σ ∈ {1, . . . ,K}L
2
: In the subspace spanned by all states whose signature does

not contain 0 we have that H0 = 0 and Hc + Hq = HΛ(L)
c ⊗ 1 + 1 ⊗ HΛ(L)

q .
Consequently, the spectrum stemming from this subspace equals spec HΛ(L)

c +

spec HΛ(L)
q .
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Putting things together, we obtain

spec HΛ(L) = {0} ∪
{

spec HΛ(L)
c + spec HΛ(L)

q

}
∪ S , (16)

The equivalence between the impossibility of tiling with K and the existence of
a spectral gap of size at least 1 now follows immediately from the properties of
the ingredients hc and hq. Uniqueness of the ground state in cases where no tiling
exists follows from the above argument when considering the spectra as multisets
rather than sets. �

From the undecidability of the tiling problem we now obtain:

Corollary 7 (Undecidability of the spectral gap for unconstrained dimension)

Let ε > 0. Consider all families {HΛ(L)} of frustration-free translational invariant
nearest neighbour Hamiltonians on 2D square lattices with open boundary condi-
tions that are described by a pair of Hermitian matrices (hrow, hcol)1 with rational
entries and operator norm smaller than 1 + ε. There is no algorithm that, given
(hrow, hcol) as input, decides whether these describe a gapped or a gapless system,
even under the promise that one of these is true and that in the gapped case the
spectral gap is at least 1.

Here, the norm bound follows from the observation that ‖H(i, j)‖ ≤ 1 + ‖h(i, j)
q ‖ where

h(i, j)
q can be rescaled to arbitrary small norm.

For the case of periodic boundary conditions we obtain the same statement
if we replace our strong definition of ‘gapless’ by the weaker requirement that
∃c > 0∀ε > 0∀L0∃L > L0 so that every point in [λ0(HΛ(L)), λ0(HΛ(L)) + c] is within
distance ε from spec HΛ(L). The reason for this is, that if the period of the torus does
not match the required one, then a gap can be generated that, however, disappears
again if we enlarge the size of the system.

We emphasise that, so far, there is no constraint on the local Hilbert space
dimension. Since every instance in the above construction has a finite local Hilbert
space we can, however, at least conclude axiomatic undecidability for finite local
Hilbert spaces. That is, for any given consistent formal system with a recursive set
of axioms, one can construct a specific instance of a Hamiltonian with properties
as in the corollary and finite-dimensional local Hilbert space, such that neither
the presence nor the absence of a spectral gap can be proven from the axioms.2.
However, the local dimension, whilst finite, depends on the choice of axiomatic
system and there is no upper-bound on the values it can take. The main aim of

1Here we make no use of an additional on-site term, so h1 = 0.
2An explicit example can, for instance, be constructed from the explicit Turing Machines of

[YA16] for which the halting problem is independent of ZFC
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this paper is to prove the much stronger Theorem 3, which shows that the spectral
gap problem remains undecidable even for a fixed value of the local Hilbert space
dimension. This in turn implies that for any consistent, recursive formal system,
axiomatic independence holds for Hamiltonians with this fixed local dimension;
the local dimension is now independent of the choice of axioms.

In the above construction, gapped cases are related to the impossibility of tiling.
Since the latter always admits a proof, the axiomatically undecidable cases coming
from this construction have to be gapless. The following section will provide a
construction where this asymmetry is reversed.

2.2 Undecidability of low energy properties
2.2.1 Reducing tile completion to a ground state energy problem
We now modify the above construction in order to show that not only the spectral
gap but many other low energy properties are undecidable as well. The idea is to
invert the relation between gap and existence of tiling. In the previous construction,
the existence of a gap was associated with the impossibility of a tiling. Now we
want to associate it with the existence of a tiling. A drawback is that we loose
the frustration-free property. On the other hand, we do not have to rely on the
undecidability of tiling (which is a rather non-trivial result [Ber66; Rob71]), but
can exploit the simpler undecidability of the completion problem, already proven by
Wang [Wan61]. In the tiling completion problem, one fixes a tile at the left-bottom
corner and asks whether the first quadrant can be tiled.

Undecidability of the completion problem is relatively simple by reduction
from the Halting Problem for Turing Machines (TM), and explained in full detail in
Robinson [Rob71, Section 4]. There are many different, computationally equivalent
definitions of Turing Machines. (The Halting Problem is undecidable for any of
these variants.) For the completion problem, the most convenient is to take a Turing
Machine to be specified by a finite number of states Q = {q0, q1, . . .} with q0 the
initial state, a finite alphabet of tape symbols S = {s0, s1, . . .} with s0 the blank
symbol, together with a finite set of transition rules specified by quintuples of the
form

(q, s, s′,D, q′) ∈ Q × S × S × {left, right} × Q.

The TM has a half-infinite tape of cells indexed by N, and a single read/write tape
head that moves along the tape. The machine starts in state q0 with the head in tape
cell 0. If the TM is currently in state q and reads the symbol s from the current tape
cell, then it writes s′ into the current tape cell, transitions to state q′, and moves in
the direction D. For each q, s, there must be at most one valid quintuplet. If there
is none, then the machine halts.1

1Note that this defines a slightly different variant of Turing Machines from those used later in
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Following Robinson [Rob71], we use the Wang tiles shown in Figure 1. For
clarity, edges here are marked with labelled arrows rather than colours, and adjacent
edges match if arrow heads abutt arrow tails with the same label; clearly these
tile markings can be identified with different colours to recover a set of standard
Wang tiles. We denote the set of tiles by K , which contains at most K := |K| ≤
2 + (3|Q| + 1)|S | elements.

s s s

s q s q s

q sq s

q´ q´

s´ s´

q q

q0 s0 s0

Figure 1: Tiles for encoding a Turing machine with half-infinite tape into a com-
pletion problem. The tile in the bottom-left corner is fixed and, together with
the second tile in the third row, starts the Turing machines running on the blank
half-infinite tape. The tiles in the second row are the ’action tiles’ that are able to
change the state of the Turing machine and correspond to a left or right moving
head. For each pair (q, s) there is at most one action tile.

If the tile that appears in the bottom-left corner in Figure 1, which we denote
by x�, is fixed in the bottom-left corner of an L × L lattice, then any valid tiling
corresponds to the evolution of the Turing Machine on the blank tape up to time L,
where time goes up in the vertical direction and each row of tiles corresponds to the
total configuration (including the tape) of the Turing machine in two consecutive
instants of time (represented by the bottom and upper edges of that row of tiles).
Hence,

(1). There exists a valid tile completion for all L × L squares if and only if the
Turing Machine, when running on an initially blank tape, does not halt.

(2). If such a tiling exists, then it is unique.

Section 3.
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Now, the completion problem can be represented as a ground state energy
problem in the following straightforward way. Consider a square lattice Λ(L) with
open boundary conditions and corresponding edge set E.

Assign a weight w(i, j)(m, n) ∈ Z to edge (i, j) ∈ E on which a pair of tiles
(m, n) ⊆ K × K is placed. The choice of weights is summarised in the following
table. Here ·� stands for any tile different from x�, the unbracketed numbers
define the weights for non-matching adjacent tiles, and the numbers in brackets
define the weights for cases where the tiles match (i.e. all abutting labels and arrows
match).

Right tile
x� ·�

Left tile
x� 4 2 (−1)
·� 4 2 (0)

Tile above
x� ·�

Tile below
x� 4 2 (−1)
·� 4 2 (0)

(17)

Assigning a Hilbert spaceH (i)
u ' C

K to each site i ∈ Λ(L) whose computational
basis states are labelled by tiles we define a Hamiltonian HΛ(L)

u :=
∑

(i, j)∈E h(i, j)
u , with

h(i, j)
u :=

∑
m,n∈K

ω(i, j)(m, n) |m〉〈m|(i) ⊗ |n〉〈n|( j) , (18)

so that positive and negative weights become energy “penalties” or “bonuses” in the
Hamiltonian. By construction, the Hamiltonian is diagonal in computational basis,
its eigenvectors correspond to tile configurations Λ(L)→ K and, since all weights
are integers, its spectrum lies in Z. In order to determine the ground state energy
note that the tile x� is the only one that can lead to negative weights. Assume first
that a tile x� is placed on a site different from the bottom-left corner. Then this
tile will have at least one neighbour below with an arrow pointing upwards or one
neighbour to the left with an arrow pointing to the right. In either case there will
be an energy penalty +4 so that the weights involving this tile will sum up to at
least 2. If, however, x� is placed in the bottom-left corner, then no such energy
penalty is picked up and the tile can contribute −2 to the energy.

If the tiling is then completed following the evolution of the encoded Turing
machine on a blank tape, then no additional penalty will occur on Λ(L) if the Turing
machine does not halt within L time-steps. Hence λ0(HΛ(L)

u ) = −2, the ground
state will be unique, and will be given by a product state. If the Turing machine
halts, then the completion problem has no solution beyond some L0 and every
configuration with x� at its bottom-left corner will get an additional penalty of at
least 2, leading to non-negative energy. Since there is always a configuration that
achieves zero energy (e.g. one using only the tile types at the top-left of Figure 1),
we obtain:
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Lemma 8 (Relating ground state energy to the halting problem) Consider any
Turing machine with state set Q and tape alphabet S running on an initially blank
tape such that its head never moves left of the starting cell. There is a family of
translational invariant nearest neighbour Hamiltonians {HΛ(L)

u }L (specified above)
on the 2D square lattice with open boundary conditions and local Hilbert space
dimension at most |S |(3|Q| + 1) + 2 such that

(i). If the Turing Machine does not halt within L time-steps, then λ0(HΛ(L)
u ) = −2.

In this case the corresponding ground state is a product state, and is the
unique eigenstate with negative energy.

(ii). If the Turing machine halts, then ∃L0 (given by the halting time) such that
∀L > L0 : λ0(HΛ(L)

u ) = 0.

Since every Turing machine can be simulated by one with a half-infinite tape,
which automatically satisfies the constraint that its head never moves to the left
of the origin, the above construction leads to an undecidable ground state energy
problem, which we will exploit in the following.

2.2.2 Reduction of the halting problem to arbitrary low energy properties
Consider translational invariant Hamiltonians on square lattices with open boundary
conditions. Let HΛ(L)

q describe such a family of Hamiltonians on L× L lattices. Our
aim is to prove the undecidability of essentially any low energy property displayed
by this Hamiltonian in the thermodynamic limit that distinguishes it from a gapped
system with unique product ground state, e.g. the existence of topological order, or
non-vanishing correlation functions. This is implied by the following theorem:

Theorem 9 (Relating low energy properties to the halting problem) Let TM be
a Turing machine with state set Q and alphabet S running on an initially blank
tape. Consider the class of translational invariant Hamiltonians on square lattices
with open boundary conditions. Let HΛ(L)

q with nearest-neighbour interaction
h(i, j)

q ∈ B(H (i)
q ⊗H

( j)
q ),H (i)

q ' C
q, and on-site term h(k)

q1 ∈ B(H (k)
q ) describe such a

Hamiltonian. Assume that there is a c ∈ R such that λ0

(
HΛ(L)

q

)
− cL2 ∈ [−1

2 ,
1
2 ] for

all lattice sizes L. Then we can construct a family of Hamiltonians HΛ(L) with the
following properties:

(i). HΛ(L) is translational invariant on the square lattice with open boundary
conditions and local Hilbert spacesH (i) ' Cd of dimension d ≤ 2(q + 1) +

|S |(3|Q| + 1).

(ii). The interactions of HΛ(L) are nearest-neighbour (possibly with on-site terms),
computable and independent of L.
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(iii). If the TM does not halt within L time-steps, then HΛ(L) has a non-degenerate
product ground state and a spectral gap ∆(HΛ(L)) ≥ 1

2 .

(iv). If TM halts, then ∃L0 (given by the halting time) such that ∀L > L0 the
following identity between multisets holds in the interval [0, 1

2 ):

spec HΛ(L)
q − λ0(HΛ(L)

q ) = spec HΛ(L) − λ0(HΛ(L)). (19)

In this case there exist isometries V (i) : H (i)
q → H

(i), V :=
⊗

i V (i) such that,
for this part of the spectrum, any eigenstate |φq〉 of HΛ(L)

q is mapped to the
corresponding eigenstate |φ〉 of HΛ(L) via V |φq〉 = |φ〉.

Some remarks before the proof. Since, on the Turing machine level, (iii) and
(iv) cannot be told apart by any effective algorithm, the same has to hold for any
property that distinguishes a gapped system with product ground state from the low
energy sector of some frustration-free Hamiltonian. With small modifications in
the proof, the nearest neighbour assumption for hq could be replaced by any fixed
local interaction geometry. In this case, HΛ(L) will of course inherit this interaction
geometry.

Proof W.l.o.g. c = 0 since we can always compensate for it by adding a multiple
of the identity to the on-site part of the Hamiltonian.

We first embed the Hamiltonian given in the Theorem in a larger system, such
that its ground state energy is shifted by −1. Define a translationally invariant,
nearest-neighbour Hamiltonian on an auxiliary system with local Hilbert space
H

(i)
a ' C

2, via

η :=
∑

(i, j)∈E

η(i, j), η(i, j) := −
1
2
|0〉〈0|(i) ⊗ |1〉〈1|( j) + 21(i) ⊗ |0〉〈0|( j) . (20)

Note that this is nothing but 1
2× the Hamiltonian defined by (17) (with the number

in brackets), where |0〉 equals x� and |1〉 is the blank tile. Hence λ0(η) = −1 and
∆(η) = 1.

Now introduceH (i)
Q := H (i)

a ⊗H
(i)
q and set h(i, j)

Q := η(i, j)⊗1
(i, j)
q +1

(i, j)
a ⊗h(i, j)

q acting
onH (i)

Q ⊗H
( j)
Q . Then HΛ(L)

Q :=
∑

(i, j)∈E h(i, j)
Q +

∑
k∈Λ(L) 1

(k)
a ⊗ h(k)

q1 has the property that

in the interval
(
−∞, λ0(HΛ(L)

q )
)

we have that

spec HΛ(L)
q − 1 = spec HΛ(L)

Q

holds as an identity between multisets (i.e. including multiplicities) and the corre-
sponding eigenstates are related via a local isometric embedding.
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We now combine this with the Hamiltonian from the previous subsection by
enlarging the local Hilbert space toH (i) := H (i)

u ⊕H
(i)
Q and defining

h(i, j) := h(i, j)
Q + h(i, j)

u + 61(i)
Q ⊗ 1

( j)
u + 61( j)

Q ⊗ 1
(i)
u , (21)

where h(i, j)
Q and h(i, j)

u act nontrivially onH (i)
Q ⊗H

( j)
Q andH (i)

u ⊗H
( j)
u respectively and

1u and 1Q denote the projectors onto the respective subspaces. The Hamiltonian
on the square Λ(L) is now

HΛ(L) =
∑

(i, j)∈E

h(i, j) +
∑

k∈Λ(L)

1(k)
a ⊗ h(k)

q1 . (22)

To analyse the ground state of HΛ(L), notice that all the terms in the Hamiltonian
η, hq, hu,1Q ⊗ 1u commute with each other. Let H̃q =

∑
(i, j)∈E h(i, j)

q + h(i, j)
q1 , H̃η =∑

(i, j)∈E η
(i, j) +21(i)

Q ⊗1
( j)
u +21( j)

Q ⊗1
(i)
u , and H̃u =

∑
(i, j)∈E h(i, j)

u +41(i)
Q ⊗1

( j)
u +41( j)

Q ⊗1
(i)
u .

We can then decompose HΛ(L) = H̃q + H̃u + H̃η where the three Hamiltonians
commute with each other.

We now assign a signature σ ∈ {0, 1, 2}L
2

to every state of our computational
product basis, so that |i〉( j) is identified with σ j ∈ {0, 1} for all |i〉 ∈ H ( j)

Q of the form
|σ j〉a |α j〉q and σ j = 2 for all |i〉 ∈ H ( j)

u . By collecting computational basis states
with the same signature, we can then decompose the Hilbert space as⊗

i∈Λ

H (i) '
⊕
σ

Hσ. (23)

The Hamiltonian is block diagonal w.r.t. this decomposition, i.e. it can be written
as

HΛ(L) =
⊕
σ

Hσ, and thus spec HΛ(L) =
⋃
σ

spec Hσ. (24)

In order to identify the spectra and eigenstates coming from different signatures
we will distinguish three cases:

Case 1: σ = (2, . . . , 2). Restricted to this sector (i.e. the Hσ component of
the direct sum), the Hamiltonian acts as HΛ(L)

u =
∑

(i, j)∈E h(i, j)
u . But according

to Lemma 8, if up to time L the TM did not halt, then HΛ(L)
u has one negative

eigenvalue −2 whose associated eigenstate is a product. However, if L ≥ L0 where
L0 is related to the halting time, then spec HΛ(L)

u ≥ 0.

Case 2: σ j = 1 for all j ∈ Λ(L), except in the lowest left corner, where σ j = 0. In
this sector we have the following identity between multisets in the interval [−1

2 ,
1
2 ]:

spec HΛ(L)
q = spec Hσ + 1. (25)

23



Case 3: Any other signature σ. It is easy to see that the energy given by H̃η

in the sector Hσ is exactly the energy given to the configuration σ by the tiling
Hamiltonian (18) with colours {0, 1, 2} and weights given by the following tables
from (17), hence the energy is ≥ 0.

Right tile
0 1 2

Left tile
0 2 −1

2 2
1 2 0 2
2 2 2 0

Tile above
0 1 2

Tile below
0 2 −1

2 2
1 2 0 2
2 2 2 0

(26)

Similarly, one can show that H̃u ≥ 0. Therefore, in this Case 3, the energy of HΛ(L)

in the sectorHσ is ≥ −1
2 . Theorem 9 now follows straightforwardly. �
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3 Quantum Phase Estimation Turing Machine
We will see in Section 4 how to encode an arbitrary Quantum Turing Machine
(QTM) into a translationally-invariant nearest-neighbour Hamiltonian, in such a
way that the local Hilbert space dimension is a function only of the alphabet size
and number of internal states. This will allow us to encode any specific universal
(reversible) Turing Machine in a Hamiltonian with fixed local dimension. However,
to prove undecidability by reduction from the Halting Problem, we will need a way
to feed any desired input to this universal TM.

To this end, the main result of this section is to construct a family of quantum
Turing Machines, all of which have the same alphabet size and number of internal
states, but whose transition rules vary. For any given string, we can choose the
transition rules such that the QTM, when started from the empty input, writes out
the string to its tape and then halts deterministically.

More precisely, we will prove the following result (see below for the necessary
basic definitions, notations, and facts about QTMs).

Theorem 10 (Phase-estimation QTM) There exists a family of well-formed, nor-
mal form, unidirectional QTMs Pn indexed by n ∈ N with the following properties:

(i). Both the alphabet and the set of internal states are identical for all Pn; only
the transition rules differ.

(ii). On input N ≥ |n| written in unary, Pn behaves properly, halts deterministi-
cally after O(poly(N)2N) steps, uses N + 3 space, and outputs the binary
expansion of n (padded to N digits with leading 0’s). (Here, |n| denotes
length of the binary expansion of n.)

(iii). For each choice of states p, q, alphabet symbols σ, τ and directions D, the
transition amplitude δ(p, σ, τ, q,D) is, independently of n, one of the elements
of the set {

0, 1,±
1
√

2
, eiπϕ, eiπ2−|ϕ|

}
(27)

where ϕ ∈ Q.

Part (iii) implies that the only dependence of the transition rules of Pn on n is
that implicit in ϕ, which is defined as the rational number whose binary fraction
expansion contains the digits of n in reverse order after the decimal.1

Note that the input N does not determine the output string that gets written to the
tape; it only determines the number of binary digits in the output. The number

1The fact that the digits are in reverse order is purely for convenience in the exposition – it is
trivial to modify the construction so that they are ordered the other way around.
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represented by that output is determined (up to padding with leading zeros) by the
choice of the parameter n for the QTM Pn.

Theorem 10 is essentially the only inherently quantum ingredient in our result,
and the precise properties asserted there will be absolutely crucial to the proof. For
example, if instead of writing out the string and halting deterministically, the QTM
did this only with arbitrarily high probability, our proof would not go through.

It is therefore not at all clear a priori whether QTMs fulfilling these strict
requirements exist. Since our proof depends so delicately on the precise properties
of these QTMs, we cannot appeal to previous results. Instead, in this section we
give a detailed and explicit construction of a QTM based on the quantum phase
estimation algorithm, that fulfils all the requirements of Theorem 10.

3.1 Quantum Turing Machinery
For completeness we quote the basic definitions of Turing Machines and Quantum
Turing Machines verbatim from [BV97].

Definition 11 (Turing Machine – Definition 3.2 in [BV97])
A (deterministic) Turing Machine (TM) is defined by a triplet (Σ,Q, δ) where Σ is

a finite alphabet with an identified blank symbol #, Q is a finite set of states with
an identified initial state q0 and final state q f , q0, and δ is a transition function

δ : Q × Σ→ Σ × Q × {L,R}. (28)

The TM has a two-way infinite tape of cells indexed by Z and a single read/write
tape head that moves along the tape. A configuration of the TM is a complete
description of the contents of the tape, the location of the tape head and the state
q ∈ Q of the finite control. At any time, only a finite number of the tape cells may
contain non-blank symbols.

For any configuration c of the TM, the successor configuration c′ is defined by
applying the transition function to the current state and the symbol scanned by the
head, replacing them by those specified in the transition function and moving the
head left (L) or right (R) according to δ.

By convention, the initial configuration satisfies the following conditions: the
head is in cell 0, called the starting cell, and the machine is in state q0. We say
that an initial configuration has input x ∈ (Σ\{#})∗ if x is written on the tape in
positions 0, 1, 2, · · · and all other tape cells are blank. The TM halts on input x if
it eventually enters the final state q f . The number of steps a TM takes to halt on
input x is its running time on input x. If a TM halts, then its output is the string
in Σ∗ consisting of those tape contents from the leftmost non-blank symbol to the
rightmost non-blank symbol, or the empty string if the entire tape is blank. A TM is
called reversible if each configuration has at most one predecessor.
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Let C̃ be the set consisting of α such that there is a deterministic algorithm that
computes the real and imaginary parts of α to within 2−n in time polynomial in n.

Definition 12 (Quantum Turing Machine – Definition 3.2 in [BV97])
A quantum Turing Machine (QTM) is defined by a triplet (Σ,Q, δ) where Σ is a

finite alphabet with an identified blank symbol #, Q is a finite set of states with an
identified initial state q0 and final state q f , q0, and δ – the quantum transition
function – is a function

δ : Q × Σ→ C̃Σ×Q×{L,R}. (29)

The QTM has a two-way infinite tape of cells indexed by Z and a single read/write
tape head that moves along the tape. We define configurations, initial configurations
and final configurations exactly as for deterministic TMs.

Let S be the inner-product space of finite complex linear combinations of
configurations of M with the Euclidean norm. We call each element φ ∈ S a
superposition of M. The QTM M defines a linear operator UM : S → S, called the
time evolution operator of M, as follows: if M starts in configuration c with current
state p and scanned symbol σ, then after one step M will be in superposition of
configurations ψ =

∑
i αici, where each nonzero αi corresponds to the amplitude

δ(p, σ, τ, q, d) of |τ〉 |q〉 |d〉 in the transition δ(p, σ) and ci is the new configuration
obtained by writing τ, changing the internal state to q and moving the head in the
direction of d. Extending this map to the entire S through linearity gives the linear
time evolution operator UM.

Here, for convenience of programming, we will consider generalised TMs and
QTMs in which the head can also stay still (No-movement), as well as move Left
or Right.

Definition 13 (Generalised TM and QTM) A generalised TM or generalised
QTM is defined exactly as a standard TM (Definition 11) or standard QTM (Defini-
tion 12) except that the set of head movement directions is {L,R,N} instead of just
{L,R}.

Following Bernstein and Vazirani [BV97], we define various classes of deter-
ministic and quantum Turing Machines:

Definition 14 (Well-formed – Definition 3.3 in [BV97])
We say that a QTM is well-formed if its time evolution operator is an isometry,

that is, it preserves the Euclidean norm.

It is easy to see (Theorem 4.2 in [BV97]) that any reversible TM is also a
well-formed QTM where the quantum transition function δ(p, σ, q, τ, d) = 1 if
δ(p, σ) = (q, τ, d) for the reversible TM and 0 otherwise.
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Definition 15 (Normal form – Definition 3.13 in [BV97])
A well-formed QTM or reversible TM M = (Σ,Q, δ) is in normal form if

∀σ ∈ Σ δ(q f , σ) = |σ〉 |q0〉 |N〉 . (30)

In [BV97] the normal-form condition is δ(q f , σ) = |σ〉 |q0〉 |R〉. However, the
choice of final direction is just an arbitrary convention, since the machine already
halted and never carries out those transitions. We replace R with N in the definition
for technical reasons (see the Reversal Lemma 22, below).

There is a specific class of QTMs, called unidirectional, that play an important
role in the general theory developed by Bernstein and Vazirani [BV97].

Definition 16 (Unidirectional – Definition 3.14 in [BV97])
A QTM M = (Σ,Q, δ)) is unidirectional if each state can be entered from only
one direction. In other words, if δ(p1, σ1, τ1, q, d1) and δ(p2, σ2, τ2, q, d2) are both
non-zero, then d1 = d2.

Note that in a unidirectional QTM, the direction component in any transition
rule triple |τ〉 |q〉 |D〉 is fully determined by the state |q〉. Thus we can recover the
complete transition rules from the |σ〉 |q〉 components alone, without the direction
component. We call these the reduced transition rules, δr : Q × Σ 7→ CQ×Σ.
(Equivalently, there exists an isometry V : CQ 7→ CQ×{L,R,N} that maps the reduced
transition rules to the original transition rules: Vδr(p, τ) = δ(p, τ).)

The following theorem gives necessary and sufficient conditions for a (partial)
transition function to define a reversible Turing Machine.

Theorem 17 (Local well-formedness – Thm. B.1 and Cor. B.3 in [BV97])
A TM M is reversible iff its transition function satisfies the following conditions:

Unidirection
Each state of M can be entered while moving in only one direction. In other
words, if δ(p1, σ1) = (τ1, q, d1) and δ(p2, σ2) = (τ2, q, d2) then d1 = d2.

One-to-one
The transition function is one-to-one when direction is ignored.

Furthermore, a partial transition function satisfying these conditions can always
be completed to the transition function of a reversible TM.

Bernstein and Vazirani [BV97] proved that one can w.l.o.g. restrict to unidirec-
tional QTMs. We therefore restrict the following quantum analogue of Theorem 17
to the unidirectional case:
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Theorem 18 (Quantum local well-formedness)
A unidirectional QTM M = (Σ,Q, δ) is well-formed iff its quantum transition
function δ satisfies the following conditions:

Normalisation
∀p, σ ∈ Q × Σ ‖δ(p, σ)‖ = 1. (31a)

Orthogonality

∀(p1, σ1) , (p2, σ2) ∈ Q × Σ 〈δr(p1, σ1), δr(p2, σ2)〉 = 0. (31b)

Furthermore, a partial quantum transition function satisfying these conditions can
always be completed to a well-formed transition function.

Bernstein and Vazirani [BV97] proved this result for standard QTMs, that is,
where the head must move left or right in each time step. (In fact, they prove it
without the restriction to unidirectional QTMs; see Theorem 5.2.2 and Lemma 5.3.4
in [BV97].) We therefore extend the proof of Theorem 18 to generalised QTM,
which is not difficult – indeed, it is made particularly straightforward by our
restriction to unidirectional machines.

Proof (of Theorem 18) Let U be the time evolution operator of the QTM M. By
definition M is well-formed iff U is an isometry, or equivalently iff the columns
of U have unit length and are mutually orthogonal. Clearly, the normalisation
condition specifies exactly that each column has unit length.

Pairs of configurations whose tapes differ in a cell not under either of the
heads, or whose tape heads are more than two cells apart, cannot yield the same
configuration in a single time step. Therefore, all such pairs of columns are
guaranteed to be orthogonal. The orthogonality condition imposes orthogonality of
pairs of columns for configurations that differ only in that one is in state p1 reading
σ1 while the other is in state p2 reading σ2.

It remains to consider pairs of configurations whose heads are one or two cells
apart, differing at most in the symbol written in these cells and in their states.
However, unidirectionality implies that any update triples that share the same state
must share the same direction. Thus either the state or the head location necessarily
differs for all such pairs of columns, hence these too are orthogonal.

The final claim follows straightforwardly from the fact that the normalisation
and orthogonality conditions imply that a partial unidirectional reduced transition
function δr is well-formed iff it defines an isometry on the space of states and tape
symbols, and this can always be extended to a unitary. This fills in the undefined
entries of δr by extending δr(q, σ) to an orthonormal basis for the space of states
and symbols. �
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We will often only be interested in the behaviour of a QTM (or reversible TM)
on a particular subset of inputs, since the machine will only be run on those. A
proper machine is guaranteed to behave appropriately on some subset of inputs,
but not necessarily on all possible inputs.

Definition 19 (Proper QTM) A QTM behaves properly (or is proper) on a subset
X of initial superpositions if whenever initialised in φ ∈ X, the QTM halts in a
final superposition where each configuration has the tape head in the start cell1,
the head never moved to the left of the starting cell, and the QTM never enters a
configuration in which the head is in a superposition of different locations. We will
refer to this latter property as deterministic head movement.

Similarly, we say that a deterministic TM behaves properly (or is proper) on
X ⊂ (Σ\{#})∗ if the head never moves to the left of the starting cell, and it halts on
every input x ∈ X with its tape head back in the starting cell.

When the set X is clear from the context, we will omit it.
Note that, for a QTM to have deterministic head movement, it is not sufficient

that none of its transition rules δ(σ, τ) produce a superposition of head directions.
The head can also end up in a superposition of different locations because the tape
state is in a superposition, so that two transition rules with different deterministic
head movement apply in superposition.

Behaving properly is not a severe restriction on classical Turing Machines.2

In fact, given any TM, there is always an equivalent proper TM that computes
the same function. One way to see this is to recall that all computable functions
are computable by Turing Machines restricted to one-way infinite tapes (see any
standard text book on the theory of computation, e.g. Kozen [Koz97]), and these
clearly behave properly if the tape is extended to be two-way infinite. (Returning
the head to the starting cell at the end of the computation poses no great difficulty.)
In particular, this means that there exist proper universal Turing Machines.

Quantum Turing Machines were originally defined in Bernstein and Vazirani
[BV97] to have two-way infinite tapes. Indeed, those authors point out that there
are trivial well-formed machines (such as the always-move-right machine) whose
evolution would not be unitary on a one-way infinite tape, since the starting
configuration would have no predecessor. However, when we come to encode
our QTMs into local Hamiltonians, we will only be able to simulate tapes with a
boundary.3 To avoid technical issues, we follow Bernstein and Vazirani [BV97] in
defining QTMs on two-way infinite tapes, but we will ensure that none of the QTMs

1This property is called stationarity in [BV97]
2Nor is it a severe restriction on QTMs, but we will not need or prove this here.
3Effectively, we can only encode quantum bounded linear automata rather than QTMs, though

there is no limit on the finite tape length we can encode.
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(or reversible TMs) that we construct ever move their head before the starting cell.
Thus, when encoding the QTM in a Hamiltonian, we can ignore all of the tape to
the left of the starting cell.

In fact, the local Hamiltonians encoding the QTMs will only be able to simulate
the evolution on a finite (but arbitrarily large) section of tape. We will therefore
be interested in keeping very tight control on the space requirements of all the
reversible and quantum TMs that we construct. By carefully controlling the space
overhead, it will then be sufficient for our purposes to simulate the evolution of the
QTM on a finite portion of tape that is essentially no longer than the input.

3.1.1 Turing Machine Programming
For a multi-track Turing machine with k tracks and alphabet Σi on track i, we will
denote the contents of a tape cell by a tuple of symbols [σ1, σ2, σ̇, σk] ∈ Σ1 × Σ2 ×

· · · × Σk specifying the symbol written on each track. Similarly, the configuration
of the tape will be specified by a tuple [c1, c2, . . . , cn] ∈ Σ∗1 ×Σ∗2 × · · · ×Σ∗k, where by
convention all ci are aligned to start in the same cell (which will be the starting cell
unless otherwise specified). We will use · to stand for an arbitrary track symbol.
We will often describe Turing machines that act only on a subset of tracks, and
leave the contents of all other tracks alone. In this case, we will only write out the
states of the acted-upon tracks in the transition function; this transition function
should be understood to be extended to the remaining tracks in the obvious way.

As a shorthand, a transition rule on a tuple containing a · on one or more
tracks should be understood to stand for the set of transition rules that leave the
tracks marked · unchanged, and act as indicated on the remaining tracks. We will
often only specify some of the elements of a transition function when defining
a reversible or quantum TM. We will call such partial transition functions “well-
formed” if the elements that are defined satisfy the conditions of Theorem 17 or
Theorem 18, since by those theorems this is sufficient to guarantee that the partial
transition functions can be completed to well-formed transition functions. QTM
(or reversible TM) will sometimes use a finite number of auxiliary tracks. These
are assumed always to start and finish in the all blank configuration.

We will have frequent recourse to the following basic TM and QTM program-
ming primitives from Bernstein and Vazirani [BV97], which we slightly generalise
here to account for additional properties of the resulting QTMs that will be impor-
tant to us later. These primitives allow different QTMs to be combined in various
ways to build up a more complex QTM.

Lemma 20 (Subroutine Lemma)
Let M1 be a two-track, normal form, reversible TM and M2 a two-track normal

form reversible TM (or well-formed, normal form, unidirectional QTM) with the
same alphabet and the following properties:
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(i). M1 is proper on initial configurations in X1 and M2 is proper on X2.

(ii). When started on X1, M1 leaves the second track untouched and when started
on X2, M2 leaves the first track untouched.

(iii). There is a state q on M1 that, when started on X1, can only be entered with
the head in the starting cell.

(iv). X2 contains all the output superpositions (with q f replaced by q0) of k
consecutive executions of M2 started from an initial configuration in X1 for
all 0 ≤ k ≤ r, where r ∈ N ∪ {∞} is the maximum number of times that q is
entered when M1 runs on input in X1.

Then there is a normal form, reversible TM (or well-formed, normal form, unidi-
rectional QTM) M which behaves properly on X1 and acts as M1 except that each
time it would enter state q, it instead runs machine M2.

Proof Exactly as Lemma 4.8 in [BV97]. �

Lemma 21 (Dovetailing Lemma) Let M1 and M2 be well-formed normal form
unidirectional QTMs (resp. normal form reversible TMs) with the same alphabet, so
that M1 is proper onX1, M2 is proper onX2 andX2 contains all final superpositions
(resp. configurations) of M1 started on X1. Then, there is a well-formed normal
form unidirectional QTM (resp. normal form reversible TM) M which carries out
the computation of M1 followed by the computation of M2 and that is also proper
on X1.

Proof Exactly as Lemma 4.9 in [BV97]. �

Lemma 22 (Reversal Lemma) If M is a well-formed, normal form, unidirec-
tional QTM (resp. normal form reversible TM) then there is a well formed, normal
form, unidirectional QTM (resp. normal form reversible TM) M† that reverses the
computation of M while taking two extra time steps and using the same amount
of space. Moreover, if M is proper on X, then M† is proper on the set of final
superpositions (resp. configurations) of M started on X.

Proof The proof is very similar to that of Lemma 4.12 in [BV97]. We will prove
it for QTMs, since reversible TMs are a special case of these. Consider an initial
superposition |φ0〉 ∈ X, and let |φ1〉 , · · · |φn〉 be the evolved sequence obtained
by |φi+1〉 = UM |φi〉, where |φn〉 is a final superposition. Since M is normal form,
|φ1〉 , · · · , |φn〉 do not have support on q0.

Let |φ′n〉 be the superposition obtained by replacing the state q f in |φn〉 with
the initial state of the new machine q′0. Let |φ′0〉 be the superposition obtained by
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replacing the state q f in |φ0〉 with the new final state q′f . We want to construct a
QTM M† that, when started from |φ′n〉, halts on |φ′0〉 in n + 2 steps. M† will have the
same alphabet and set of states as M, together with the new initial and final states
q′0, q

′
f . We define the transition function δ′ in the following way:

(i). δ′(q′0, σ) = |σ〉 |q f 〉 |d̄q f 〉.

(ii). For each q ∈ Q\{q0} and each τ ∈ Σ,

δ′(q, τ) =
∑
p,q

δ(p, σ, τ, q, dq)∗ |σ〉 |p〉 |d̄p〉 . (32)

(iii). δ′(q0, σ) = |σ〉 |q′f 〉 |dq0〉.

(iv). δ′(q′f , σ) = |σ〉 |q′0〉 |N〉.

Here, for any state q, dq is the unique direction in which that state can be entered,
and d̄q is the opposite direction. Since M is unidirectional, Theorem 18 implies
that M† is a well-formed, normal form, unidirectional QTM. Given a configuration
c in state q, π(c) is defined as the configuration derived from c by moving the head
one step in the direction d̄q. π can be extended by linearity to S.

Let us now analyse the behaviour of M† started from |φ′n〉. By (i), M† maps
|φ′n〉 in one step to π(|φn〉). Now consider (ii). Since M is normal form, it maps
superposition |ψ1〉 to superposition |ψ2〉 with no support on state q0 if and only
if |ψ1〉 has no support on state q f . Denote Q0 = Q\{q0}, Q f = Q\{q f }. If M
takes a configuration c1 with a state from Q f with amplitude α to a configuration
c2 (necessarily with a state in Q0), then (ii) ensures that M† takes configuration
π(c2) to configuration π(c1) with amplitude α∗. Let S 0 (resp. S f ) be the space of
superpositions using only states in Q0 (resp. Q f ). Since M is well-formed, the
restriction of the evolution operator UM to S f is an isometry into S 0. Hence M†

implements, up to conjugation by π, the inverse of UM restricted to UM(S f ).
As an aside, note that this implies that the evolution operator of M is indeed a

unitary and not just an isometry. Indeed, by (i) to (iv) above, the evolution operator
of M† is also an isometry from S 0 into S f . Since π is trivially a unitary on S, this
implies that UM restricted to S f is a unitary onto S 0. Now, since M is normal form,
UM achieves any possible configuration with state q0 by starting from the same
configuration but with q0 replaced by q f . These two facts together show that UM is
indeed surjective and hence a unitary.

Returning to the proof of the lemma, we have seen how (ii) implies that M†

executes the sequence of n steps π(|φn−1〉), · · · π(|φ0〉). Finally, by (iv), in the
(n + 2)’th step, M† maps π(|φ0〉) to |φ′0〉 as desired.

Moreover, it is trivial to see that M† uses exactly the same space as M, and
behaves properly. �
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Note that our way of defining normal form (Definition 15 as opposed to that in
[BV97]) is crucial to guarantee that the reversal machine is proper. As a corollary
of the proof, we have also shown that the evolution of a well-formed, normal
form unidirectional QTM is a unitary operator. (The proof of this fact for non-
unidirectional QTMs is much more involved, and can be found in [BV97]).

3.1.2 Reversible Turing Machine Toolbox
It will be helpful to have a toolbox of reversible TMs which carry out various
elementary computations. In order to satisfy the space constraints of Theorem 10,
we will be interested in keeping tight control of the space requirements of all our
constructions.

Lemma 23 (Copying machine) There is a two-track, normal form, reversible TM
Copy with alphabet Σ×Σ that, on input s written on the first track, behaves properly,
copies the input to the second track and runs for time 2|s| + 1, using |s| + 1 space.

Proof We simply step the head right, copying the symbol from the first track
to the second. However, we defer copying the starting cell until the end of the
computation, so that we can locate the starting cell again. It is straightforward to
verify that the following normal form transition function implements Copy:

[σ, #] [#, #] [τ, τ]
q0 ([σ, #], q1,R) ([#, #], q f ,N)
q1 ([σ,σ], q1,R) ([#, #], q2, L)
q2 ([σ,σ], q f ,N) ([τ, τ], q2, L)
q f ([σ, #], q0,N) ([#, #], q0,N) ([τ, τ], q0,N)

∀σ, τ ∈ Σ/#

(33)

This partial transition function verifies the two conditions of Theorem 17, so it is
well-formed and can be completed to give a reversible TM. �

Lemma 24 (Shift-right machine) There exists a normal form, reversible TM
Shift with alphabet Σ that, on input s behaves properly, shifts s one cell to the
right and runs for time 2|s| + 2, using space |s| + 2.

Proof It is straightforward to verify that the following normal-form transition
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function implements Shift:

# σ

q0 (#, qσ1 ,R)
qν1 (ν, q2,R) (ν, qσ1 ,R)
q2 (#, q3, L)
q3 (#, q f ,N) (σ, q3, L)
q f (#, q0,N) (σ, q0,N)

∀σ, ν ∈ Σ/#

(34)

As this partial transition function verifies the two conditions of Theorem 17, it is
well-formed and can be completed to give a reversible TM. �

Lemma 25 (Equality machine) There is a three-track, normal form, reversible
TM Eql with alphabet Σ × Σ × {#, 0, 1} that, on input s; t; b, where s and t are
arbitrary input strings and b is a single bit, behaves properly and outputs s; t; b′,
where b′ = ¬b if s = t and b′ = b otherwise. Furthermore, Eql runs for time
2|s| + 1 and uses |s| + 1 space.

Proof Implementing a non-reversible equality-testing machine is trivial: just scan
the head right checking if the symbols on the two input tracks match. If we
encounter a non-matching pair, return to the starting cell and flip the output bit. If
we reach the end of the input without encountering a non-matching pair, return to
the starting cell and leave the output bit unchanged.

Doing this reversibly requires more care. The problem is that the computation
splits into two possible paths, depending on whether a non-match was encountered
or not, and we must merge these two divergent computations back together again
reversibly. For example, we cannot simply halt after either flipping the output bit
or leaving it unchanged, as that would give multiple transitions into the final state
that write the same symbol to the starting cell.

The trick is to return to the point at which the computational paths diverged
(either the first non-matching pair of symbols, or the end of the input) after setting
the output bit, in order to merge the two computational paths back together, before
returning to the starting cell again to halt.

Because we want to avoid ever moving the head before the starting cell, there
is also the issue of how to identify the starting cell so that we can return to it again.
If the symbols in the first cell differ, we can set the output bit immediately and halt.
If they are identical, we temporarily change the symbol on the second input track
to a # to mark the starting cell. We can recover the original second-track input at
the end of the computation by copying over the symbol from the first track.
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The following normal-form transition function carries out this procedure:

[σ,σ, b] [σ, τ, b] [σ, #, b] [#, τ, b]
q0 ([σ, #, b], q1,R) ([σ, τ, b], q f ,N) ([σ, #, b], q f ,N) ([#, τ, b], q f ,N)
q1

q2 ([σ, #,¬b], q3,R)
q′2 ([σ, #, b], q′3,R)
q3

q′3
q4 ([σ,σ, b], q f ,N)
q f ([σ,σ, b], q0,N) ([σ, τ, b], q0,N) ([σ, #, b], q0,N) ([#, τ, b], q0,N)

[σ,σ, #] [σ, τ, #] [σ, #, #] [#, τ, #]
q1 ([σ,σ, #], q1,R) ([σ, τ, #], q′2, L) ([σ, #, #], q′2, L) ([#, τ, #], q′2, L)
q2 ([σ,σ, #], q2, L)
q′2 ([σ,σ, #], q′2, L)
q3 ([σ,σ, #], q3,R)
q′3 ([σ,σ, #], q′3,R) ([σ, τ, #], q4, L) ([σ, #, #], q4, L) ([#, τ, #], q4, L)
q4 ([σ,σ, #], q4, L)
q f ([σ,σ, #], q0,N) ([σ, τ, #], q0,N) ([σ, #, #], q0,N) ([#, τ, #], q0,N)

[#, #, #]
q1 ([#, #, #], q2, L)
q2

q′2
q3 ([#, #, #], q4, L)
q′3
q4

q f ([#, #, #], q0,N)

∀σ , τ ∈ Σ/#,∀b ∈ {0, 1}
(35)

One can verify that this partial transition function satisfies the two conditions of
Theorem 17, so it is well-formed and can be completed to give a reversible TM, as
required. �

It is somewhat easier to construct reversible implementations of basic arithmetic
operations if the numbers are written on the tape in little-endian order (i.e. least-
significant bit first), as it avoids any need to shift the entire number to the right
to accommodate additional digits. We adopt this convention for all the following
basic arithmetic machines. We do not allow numbers to be padded with leading
0’s as that would allow multiple binary representations of the same number, which
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is inconvenient when constructing reversible machines. Note that this means the
number zero is represented by the blank string, not the string “0”.

Lemma 26 (Increment and decrement machines) There exist normal form, re-
versible TMs Inc and Dec with alphabet {#, 0, 1} that, on little-endian binary input
n (with n > 1 for Dec), behave properly and output n + 1 or n − 1 respectively.
Both machines run for time O(log n) and use at most |n| + 2 space.

Incrementing a binary number on a non-reversible TM is straightforward:
simply step the head along the number starting from the least significant bit,
flipping 1’s to 0’s to propagate the carry until the first 0 or #, then flip that 0 or # to
1 and halt. (Little-endian order avoids any need to shift the whole input to the right
to accommodate an additional digit, should one be required.) However, making
this procedure reversible is more fiddly. One option of course is to use Bennett
[Ben73]’s general reversible simulation and uncomputation of a non-reversible TM,
but this comes at a cost of polynomial space overhead. A more careful construction
allows us to implement Inc directly, using just two additional tape cells.

Proof (of Lemma 26) We first use the Shift machine from Lemma 24 to shift
the entire input one cell to the right, as a convenient way of getting a # in the
starting cell so that we can return to it later. We then reversibly increment the
binary number written on the tape, and finish by running Shift† (the reversal of the
Shift machine, constructed using Lemma 22) to shift the output back one cell to
the left. The following normal-form transition function implements the increment
part of this procedure:

# 0 1
q0 (#, q1,R)
q1 (1, q′2,R) (1, q2,R) (0, q1,R)
q2 (0, q3, L) (1, q3, L)
q′2 (#, q3, L)
q3 (1, q4, L)
q4 (#, q f ,N) (0, q4, L)
q f (#, q0,N) (0, q0,N) (1, q0,N)

(36)

This partial transition function verifies the two conditions of Theorem 17, so it is
well-formed and can be completed to give a reversible TM.

This completes the construction of Inc. To implement Dec, simply construct
the reversal of Inc using Lemma 22. �

We can use the Inc construction to construct a looping primitive. (This gives a
slightly more general version of the Looping Lemma from [BV97, Lemma 4.13],
which also has tighter control on the space requirements.)
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Lemma 27 (Looping Lemma) There is a two-track, normal form, reversible TM
Loop2 with alphabet {#, 0, 1}, which has the following properties. On input n; m,
with n < m both little-endian binary numbers, Loop2 behaves properly, runs
for time O((m − n) log m), uses space |m| + 2 and halts with its tape unchanged.
Moreover, Loop2 has a special state q such that on input n; m, it visits state q
exactly m − n times, each time with its tape head back in the start cell.

There is also a one-track, normal form, proper, reversible TM Loop which, on
input m ≥ 1, behaves as Loop2 on input 0; m.

Proof Our construction closely follows the proof of Bernstein and Vazirani [BV97,
Lemma 4.2.10]. We will use two auxiliary tracks in addition to the two input tracks,
both with alphabet {#, 0, 1} and both initially blank.

The core of the Loop2 machine is a reversible TM M′ constructed out of two
proper, normal form, reversible TMs M1 and M2. M1 has initial and final states
q0, q f , and transforms input n; m; x; b into n; m; x + 1; b′, where b is a bit and
b′ = ¬b if x = n or x = m − 1 but not both, otherwise b′ = b. M2 has new initial
and final states qα, qω, with q0 and q f as its only other normal (non-initial or final)
internal states. M2 behaves as follows:

(i). If it is in state qα with b = 0, it flips b to 1 and enters state q0.

(ii). If it is in state q f with b = 0, it enters state q0.

(iii). If it is in state q f with b = 1, it flips b to 0 and halts.

The transition rules for M′ are constructed by deleting the q f to q0 transition
rules from M1, and adding all the remaining M1 rules to those of M2. The initial
and final states of M′ are qα, qω. On input n;m;n;0, M′ will therefore run M2 until
it enters the q0 state, then run M1 until it halts and re-enters M2. It will continue
to alternate in this way between M2 and M1 until the former halts. Thus M′ goes
through the following sequence of configurations:

n;m;n;0
(i)
−→ n;m;n;1

M1
−→ n;m;n+1;0

(ii)
−→ n;m;n+1;0

M1
−→ n;m;n+2;0

(ii)
−→ · · ·

· · ·
(ii)
−→ n;m;m-1;0

M1
−→ n;m;m;1

(iii)
−→ n;m;m;0 (37)

It therefore runs exactly m− n times and enters the state q f once in each run, so we
can take q f as the special state q.

To initialise the tracks, we dovetail a proper, reversible TM before M′ which
transforms the input n; m; #; # into the configuration n; m; n; 0. This is easily
constructed by dovetailing the Copy machine from Lemma 23 (acting on the first
and third tracks) with a simple reversible TM which changes the first cell of
the fourth track from # to 0 and halts. (Implementing the latter is trivial.) To
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return all tracks to their initial configuration at the end, we dovetail another proper,
reversible TM after M′ which transforms the configuration n; m; m; 0 into the final
output n; m; #; #. This is easily constructed by dovetailing the reversal Copy† of the
copying machine from Lemma 23 (acting on the second and third tracks) with a
simple reversible TM which changes the first cell of the fourth track from 0 back
to #. From Lemma 28, these initialisation and reset machines run for time O(log n)
and O((m − n) log m), respectively, and use |n| + 1 and |m| + 1 space.

It remains to construct M1 and M2, and show that combining them as described
above to form M′ gives a proper, normal form, reversible TM. M1 is constructed
by dovetailing together the Eql machine from Lemma 25 (with the first and third
tracks as its input tracks and the fourth track as its output), then the Inc machine
from Lemma 26 (acting only on the third track), and finally another Eql machine
(this time with the second and third tracks as its input tracks and the fourth track
as its output). By Lemma 21 and the fact that all the constituent machines are
proper, normal form and reversible, M1 is proper, normal form and reversible.
From Lemmas 25 and 26, M1 runs for time O(log m) and takes at most |m| + 2
space.

The following normal form, partial transition function is essentially the same as
the corresponding construction in Lemma 4.2.6 of Bernstein and Vazirani [BV97],
but we can simplify slightly by exploiting the fact that we are allowing generalised
TMs. It acts only on the fourth track, and implements a machine M2 that clearly
satisfies the properties (i) to (iii), above:

# 0 1
qα (1, q0,N)
q f (0, q0,N) (0, qω,N)
qω (#, qα,N) (0, qα,N) (1, qα,N)

(38)

M2 is clearly normal form, and satisfies the two conditions of Theorem 17.
Since M1 is normal form, it has no transitions into q0 or out of q f other than the

ones we deleted before constructing M′. All remaining internal states of M1 and
M2 are distinct. Thus, since M1 is reversible, the transition rules for M′ also satisfy
the two conditions of Theorem 17. M′ can therefore be completed to a normal
form, reversible TM. Since M1 is proper, it is easy to see that M′ is also proper.

M′ loops on M1 m−n times (with constant time overhead and no space overhead
coming from M2). Each run of M1 takes time O(log m), so the complete Loop2
implementation takes time O(log m). None of the constituent TMs use more than
|m| + 2 space, so neither does Loop2. This completes the construction of Loop2..

To construct Loop, we simply remove the second input track from the Loop2
machine, and replace the Eql machine that acts on that track with a trivial machine
that checks whether the starting cell of the third track contains the # symbol. �
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The reversible incrementing, decrementing, and looping machines constructed
above are sufficient to implement all arithmetic operations. The only ones we will
need are addition and subtraction. These are now easy to construct.

Lemma 28 (Binary adder) There exist two-track, normal form, reversible TMs
Add and Sub with alphabet {#, 0, 1}×3, which have the following properties. On
input n; m with n and m both little-endian binary numbers and m ≥ 1, Add behaves
properly and outputs n+m; m. On input n; m with n > m, Sub behaves properly and
outputs n −m; m. Both TMs run for time O(m log m log n) and use max(|n|, |m|) + 2
space.

Proof To construct Add, we simply run the Loop TM of Lemma 27 on the second
track, inserting for its special state the Inc machine of Lemma 26 acting on the first
track. Since both Loop and Inc are proper and normal form, the resulting machine
is also proper and normal form. Sub is simply the reversal of Add, constructed
using Lemma 22. �

We will also need a reversible TM to convert the input from unary representation
to binary. Again, it is not difficult to construct this using our reversible incrementing
TM.

Lemma 29 (Unary to binary converter) There exists a two-track, normal form,
reversible TM UtoB with alphabet {#, 1} × {#, 0, 1} with the following properties.
On input 1n; # (n written in unary on the first track), UtoB behaves properly and
outputs 1n; n (n written in little-endian binary on the second track). Furthermore,
UtoB runs for O(n2 log n) steps and uses n + 1 space.

Proof The basic idea is to step the head right along the unary track until we reach
the end of the unary input string, running the Inc machine of Lemma 26 once each
time we step right. However, Inc needs to be started with its head in the starting
cell. So each time we run it, we need to temporarily mark the current head location,
move the head back to the starting cell in order to run Inc, then return the head to
its previous location and continue stepping right.

Consider the following normal form transition function, acting only on the
unary track:

# 1
q0 (#, q f ,N) (1, q,N)
q1 (#, q4, L) (#, q2, L)
q2 (#, q,N) (1, q2, L)
q (#, q′2,R) (#, q1,R)
q′2 (1, q1,R) (1, q′2,R)
q4 (1, q f ,N) (1, q4, L)
q f (#, q0,N) (1, q0,N)

(39)
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This verifies the two conditions of Theorem 17, so it is well-formed and defines a
reversible TM. It is also easy to see that this TM is proper.

The transition function implements a machine that steps right over the 1’s on
the unary track until it reaches the end of the input, at which point it moves its head
back to the starting cell and halts. However, each time it steps right, it temporarily
marks the current head location by overwriting the 1 on the unary track with a #,
returns the head to the starting cell, enters an apparently useless internal state q for
one time step, then returns the head back to where it was before, restores the 1 on
the unary track, and continues stepping right from where it left off. The purpose
of this apparently pointless procedure is that, by Lemma 20, we can substitute the
Inc machine from Lemma 26 for the state q, with Inc acting on the (initially blank)
binary track.

The above TM enters the q state precisely n times. Thus, when we substitute
Inc for q, Inc will be run precisely n times, leaving the number n written on the
binary track as required. Each iteration of Inc takes time O(log n) and at most
|n| + 2 space. The step-right TM constructed above adds time overhead O(n2) and
uses n + 1 space. Neither machine ever moves its head before the starting cell.
Thus the overall machine satisfies the time and space claims of the Lemma. �

3.2 Quantum phase estimation overview
The qubits used in the quantum phase estimation circuit can be divided into two sets:
the “output” qubits which will ultimately contain the binary fraction expansion of
the phase in the black-box unitary, and the “ancilla” qubits on which the black-box
unitary is applied. In our case, the black-box unitary will be the single qubit unitary
Uϕ =

(
1 0
0 eiπϕ

)
, so the ancilla set will be a single qubit. As stated above, ϕ will refer

to the number whose binary decimal expansion contains the digits of n in reverse
order after the decimal.

The quantum phase estimation algorithm proceeds in five stages: (1) A prepa-
ration stage, in which the qubits are first initialised in the |0〉 state, then Hadamard
gates are applied to all the output qubits and the ancilla qubit is prepared in an
eigenstate of Uϕ (in our case |1〉); (2) The controlled-unitary stage, during which
control-Uϕ operations are applied between the output qubits and the ancilla qubit;
(3) A stage in which we locate the least significant bit of the output; (4) The
quantum Fourier transform stage, in which the inverse quantum Fourier transform
is applied to the output qubits; (5) A reset stage, which resets all the auxiliary
systems used during the computation to their initial configuration.

We will construct QTMs for each of these stages separately, and use the
Dovetailing Lemma 21 to chain them together. It will be useful to divide the tape
into multiple tracks. A “quantum track” with alphabet Σq = {#, 0, 1} will store the
qubits involved in the phase estimation algorithm. The input 1N will be supplied
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as a string of N 1’s on the quantum track. All the other tracks will essentially
be classical; after each stage they will be left in a single standard basis state (i.e.
neither entangled with other tracks, nor in a superposition of basis states). These
classical tracks will be used to implement the classical processing needed to control
the quantum operations applied to the quantum track.

3.3 Preparation stage
We will use the first cell of the quantum track as the ancilla qubit, and the following
N cells as the output qubits of the quantum phase estimation algorithm.

It will be convenient to first store a copy of the input given in unary on the
quantum track on an auxiliary “input track”, but written in binary, i.e. to transform
the configuration 1N; # of the quantum and input tracks into 1N; N. Running the
unary-to-binary converter UtoB from Lemma 29 on the quantum and input tracks
carries out the desired transformation.

We want to initialise the N + 1 qubits that will be used in the phase estimation,
by preparing the ancilla qubit in the state |1〉 and the output qubits in the |+〉 state.
The first N qubits are already in the |1〉 state thanks to the input string. We therefore
prepare the desired state by first temporarily flipping the state of the first qubit on
the quantum track |#〉 to mark the starting cell, then stepping the QTM head right
rotating each qubit into the |+〉 state, until we reach the first |#〉 state which we
again rotate to |+〉 to initialise the N + 1’th qubit. We then move the head back
to the start location, flip the state of the first cell of the quantum track from |#〉 to
|1〉, and halt. (The contents of all other tracks are ignored.) It is straightforward
to verify that the following partial transition function satisfies the conditions of
Theorem 18, so is well-formed, and implements a proper, well-formed, normal
form, unidirectional QTM that does exactly what we want.

# 0 1
q0 |#〉 |q1〉 |R〉
q1

1
√

2
(|0〉 + |1〉) |q2〉 |R〉 1

√
2
(|0〉 + |1〉) |q1〉 |R〉

q2 |#〉 |q3〉 |L〉
q3 |1〉 |q f 〉 |N〉 |0〉 |q3〉 |L〉 |1〉 |q3〉 |L〉
q f |#〉 |q0〉 |N〉 |0〉 |q0〉 |N〉 |1〉 |q0〉 |N〉

(40)

3.4 Control-Uϕ stage
The second stage of the phase estimation procedure is to apply control-U2n−1

ϕ

operations between the n’th output qubit and the ancilla qubit (see Figure 2).
Constructing a QTM that implements this is more complex. The basic idea is to
supply the QTM with an internal state q that causes the Uϕ rotation to be applied to
the quantum track at the current head location. We then construct classical control
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machinery which iterates over the output qubits, and loops on q to apply Uϕ for a
total of 2n−1 times.

|0〉 H . . . • |0〉 + e2πi(2N−1ϕ) |1〉
...

|0〉 H • . . . |0〉 + e2πi(22ϕ) |1〉

|0〉 H • . . . |0〉 + e2πi(2ϕ) |1〉

|0〉 H • . . . |0〉 + e2πiϕ |1〉

|1〉 Uϕ U2
ϕ U22

ϕ
. . . U2N−1

ϕ |1〉

Figure 2: The first stage of the quantum phase estimation circuit for ϕ (cf. Fig. 5.2
in [NC00]).

We will use three auxiliary tracks. One, with alphabet Σm = {t, c,m0,m1, #},
will be used to mark the position of the current control and target qubits. (The
m0,1 states will be used to temporarily store an auxiliary qubit on the mark track of
the starting cell.) The other two auxiliary tracks, with alphabet Σl = {0, 1, #}, will
constitute the work tapes of two different reversible looping TMs from Lemma 27.

3.4.1 cUk machine
We will need a QTM which applies the control-Uϕ operation k times. We give
a construction for an arbitrary controlled single-qubit unitary U, as this will be
useful later.

Lemma 30 (Controlled-U QTM) For any single-qubit unitary U, there exists a
well-formed normal form unidirectional QTM cUk with the following properties.
The QTM has three tracks: a looping track with alphabet Σl = {0, 1, #}, a mark
track with alphabet Σm = {t, c,m0,m1, #}, and a quantum track with alphabet
Σq = {0, 1, #}. The input consists of a number k ≥ 1 written in binary on the
looping track in little-endian order, a configuration containing a single t and a
single c within the first n tape cells on the mark track (and all other cells blank),
and an arbitrary n-qubit state on the quantum track.

On such input, the QTM applies the control-U operation k times between the
control and target qubits on the quantum track marked by c and t, and then halts,
having run for time O(kn + k log k), used at most max(n, |k|) + 2 space, behaving
properly and leaving the configurations of the looping and mark tracks unchanged.
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Proof It will be convenient to first run the Shift machine from Lemma 24 acting
only on the mark and quantum tracks, to shift this part of the input one cell to the
right. This produces a # on the mark and quantum tracks of the start cell, which
we can use later to return to this cell. The remainder of the construction returns
the quantum and mark tracks of the start cell to the # state, so we can run the
corresponding Shift† machine at the very end (where Shift† is the reversal of M1

constructed using Lemma 22) to shift these tracks back one cell to the left, so that
the final output is correctly aligned. These shift operations take O(n) time and use
n + 2 space.

We construct the core of the cUk QTM out of two simpler machines, M1 and
M2, dovetailed together in the sequence M1,M2,M

†

1 (where M†

1 is the reversal of
M1). Machine M1 scans right until it encounters a c on the mark track, at which
point it applies a CNOT between the quantum track and an internal qubit, returns
the head to the starting cell, applies a CNOT between the internal qubit and an
auxiliary qubit on the mark track, and halts. Clearly, M1 is proper, runs for time at
most O(n) and uses at most n + 1 space.

The following well-formed, normal form, partial quantum transition function
implements M1 (which acts only on the mark and quantum tracks). Note that
one of the internal states of M1 comes in two varieties, indicated by a superscript
j = {0, 1}, which are used to temporarily store a qubit in the internal state of the
machine:

[#, #] [#, i] [t, · ] [c, j] [mk, · ]
q0 |m0, #〉 |q1〉 |R〉
q1 |#, i〉 |q1〉 |R〉 |t, · 〉 |q1〉 |R〉 |c, j〉 |q j

2〉 |L〉
q j

2 |#, i〉 |q j
2〉 |L〉 |t, · 〉 |q

j
2〉 |L〉 |mk⊕ j〉 |q f 〉 |N〉

q f |#, #〉 |q0〉 |N〉 |#, i〉 |q0〉 |N〉 |t, · 〉 |q0〉 |N〉 |c, j〉 |q0〉 |N〉 |mk, · 〉 |q0〉 |N〉

∀i, j, k ∈ {0, 1}
(41)

Machine M2 loops k times, where k is specified by the number written in binary
on the looping track, applying a control-U operation between the auxiliary qubit
stored on the mark track of the start cell and the target qubit, and then halts. We
construct M2 using the reversible looping TM Loop from Lemma 27, and inserting
for its special state a QTM M′ that is very similar to M1. The M′ machine first
applies a CNOT between the auxiliary qubit stored in the mark track of the start
cell and an internal qubit. It then scans right until it finds the t, and applies a single
control-U operation between the internal qubit and the target qubit. Finally, it
moves the head back to the starting cell, and applies another CNOT between the
internal qubit and the auxiliary qubit, before halting.

If ui j denotes the i, j’th matrix element of U, then the following well-formed,
normal form, partial quantum transition function (which acts only on the mark and
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quantum tracks) implements M′:

[m0, · ] [m1, · ] [#, · ] [t, j] [c, · ]
q0 |m0, · 〉 |q0

1〉 |R〉 |m1, · 〉 |q1
1〉 |R〉

q0
1 |#, · 〉 |q0

1〉 |R〉 |t, j〉 |q0
2〉 |L〉 |c, · 〉 |q0

1〉 |R〉
q1

1 |#, · 〉 |q1
1〉 |R〉

∑
i ui j |t, i〉 |q1

2〉 |L〉 |c, · 〉 |q
1
1〉 |R〉

q0
2 |m0, · 〉 |q f 〉 |N〉 |#, · 〉 |q0

2〉 |L〉 |c, · 〉 |q0
2〉 |L〉

q1
2 |m1, · 〉 |q f 〉 |N〉 |#, · 〉 |q1

2〉 |L〉 |c, · 〉 |q1
2〉 |L〉

q f |m0, · 〉 |q0〉 |N〉 |m1, · 〉 |q0〉 |N〉 |#, · 〉 |q0〉 |N〉 |t, j〉 |q0〉 |N〉 |c, · 〉 |q0〉 |N〉

∀i, j, k ∈ {0, 1}
(42)

This machine is proper, never alters the mark track, and, for given mark track
configuration, always runs for the same number of time steps. So substituting it
in the looping machine produces a proper QTM M2. Furthermore, since M′ takes
O(n) time and at most n + 1 space, M2 runs for time O(kn + k log k), uses at most
max(n, |k|) + 2 space, and never moves the head before the starting cell.

The only qubits on which the overall QTM acts are the two qubits in the
quantum tracks of the cells marked by t and c, the auxiliary qubit stored on the
mark track (let’s label this m), and the two internal qubits stored in the internal
states q j

2 of M1 and q j
1,2 of M2 (let’s label these auxiliary M1 and M2 internal qubits

by a1,2). Qubits m, a1 and a2 are initially in the |0〉 state. Apart from classical
processing to move the head into the correct location, M1 just applies a CNOT
between the c and a1 qubits, followed by a CNOT between the a1 and m qubits.

Similarly, M′ applies a CNOT between the m and a2 qubits, a control-U
operation between the a2 and t qubits, and a final CNOT between the m and a2

qubits. Letting cU denote the control-U gate, and recalling that the a2 qubit starts
off in the |0〉 state, the overall effect of this is:

CNOTma2 cUa2t CNOTma2 |ψ〉mt |0〉a2 = cU |ψ〉mt |0〉a2 , (43)

i.e. M′ effectively applies a single control-U operation between the m and t qubits.
M2 repeats the M′ operations k times, so the overall action of M2 is to apply a
control-U operation k times between the m and t qubits.

The time-reversal of M1 simply applies its CNOTs in the reverse order. So
dovetailing M1,M2,M

†

1 carries out the operation

CNOTca1 CNOTa1m cUk
mt CNOTa1m CNOTca1 |ψ〉ct |0〉a1 |0〉m = cUk

ct |ψ〉ct |0〉a1 |0〉m .
(44)

Thus the overall action of the entire QTM is to apply a cUk operation between
the control and target qubits, as required, leaving the looping and mark tracks
back in the configuration they started in. Furthermore, the QTM runs for time
O(kn + k log k), uses at most max(n, |k|) + 2 space, and is well-formed, normal form,
unidirectional and proper, as claimed. �
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3.4.2 Iterating over the control qubits
We want to apply a cU2n−1

ϕ operation between the n’th output qubit and the ancilla
qubit, for each of the N output qubits. (Note that the qubits are stored in reverse
order on the quantum track, so the 1st output qubit is stored in the N + 1’th cell
of the quantum track and the N’th output qubit is stored in the 2nd cell.) As we
will need to use a second looping machine to iterate over the qubits, we refer to the
looping track for the cUk machine as the “cU looping track”, and the track for the
second looping machine used here as the “outer looping track”.

We will need a reversible TM which, on suitable mark and cU looping track
configurations (cf. Lemma 30), moves the c marker on the mark track one cell to
the left, and doubles the value k written on the cU looping track. It is convenient
(though slightly less efficient) to divide the implementation into two parts, dove-
tailed together: Stepc which shifts the c marker one cell to the left, and Dbl which
doubles the value on the cU looping track. The following well-formed, normal
form, partial transition function implements the reversible TM Stepc (which only
acts on the mark track):

# ti c
q0 (ti, q1,R)
q1 (#, q1,R) (#, q2, L)
q2 (c, q3, L)
q3 (#, q3, L) (ti, q f ,N)
q f (#, q0,N) (ti, q0,N) (c, q0,N)

∀i ∈ {0, 1}

(45)

Doubling a number in binary simply appends a 0 onto the binary representation
of the number. The following well-formed, normal form, partial transition function
for Dbl (which acts only on the cU looping track) does precisely this, taking
advantage of the fact that k is always a power of 2 (so, in little-endian order, always
consists of a string of 0’s followed by a single 1) to simplify the construction:

# 0 1
q0 (#, q1,R) (#, q2,R)
q1 (0, q1,R) (0, q2,R)
q2 (1, q3, L)
q3 (0, q f ,N) (0, q3, L)
q f (#, q0,N) (0, q0,N) (1, q0,N)

(46)

We are now in a position to implement the complete controlled-Uϕ stage of
the quantum phase estimation algorithm. We initialise the states of the auxiliary
tracks, by first running a simple reversible TM that changes the [#, #] in the first
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cell of the mark and cU looping tracks into [t0, 1], then returns to the starting
cell and halts. (Constructing a reversible TM for this is trivial.) We then dovetail
this with a proper, normal form reversible TM that scans to the end of the output
qubits, changes the # on the mark track into a c, and halts. The following normal
form, partial transition function (which acts only on the mark and quantum tracks)
accomplishes this:

[#, #] [#, i] [ti, j]
q0 ([ti, j], q1,R)
q1 ([#, #], q2, L) ([#, i], q1,R)
q2 ([c, i], q3, L)
q3 ([#, i], q3, L) ([ti, j], q f ,N)
q f ([#, #], q0,N) ([#, i], q0,N) ([ti, j], q0,N)

∀i, j ∈ {0, 1}

(47)

On the mark track, this leaves a t0 and c over the ancilla qubit and the first output
qubit,1 respectively, and blanks everywhere else. The configuration prepared on
the cU looping track corresponds to the number 1 written in binary.

Next, we copy N from the input track to the outer looping track using the Copy
machine from Lemma 23. We then run a reversible looping TM from Lemma 27
which uses this track as its input track (so it will loop N times in total). For the
special state of this looping machine, we substitute a QTM which dovetails the
cUk machine from Lemma 30 with the Stepc and Dbl machines constructed above.

On appropriate input, the cUk machine from Lemma 30 runs for a number of
steps which depends only on the classical part of the input supplied on the mark
and looping tracks, and not on the quantum state in the quantum track. The Stepc
and Dbl reversible TMs don’t touch the quantum track at all. So as long as the
mark and cU looping tracks are always in a suitable configuration (cf. Lemma 30)
before the cUk machine is run in each iteration, the outer looping machine will be
proper.

Now, we already initialised the cU looping track to k = 1, above, and marked
the ancilla qubit as the target and the first output qubit as the control. So the
initial configuration of the mark and cU looping tracks is suitable input for a cUk

machine. When cUk is run in the first iteration of the outer looping machine, it
applies a cU1 = cU between the first output qubit and the target qubit. Stepc and
Dbl machines then run, which shifts the control marker one cell to the left onto the
second output qubit and doubles k to 2, ready for the next iteration. In the second
iteration, the looping machine therefore applies a cU2 between the second output
qubit and the ancilla, and doubles k to 4. The looping machine goes through a total

1Recall that the first output qubit is the last one on the quantum track
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of N iterations, each time feeding suitable input to the cUk machine to make it
apply a cU2n−1

between the n’th output qubit and the ancilla, before halting with N
written on the outer looping track, a t0 and c in the first and second cell of the mark
track, and N + 1 written on the cU looping track.

Thus the outer looping machine is well-formed, normal form unidirectional and
proper. It runs for a total of N iterations with overhead N log N (cf. Lemma 27). In
the n’th iteration it runs the cUk machine from Lemma 30 once with k = 2n−1, and
runs the Stepc and Dbl machines once each. The n’th iteration of the cUk machine
takes time O(N + 2n−1 log 2n−1), and the Stepc and Dbl machines always take time
O(n). So the outer looping machine runs for a total time O(N22N).

Finally, we can uncompute (reset) the auxiliary tracks by running a reversible
TM which transforms the configuration N; N; t0c; N + 1 left on the input, outer
looping, mark, and cU looping tracks, into N; #; #; #. We do this by running the
reversal Copy† of the copying machine from Lemma 23 on the input and outer
looping tracks to erase the outer looping track, decrementing the cU looping track
and running Copy† again to erase that track, and running a trivial reversible TM
that changes t0c on the mark track into ##.

Putting everything together, the control-U stage runs for a total time O(N22N)
and requires space N + 3 (2 more cells than the number of qubits, which is N + 1).
When dovetailed with the preparation stage from Section 3.3, the overall QTM we
have constructed implements the control-U circuit of Figure 2. If ϕk denotes the
k’th digit in the binary fraction expansion of ϕ, then this prepares the state [NC00]

1
2N

(
|0〉 + e2πi0.ϕN |1〉

) (
|0〉 + e2πi0.ϕN−1ϕN |1〉

)
· · ·

· · ·
(
|0〉 + e2πi0.ϕ2...ϕN−1ϕN |1〉

) (
|0〉 + e2πi0.ϕ1ϕ2...ϕN |1〉

)
(48)

on the N output qubits (ordered as they are on the quantum track). All other tracks
are blank, except for the input track which still has the input N written on it as a
little-endian binary number.

3.5 Locating the LSB
The final stage of the quantum phase estimation algorithm is to apply the inverse
quantum Fourier transform to the quantum state generated by the control-U stage.
The structure of the quantum circuit for the QFT is rather reminiscent of that of
the control-U stage. It again involves applying a “cascade” of control-U2n

gates
between pairs of qubits, which we already know how to implement! Only now
there is a new cascade starting from each output qubit (see Figure 3).

However, the phase 2−N of the control-U2−N rotation needed in the QFT circuit
depends on the total number of qubits N that the QFT is being applied to. If we
simply implemented the inverse QFT circuit directly on all N output qubits, the
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entries of the transition function in our cUk machine from Section 3.4 would have
to depend on the input N, which is not allowed. It is not at all obvious whether the
inverse QFT circuit on N qubits can be implemented exactly when N is given as
input.1

On the other hand, the entries of the transition function are allowed to depend
on the phase ϕ that we are estimating – indeed, they necessarily do so, since
the output of the Pn QTM in Theorem 10 depends on n (or equivalently on ϕ).
Rather than implementing the QFT on N qubits, we take a different approach. We
supply our QTM with the U2−|ϕ| gate, and implement the inverse QFT on |ϕ| qubits,
independent of the input N. (I.e. just enough qubits to hold all the digits of the
binary fraction expansion of ϕ.) However, for this to work, we must first identify
which output qubit holds the least significant bit (LSB) of ϕ, so that we know which
qubits to apply the |ϕ|-qubit inverse QFT to. The role of the input N is merely to
provide us with an upper-bound on |ϕ|, which allows us to identify the LSB in finite
time and space.

Recall that the control-U stage prepared the state [NC00]

1

2
N
2

(
|0〉 + e2πi0.ϕN |1〉

) (
|0〉 + e2πi0.ϕN−1ϕN |1〉

)
· · ·

· · ·
(
|0〉 + e2πi0.ϕ2...ϕN−1ϕN |1〉

) (
|0〉 + e2πi0.ϕ1ϕ2...ϕN |1〉

)
(49)

on the N output qubits (where ϕk denotes the k’th digit in the binary fraction
expansion of ϕ).

The least significant bit of ϕ is the |ϕ|’th bit, and by assumption (cf. Theorem 10)
|ϕ| ≤ N. So the |ϕ|’th bit of ϕ is 1 and the |ϕ| + 1 . . .N’th bits are 0. Thus the last
N − |ϕ| output qubits are in the |+〉 state, and the |ϕ|’th qubit, which corresponds to
the least significant bit of ϕ, is in the |−〉 state. (Recall that the output qubits are
stored on the quantum track in reverse order.)

Therefore, if we construct a QTM that steps right, applying Hadamard rotations
to the output qubits in the quantum track until it obtains a |1〉 and halts, we will be
able to locate the least significant bit of ϕ. More precisely, this will rotate the first
N − |ϕ| output qubits into the |0〉 state, and halt with the N − |ϕ| + 1’th qubit (which
corresponds to the |ϕ|’th bit of ϕ) rotated into the |1〉 state. The least significant bit
of ϕ is therefore identified by the first |1〉 on the quantum track after this machine
has finished running.

The following well-formed, normal form, partial quantum transition function
(which acts only on the quantum track) implements a proper QTM that steps along
the quantum track, applying Hadamards until it obtains a |1〉. It can be verified that

1The universal QTM construction of Bernstein and Vazirani [BV97] can approximate the QFT
on N qubits to arbitrary precision, but it does not implement it exactly.
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it obeys the three conditions of Theorem 18, so can be completed to a well-formed
QTM:

# 0 1
q0 |#〉 |q1〉 |R〉
q1 |#〉 |q3〉 |L〉 1

√
2
(|0〉 + |1〉) |q2〉 |N〉 1

√
2
(|0〉 − |1〉) |q2〉 |N〉

q2 |0〉 |q1〉 |R〉 |1〉 |q3〉 |L〉
q3 |#〉 |q f 〉 |N〉 |0〉 |q3〉 |L〉
q f |#〉 |q0〉 |N〉 |0〉 |q0〉 |N〉 |1〉 |q0〉 |N〉

(50)

(Note that the qubit in the starting cell of the quantum track is still in the state |1〉
from the preparation and control-U stages. As we will not need this qubit again,
this machine sets it to |#〉 to mark the starting cell and leaves it in that state when it
halts, for later convenience.)

The configuration written on the quantum track after this machine has finished
is the N + 1-qubit state:

|#〉 |0〉 N−|ϕ|
· · · |0〉 |1〉

1

2
|ϕ|−1

2

(
|0〉 + e2πi0.ϕ|ϕ|−1ϕ|ϕ| |1〉

) (
|0〉 + e2πi0.ϕ|ϕ|−2ϕ|ϕ|−1ϕ|ϕ| |1〉

)
· · ·

· · ·
(
|0〉 + e2πi0.ϕ1ϕ2...ϕ|ϕ|−1ϕ|ϕ| |1〉

)
. (51)

Note that the first N − |ϕ| + 2 cells of the quantum track are not entangled with the
rest of the track.

It will be helpful for later to record the number of output bits that we are
skipping, i.e. to compute N − |ϕ| and store the result on a separate auxiliary “count
track”. We can do this using a construction that is very similar to the unary-to-
binary converter of Lemma 29. Specifically, we will construct a reversible TM
Count that steps right over |0〉’s until it finds a |1〉 on the quantum track, running
the Inc machine once each time it steps right. (This means first returning the
head to the starting cell, running Inc, then returning the head back to where it was
previously.)

Consider the following partial transition function, which satisfies the conditions
of Theorem 17 so can be completed to a proper, normal form, reversible TM:

# 0 1
q0 (#, q1,R)
q1 (#, q4, L) (#, q2, L) (1, q4, L)
q2 (#, q,N) (0, q2, L)
q (#, q3,R)
q3 (0, q1,R) (0, q3,R)
q4 (#, q f ,N) (0, q4, L)
q f (#, q0,N) (0, q0,N) (1, q0,N)

(52)
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This machine steps right over 0’s until it encounters a 1 (or reaches the end of
the input), at which point it moves its head back to the starting cell and halts. (It
assumes that the first cell is marked with a #.) However, each time it is about to
step right, it first temporarily marks the current head location by overwriting the 0
with a #, returns the head to the starting cell, enters an internal state q for one time
step, then returns the head back to where it was before, resets the quantum track
to 0, and continues stepping right from where it left off. By Lemma 20, we can
substitute for the state q the Inc machine from Lemma 26 (acting on an initially
blank “count track”). If we run the above TM on the quantum track, it will step
right precisely N − |ϕ| times before finding the first |1〉, so it will halt with N − |ϕ|
written to the count track.

The configuration left on the tape now consists of the little-endian binary
number N written on the input track, the little-endian binary number N − |ϕ| written
on the count track, and the N + 1-qubit state from (51) written on the quantum
track.

As the qubits storing the N − |ϕ| trailing 0’s of the N-digit binary expansion of
ϕ now play no further role, it is convenient to shift the starting cell of subsequent
machines to the tape cell containing the LSB. To this end, we copy the values N
and N − |ϕ| from the input and count tracks onto new auxiliary tracks. We then
use a Loop machine from Lemma 27, which uses the original count track as its
input and work track, to run a Shift machine from Lemma 24 acting on the tracks
holding the copies of the count and input tracks. Thus the Shift machine will run
a total of N − |ϕ| times, thereby shifting the binary strings on the copies so that
they start in the N − |ϕ|’th cell – the one containing the LSB of |ϕ| in the quantum
track. We then run a trivial TM that steps the head right over the initial string of
|0〉s on the quantum track, until it encounters the first |1〉 identifying the LSB, and
halts with the head at this LSB cell. When we refer to the input and count tracks in
the following section, we mean the copies shifted to start at the LSB cell. (At the
very end of the computation, we will uncompute the shifted copies of the count
and input tracks and step the head left back to the original starting cell, to ensure
the overall QTM remains proper.)

Now, we have been careful to ensure that the head is never moved to a location
before the starting cell in any of the reversible and quantum TMs that we have
constructed. Furthermore, the section of the complete tape configuration located
before the LSB cell is unentangled with the rest (see (51), and note that all tracks
other than the quantum track are in classical configurations). Thus, if we start
any of our TMs in the LSB cell, it acts as if its input were the section of the tape
configuration located after (and including) the LSB cell. We can therefore ignore
the tape configuration of the first N − |ϕ| cells in the following section, and restrict
our attention to the following |ϕ| cells.
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3.6 QFT stage
We are now ready to apply the |ϕ|-qubit inverse QFT to the |ϕ|-qubit state stored on
the quantum track. The inverse QFT circuit on |ϕ| qubits consists of cascades of
cUk

2−|ϕ| gates, very reminiscent of the control-U stage we have already implemented
(see Figure 3). The construction will therefore be similar. In the following, as we
have shifted the starting cell, we relabel the output qubits and refer to the LSB
qubit as the 1st qubit, the last one as the |ϕ|’th qubit.

|0〉 + e2πi0. j1 ... jn |1〉 U1
2−|ϕ|

U2
2−|ϕ|

. . . U2|ϕ|

2−|ϕ|
H | j1〉

|0〉 + e2πi0. j2 ... jn |1〉 U2
2−|ϕ| U2|ϕ|

2−|ϕ|
. . . H • | j2〉

.

.

.

|0〉 + e2πi0. jn−1 ... jn |1〉 U2|ϕ|

2−|ϕ|
H . . . • • | jN−1〉

|0〉 + e2πi0. jn |1〉 H • . . . • • | jN−1〉

Figure 3: The inverse QFT stage of the quantum phase estimation circuit
(cf. Fig. 5.1 in [NC00]).

In each cascade, we want to apply a cU2m−n = (cU2−|ϕ|)2|ϕ|+m−n
gate between the

m’th and n’th qubit (m < n). Once again, we will use mark and cU looping tracks
to hold the input to a cUk

2−|ϕ| machine from Lemma 30. However, the main loop
will now consist of two nested loops: an outer loop to iterate the control qubit m
of the cU2|ϕ|+m−n

2−|ϕ| gate over each output qubit, and an inner loop to iterate the target
qubit n over qubits m + 1 through |ϕ|.

We first run a TM that initialises the mark and cU looping tracks, so that
the mark track contains the configuration ct in the first two cells, and the cU
looping track contains a string of |ϕ| − 1 0’s followed by a 1. Note that this initial
configuration of the cU looping track is the little-endian binary representation
of the number 2|ϕ|−1. (Constructing a proper normal form, reversible TM that
implements all of this is an easy exercise.)

We also use the Inc machine from Lemma 26 to increment the number N − |ϕ|
stored on the count track to N − |ϕ| + 1. We then run the Sub machine from
Lemma 28, with the input and count tracks as the input tracks and the inner looping
track as the output track, to write the number N − (N − |ϕ| + 1) = |ϕ| − 1 to the
inner looping track.

Inner loop The inner looping machine is very similar to the main looping ma-
chine from the control-U stage. We use a Loop machine from Lemma 27, with the
inner looping track as its input and work track. In each iteration, we first run a
TM to divide the value on the cU looping track by 2. (This is simply the reversal
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Dbl† of the machine constructed in Section 3.4.2.) We dovetail this with the cUk
2−|ϕ|

machine from Lemma 30. Finally, we dovetail this with a TM that moves the target
marker t on the mark track one cell to the right. (This can be implemented by
taking the reversal Step†c of the machine from Section 3.4.2 and replacing c with t
in its transition rules to give a Step†t machine.)

Assume that the inner looping track is initialised to |ϕ| − m, the control and
target markers on the mark track are initially over the m’th and m + 1’th qubits,
and the cU looping track is initialised to 2|ϕ|. Then the effect of this inner looping
machine is to apply cU2m−n operations between the m’th and n’th qubit for all
m < n ≤ |ϕ| – the cascade of cU’s starting from the m’th qubit in Figure 3.

This inner looping TM leaves the mark track in the configuration with a c
in the same cell that it started out in, a t in the |ϕ| + 1’th cell (i.e. the cell after
the last output qubit), and 2m−1 written on the cU looping track. (The latter is
the configuration consisting of an initial string of 0’s, followed by a 1 in the cell
containing the c on the mark track.)

Outer loop For the outer looping machine, we use a Loop2 machine from
Lemma 27 running on the input and count tracks (which hold the numbers N
and N − |ϕ| + 1, respectively). By Lemma 27, this machine will therefore loop
|ϕ| − 1 times.

In each iteration, we first run the inner looping machine. Note that for the first
iteration, the auxiliary tracks are already initialised as assumed above for the value
m = 1. We dovetail this with a simple QTM that applies a Hadamard operation to
the current control qubit (the one marked by a c on the mark track).

We then run a TM that changes the 1 on the cU looping track to a 0, shifts
the c on the mark track one cell to the right, steps right, and changes [#, #] on the
mark and cU looping tracks to [t, 0]. The machine then steps right, changing # to
0 on the cU looping track as it goes, until it reaches the end of the output qubits.
Whereupon it changes # on the cU looping track to 1, steps right, and changes the
t on the mark track to #. Finally, it returns to its starting cell and halts. (Again, by
now, constructing a proper, normal form, reversible TM for this is straightforward.)
We dovetail this with the Dec TM, acting on the inner looping track.

The effect of all this is to reset the configuration of the auxiliary tracks, ready
for the next iteration of the inner loop. The control marker c is shifted to the
next qubit along, qubit m say, and the target marker t is placed over the adjacent
m + 1’th qubit. The cU looping track is reset to 2|ϕ|−1, and the inner looping track
is decremented to |ϕ| − m, as required. In other words, the auxiliary tracks are
initialised to the desired configuration for the new value of m.

Thus the outer looping machine runs the inner looping machine |ϕ| − 1 times
for each of the output qubits m = 1 . . . |ϕ| − 1. Each time it runs, the inner looping
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machine applies the desired cascade of cU operations between the m’th and n’th
qubits for all m < n ≤ |ϕ|. The outer looping machine then applies a final Hadamard
operation to the m’th qubit, before moving onto the next qubit. One can therefore
see that the overall effect is to apply the inverse quantum Fourier Transform circuit
to the |ϕ| output qubits.

3.7 Reset Stage
To reset all the auxiliary tracks, we dovetail the outer looping TM with a sequence
of TMs that uncompute all the configurations we previously prepared on these
tracks.

The first of these TMs changes the ct left on the mark track over the final two
qubits to ##, and changes the final configuration 1; 2|ϕ|−1 of the inner looping and
cU looping tracks to the blank configuration. (Note that 2|ϕ|−1 is the configuration
consisting of a leading string of 0’s followed by a single 1 on the final output qubit,
so is straightforward to reset without any arithmetic computations.)

To reset the final configuration N; N − |ϕ| + 1 of the input and count tracks, we
start by decrementing the count track to N; N − |ϕ| (using Dec). Recall that we
redefined the location of the starting cell before implementing the inverse QFT
machine, so that the starting cell became the cell containing the LSB of ϕ. We also
shifted the copies of the input and count tracks accordingly (Section 3.5). We now
step the head back to the original starting cell (which is easily located as we left a
# written there on the quantum track, cf. Section 3.5). We can then run the reversal
Shift† (constructed using Lemma 22) of the machine used in Section 3.5, to shift
the copies of the input and count tracks used in the QFT stage back left again to
the original starting cell, and run the reversal Copy† of the copy machines to erase
the copies of the input and count tracks.

To erase the original count track, which contains N − |ϕ|, we must run the
reversal Count† that we constructed in Section 3.5. (The first N − |ϕ| qubits remain
in the |0〉 state and the LSB qubit in the |1〉 state, so Count† will indeed uncompute
N − |ϕ|.) Finally, to erase the original input track, we first use the Shift† machine
from Lemma 24 on the quantum track, to shift the entire final state of the output
qubits left. Note that this will work because the first qubit (the ancilla qubit of the
control-U stage) was set to # in Section 3.5. We can then run the reversal UtoB†

of the unary-to-binary machine from Lemma 29, acting on the quantum track and
input track, to uncompute the binary conversion of the unary input encoded in the
length of the qubit state. Note that the UtoB machine only checks whether the
symbols on the unary track are # or non-#. So the fact that the configuration of the
quantum track is no longer necessarily a string of N |1〉’s does not matter; all that
matters is that it is a string of N non-|#〉’s.

The end result of all this is to reset all the auxiliary tracks to the blank state,
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leaving the output of the inverse QFT circuit stored in the first N cells of the
quantum track.

3.8 Analysis
By dovetailing together the preparation stage (Section 3.3), control-Uϕ stage (Sec-
tion 3.4), inverse-QFT stage (Section 3.6) and reset stage (Section 3.7), we have
succeeded in constructing a family of well-formed, normal form, unidirectional
quantum Turing Machines Pn that behave properly on input N ≥ |ϕ| written in
unary, and implement the quantum phase estimation algorithm on N qubits for
phase ϕ. By construction, Pn satisfies part (i) of Theorem 10.

Now, we know [NC00] that the quantum phase estimation algorithm outputs the
exact binary fraction expansion of the phase, as long as we run it on enough qubits
to store the entire binary decimal expansion of the phase. Thus for N ≥ |ϕ| = |n|,
the Pn writes out the binary decimal expansion of ϕ to N bits (in little-endian order,
padding with 0’s as necessary). We choose ϕ to be the rational number whose
binary decimal expansion contains the digits of n in reverse order after the decimal,
where n indexes Pn. So our QTM Pn implements the computation claimed in
part (ii) of Theorem 10.

We were careful throughout to keep tight control on the space requirements
of the reversible and quantum TMs that we used to construct Pn. In fact, none of
them used more than N + 3 space. Finally, all steps of the computation take time
O(poly N), except the cUk

ϕ and cUk
ϕ computations, which take time O(2N). Thus the

overall run-time is O(poly(N)2N). Thus Pn fulfils the space and time requirements
in part (ii) of Theorem 10.

The last thing we must check in order to finish the proof of Theorem 10 is
part (iii). But the partial transition function defined so far for Pn satisfies part (iii).
It is trivial to check that one can complete this to a full transition function, whilst
still satisfying part (iii). Indeed, by Theorem 18 the problem is equivalent to
completing an orthonormal set of vectors with coefficients in

S =

{
0, 1,±

1
√

2
, eiπϕ, eiπ2−|ϕ|

}
(53)

to a full orthonormal basis with coefficients in S. Since any normalised vector with
coefficients in S must be proportional to a vector in the canonical basis {e j} j or of
the form 1

√
2
(e j ± ek), j , k, the result is immediate. This completes the proof of

Theorem 10.
Note that the QTM we have constructed only implements the computation

correctly when supplied a valid upper-bound on the number of digits in the binary
fraction expansion of the phase. If the input is not actually a correct upper bound,
we make no claim about the behaviour of the QTM. (This will be significant later,

55



when we come in Section 6 to bound ground state energies of a Hamiltonian
constructed out of this QTM.)
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4 Encoding QTMs in local Hamiltonians
In this section, we give a self-contained analysis of a local Hamiltonian construction
that generalises that of Gottesman and Irani [GI09], in order to prove a general
result about local Hamiltonian encodings of arbitrary quantum computations.

A full, rigorous analysis of the resulting Hamiltonian will then prove the main
result of this section:

Definition 31 (Computational history state) A computational history state |ψ〉CQ ∈

HC ⊗HQ is a state of the form

|ψ〉CQ =
1√

dimHC

dC∑
t=1

|t〉 |ψt〉 , (54)

where {|t〉} is an orthonormal basis forHC, and |ψt〉 =
∏t

i=1 Ui |ψ0〉 for some initial
state |ψ0〉 ∈ HQ and set of unitaries Ui ∈ B(HQ).
HC is called the clock register andHQ is called the computational register. If Ut

is the unitary transformation corresponding the t’th step of a quantum computation,
then |ψt〉 is the state of the computation after t steps. We say that the history state
|ψ〉 encodes the evolution of the quantum computation.

Theorem 32 (Local Hamiltonian QTM encoding)
Let Cd = CC ⊗CQ be the local Hilbert space of a 1-dimensional chain of length
L, with special marker states | 〉 , | 〉. Denote the orthogonal complement of
span(| 〉 , | 〉) in Cd by Cd−2.

For any well-formed unidirectional Quantum Turing Machine M = (Σ,Q, δ)
and any constant K > 0, we can construct a two-body interaction h ∈ B(Cd ⊗

Cd) such that the 1-dimensional, translationally-invariant, nearest-neighbour
Hamiltonian H(L) =

∑L−1
i=1 h(i,i+1) ∈ B(H(L)) on the chain of length L ≥ K + 3 has

the following properties:

(i). d depends only on the alphabet size and number of internal states of M.

(ii). h ≥ 0, and the overall Hamiltonian H(L) is frustration-free for all L.

(iii). Denote H(L − 2) := (Cd−2)⊗L−2 and define Sbr = span(| 〉) ⊗ H(L − 2) ⊗
span(| 〉) ⊂ H . Then the unique ground state of H(L)|Sbr is a computational
history state encoding the evolution of M on input corresponding to the
unary representation of the number L − K − 3, running on a finite tape
segment of length L − 3.

Moreover, if M is proper on input given by the unary representation of L − K − 3,
then:
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(iv). The computational history state always encodes Ω(|Σ × Q|L) time-steps. If
M halts in fewer than the number of encoded time steps, exactly one |ψt〉

has support on a state |>〉 that encodes a halting state of the QTM. The
remaining time steps of the evolution encoded in the history state leave M’s
tape unaltered, and have zero overlap with |>〉.

(v). If M runs out of tape within a time T less than the number of encoded time
steps (i.e. in time-step T + 1 it would move its head before the starting cell or
beyond cell L−3), the computational history state only encodes the evolution
of M up to time T . The remaining steps of the evolution encoded in the
computational history state leave M’s tape unaltered.

(vi). Finally, if M satisfies part (iii) of Theorem 10, then h has the following form

h = A + (eiπϕB + eiπ2−|ϕ|C + h.c.), (55)

with B,C ∈ B(Cd ⊗ Cd) independent of n and with coefficients in Z, and
A ∈ B(Cd⊗Cd) Hermitian independent of n and with coefficients in Z+ 1

√
2
Z.

Though we will not need it for our purposes, it is not difficult to prove that
the next-highest eigenstate of H(L)|Sbr has energy O(1/T 3), where T is the total
number of time-steps encoded in the computational history state.

4.1 Preliminaries
As our construction draws heavily on [GI09], we will follow their notation and
terminology, which we summarise here. We divide the chain into multiple tracks:

· · · Track 1: Clock oscillator · · ·

· · · Track 2: Counter TM head and state · · ·

· · · Track 3: Counter TM tape · · ·

· · · Track 4: QTM head and state · · ·

· · · Track 5: QTM tape · · ·

· · · Track 6: Time-wasting tape · · ·
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The local Hilbert space at each site is the tensor product of the local Hilbert space
of each of the six tracksH = ⊗6

i=1Hi, where

H1 := span
{
|s〉

}
⊕

{
| 〉 , | 〉

}
s ∈ { , , , →1 , →

1 , , } for i ∈ {1, . . . ,K},

H2 := span
{
|p〉

}
⊕

{
| 〉 , | 〉

}
p ∈ P′ ∪ { , } where P := PL ∪ PN ∪ PR and P′ := P ∪ P′R,

H3 := span
{
|τ〉

}
⊕

{
| 〉 , | 〉

}
τ ∈ Ξ where Ξ := {`, #, 0, . . . , ζ − 1} with ζ = |Σ × Q|,

H4 := span
{
|q〉

}
⊕

{
| 〉 , | 〉

}
q ∈ Q′ ∪ P ∪ P′L ∪ {rx} ∪ { , } where Q := QL ∪ QN ∪ QR,Q′ := Q ∪ Q′L
and x ∈ Q,

H5 := span
{
|σ〉

}
⊕

{
| 〉 , | 〉

}
σ ∈ Σ,

H6 := span
{
|γ〉

}
⊕

{
| 〉 , | 〉

}
γ ∈ Ξ ∪ {`q} where q ∈ Q′.

(56)

Σ is the tape alphabet of our given QTM M. Ξ is the alphabet of the counter TM.
PL, PN , PR are the sets of internal states of the counter TM that can be entered by
the TM head moving left, not moving, or moving right (respectively). The states
p′ ∈ P′R duplicate the states p ∈ PR, and p′ ∈ P′L duplicate those in PL. Similarly
for the internal states QL,QN ,QR of the QTM, with q′ ∈ Q′L duplicating the states
q ∈ QL. Recall that by the unidirection property of reversible and quantum Turing
Machines (Theorems 17 and 18), these sets are disjoint.

The and Track 2 and 4 symbols are used for cells that do not currently
hold the head.1 The role of the Track 1 states is described in Section 4.2. That
of the Track 6 “time-wasting” tape, as well as the role of the additional Track 4
P ∪ P′L states, will become apparent in Section 4.6.2.

The marker states | 〉, | 〉 appearing in Theorem 32 will just be the states
| 〉 =

⊗6
i=1 | 〉track i and | 〉 =

⊗6
i=1 | 〉track i. When a subset of tracks T is

clear from the context, we will also write | 〉 , | 〉 to denote
⊗

i∈T | 〉track i and⊗
i∈T | 〉track i, respectively.
This set of states defines a standard basis for the single-site Hilbert spaceH .

The product states over this single-site basis then give a basis for the Hilbert space
H⊗L of the chain. We call these the standard basis states.

1There are two blank symbols because we will need different symbols to the left and right of
the head, in order to enforce the constraint that there is only one head on the track.
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We will sometimes use regular expressions to specify subsets of standard basis
states. A regular expression denotes a (possibly infinite) subset of finite-length
strings over a finite alphabet. Equivalently, it can be thought of as a pattern that
matches all the strings in the subset and no others. Regular expressions, and the
regular expression notation we will use, can be defined inductively in the standard
way:

Definition 33 (Regular expression) Given a finite alphabet Σ, let Σ∗ denote the
set of all finite-length strings of symbols from that alphabet. The following are
regular expressions:

• The empty regular expression ε denotes the set containing only the empty
string.

• Any symbol x ∈ Σ denotes the singleton set {x} containing only the string x.

Given two regular expressions R1,R2, the following are also regular expressions:

• R1R2 denotes the set {xy : x ∈ R1, y ∈ S 2} of all concatenations of strings
matching R and S .

• The alternation R1|R2 denotes the set R1 ∪ R2 of strings matching either R1

or R2 (or both).

• The Kleene-star R∗ denotes the Kleene closure of R, i.e. the smallest set of
strings S such that ε,R ∈ S and S is closed under concatenation.

• For x1, . . . , xn ∈ Σ, square brackets [x1, x2, . . . , xn] := x1|x2| . . . |xn are a
shorthand notation for alternations of symbols.

Parentheses (. . . ) are used to group subexpressions, and have the highest prece-
dence. Square brackets have higher precedence than the Kleene-star operator,
which has higher precedence than the alternation operator. Concatenation has the
lowest precedence.

Definition 34 (Bracketed state) We call standard basis states that match the reg-
ular expression · ∗ bracketed states (where · stands for any single-site state
other than , ). We denote by Sbr the subspace spanned by the bracketed states.

We will often denote configurations of multiple tracks by writing them verti-
cally, e.g.

←

p1
, ← ,

←

p1

0 1
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denote, respectively, a single-site configuration of two tracks, a configuration on
two neighbouring sites of one track, and a configuration on two neighbouring sites
of three tracks. Since we will restrict throughout to the subspace Sbr of bracketed
states, the and states will only ever appear at the left and right ends of the
chain, across all the tracks. As a shorthand, we will therefore denote configurations
involving and with symbols stretching vertically across all tracks, e.g.

←

p1
, p1

1
.

We will also sometimes need to specify configurations in which the tracks are in
any configuration other than , . We denote this with a ¬ or ¬ symbol
stretching vertically across all tracks, e.g.

¬
←

p1
, ¬p1

1
.

As usual in such constructions, the two-body Hamiltonian will contain two
types of terms: penalty terms and transition rule terms. Penalty terms have the
form |ab〉〈ab| where a, b are standard basis states. This adds a positive energy
contribution to any configuration containing a to the left of b. We call ab an illegal
pair, and denote a penalty term |ab〉〈ab| in the Hamiltonian by its corresponding
illegal pair. We will sometimes also make use of single-site illegal states a. (Note
that, even if we don’t allow ourselves to use single-site penalty terms, single-site
illegal states are easily implemented in terms of illegal pairs, by adding penalty
terms |ax〉〈ax| and |xa〉〈xa| for all pairs ax and xa in which the single-site state
appears.)

Definition 35 (Legal and illegal states) We call a standard basis state legal if it
does not contain any illegal pairs, and illegal otherwise.

By using single-site illegal states one can enforce that, on all legal states, the
marker | 〉 (resp. | 〉) can only ever appear simultaneously on all tracks. In this
case, if one restricts to global bracketed states, one also gets bracketed states in
each of the tracks individually. The single-site illegal states enforcing this are
summarised in Table 1.
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Table 1: Single-site illegal states enforcing that end-marker
states must appear across all tracks simultaneously.

Track i–j single-site illegal states, for all pairs i , j

¬
,
¬

,
¬

,
¬

We will make repeated use of Lemma 5.2 from [GI09], which lets us use
penalty terms to restrict to configurations matching a regular expression:

Lemma 36 (Regexps) For any regular expression over the standard basis of
single-site states in which each state appears at most once, we can use penalty
terms to ensure that any legal standard basis state for the system is a substring of
a string in the regular set.

All the regular expressions we will use start with a left-bracket state and end
with a right-bracket . So whenever we apply this Lemma, the only substrings of
the regular set that are bracketed states are in fact complete strings in the regular
set, not substrings.

Transition rule terms have the form 1
2(|ψ〉 − |ϕ〉)(〈ψ| − 〈ϕ|), where |ψ〉 , |ϕ〉 are

states on the same pair of adjacent sites. We will often take |ψ〉 = |ab〉 and |ϕ〉 = |cd〉
to be standard basis states. This forces any zero-energy eigenstate with amplitude
on a configuration containing ab to also have equal amplitude on the configuration
in which that ab is replaced by cd. Conversely, if a zero-energy eigenstate has
amplitude on a configuration containing cd, it must also have equal amplitude on
the configuration in which that cd is replaced by ab. Thus we can think of these
terms as implementing the transition rules ab → cd, which we arbitrarily call
the “forwards” direction, and the corresponding “backwards” transition cd → ab.
Following the notation in [GI09], we will denote transition rule Hamiltonian terms
by their associated forwards transitions ab→ cd or, more generally, |ψ〉 → |ϕ〉.

When a transition rule acts diagonally on a subset of the tracks, we will
sometimes consider the restriction of the transition rule to those tracks. That is, for
a transition rule with the general form |ab〉T |ψ〉T c → |cd〉T |ϕ〉T c , where T is some
subset of the tracks, the restriction of the rule to T is given by |ab〉T → |cd〉T .

When we specify a Hamiltonian term only on a subset of the tracks, we im-
plicitly mean that it acts as identity on the remaining (unspecified) tracks. We will
assume throughout this section that the ground state subspace of the Hamiltonian
is restricted to the subspace Sbr of bracketed states, with at the left end of the
chain and at the right. (We show how to enforce this later, in Section 6.)
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4.2 Clock Oscillator
Every clock – even one unusual enough to be encoded in superposition into
the ground state of a quantum many-body Hamiltonian! – needs some form of
oscillator that oscillates with a fixed period (such as a pendulum), and a counter
that is incremented after each complete oscillation of the oscillator (such as the
hands on a clock). For the counter, we will use a reversible counter Turing Machine,
described in Section 4.4. This section describes the Track 1 clock oscillator.

The legal configurations of Track 1 are states matching the regular expression
∗[ , , , →1 , →

1 ] ∗ . By Lemma 36, we can enforce this using penalty
terms. Independent of the configuration of any other track, a→ arrow (either
or →1 ) sweeps right along the chain until it reaches the end, whereupon it turns
around and becomes a←. (When a reaches the end and turns around, the label
on the arrow steps through the sequence (0), (1), . . . , (K). This is used later on to
correctly initialise the other tracks. The restriction to L ≥ K + 3 in Theorem 32
ensures that there is enough space for such sequences of transitions.) This ←
arrow sweeps left until it reaches the beginning of the chain, at which point it turns
around and becomes a→ again. We call this entire sequence an oscillator cycle.
(One complete cycle is illustrated in Figure 4 for a chain of length six.) On a chain
of length L, one complete oscillator cycle takes 2(L − 2) steps. The following
transition rules on Track 1 enforce this:

−→ , −→ , −→ , −→ ,

−→ , →1 −→ →1 , →1 −→

→

1 ,

→

1 −→

→

1 .
(57)

When a left-moving ← arrow returns to the beginning of the chain, it turns
around and becomes a right-moving→ arrow again. However, the label 0 on the
arrow may change to a 1, depending on the Track 2 state. The arrow transitions
to →1 if the Track 2 state is pα (the initial state of the counter TM). Whereas

→

1

always transitions to →1 unless the Track 2 state is pα. The following transition
rules implement this:

pα
−→

→1
pα
,

→

1

¬pα
−→

→1
¬pα

, (58)

where ¬pα here denotes any Track 2 state other than pα.

4.3 Initialisation sweep
During the initial sweep of the Track 1 from left to right and back, Track 1
contains a or . We call this the initialisation sweep, and we want to use it to
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→

→

→

→

←

←

←

←

→

Figure 4: Evolution of the Track 1 clock oscillator.

force Tracks 2 and 3 to be in the initial configurations

p0
∗ and #∗ , (59)

respectively. We do this by adding illegal pairs to forbid Track 2 from being
anything other than when a is over it (except at the beginning of the chain):

¬
¬

, (60)

and similarly to forbid Track 3 from being anything other than # when a is over
it (except at the beginning of the chain):

¬
¬#

, (61)

where ¬ · again denotes anything other than the state · .
At the beginning of the chain, we use illegal pairs to forbid Track 2 from being

anything other than pα when is over it. We also forbid it from being pα when a→

1 is at the beginning of the chain:

¬pα
,

→

1

pα
. (62)
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Thus any standard basis state containing a , or on Track 1 that matches
the regular expressions (59), and is not in the initial configuration on Tracks 2
and 3, will evolve (either forwards or backwards) under the oscillator transition
rules into an illegal configuration, in at most L steps.

If Tracks 2 and 3 are in their initial configurations, then a standard basis
state containing a , or will evolve backwards until it reaches the initial
configuration |φ0〉, the standard basis state for Tracks 1 to 3 which has the form:

· · ·

pα · · ·

` # · · · #
. (63)

4.4 Clock Counter
4.4.1 Counter TM construction
We construct the counter TM using a generalisation of the binary incrementing
machine Inc from Lemma 26, which will increment integers written in base-ζ
instead of in binary. Constructing a base-ζ version of Inc is largely a straightforward
extension of Lemma 26, though ensuring reversibility is slightly subtle.

The following well-formed, normal-form, partial transition function imple-
ments a reversible TM that increments any little-endian base-ζ number written on
the tape with a leading “start-of-tape” symbol `, and returns the head to the starting
cell without ever moving the head before the starting cell:

` # 0 1 i ζ − 1
p0 (`, p1,R)
p1 (1, p′′2 ,R) (1, p′2,R) (2, p2,R) (i + 1, p2,R) (0, p1,R)
p2 (#, p3, L) (0, p3, L) (1, p3, L) (i, p3, L) (ζ − 1, p3, L)
p′2 (0, p′3, L) (1, p′3, L) (i, p′3, L) (ζ − 1, p′3, L)
p′′2 (#, p′3, L)
p3 (i, p4, L) (ζ − 1, p4, L)
p′3 (1, p4, L)
p4 (`, p f ,N) (0, p4, L)
p f (#, p0,R) (0, p0,R) (1, p0,R) (i, p0,R) (ζ − 1, p0,R)

∀i ∈ {2, . . . , ζ − 2}
(64)

We now modify this machine in order to make it loop forever. We must be
careful to ensure that we reenter the initial state reversibly. To do this, we introduce
new initial and final states pα and pω, and modify the p0 and p f transitions such that
the TM reversibly transitions back into the state p0 instead of halting, exploiting
the fact that the symbol in the second tape cell will be blank in the first iteration,
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and non-blank thereafter. The following set of transition rules accomplishes this:

` # 0 1 i ζ − 1
pα (`, p−1,R)
p−1 (#, p0, L)
p0 (`, p1,R)
p1 (1, p′′2 ,R) (1, p′2,R) (2, p2,R) (i + 1, p2,R) (0, p1,R)
p2 (#, p3, L) (0, p3, L) (1, p3, L) (i, p3, L) (ζ − 1, p3, L)
p′2 (0, p′3, L) (1, p′3, L) (i, p′3, L) (ζ − 1, p′3, L)
p′′2 (#, p′3, L)
p3 (i, p4, L) (ζ − 1, p4, L)
p′3 (1, p4, L)
p4 (`, p f ,N) (0, p4, L)
p f (`, p′f ,R)
p′f (0, p0, L) (1, p0, L) (i, p0, L) (ζ − 1, p0, L)
pω (`, pα,R) (#, pα,R) (0, pα,R) (1, pα,R) (i, pα,R) (ζ − 1, pα,R)

∀i ∈ {2, . . . , ζ − 2}
(65)

These transition rules implement a reversible base-ζ counter TM. When started
from the tape configuration consisting of a ` symbol in the first cell followed
by the all-blank tape (representing the number 0), this TM will loop indefinitely,
incrementing the number written on the tape by 1 in each complete iteration. For
brevity, we will refer to this particular initial tape configuration as the standard
input to the counter TM tape.

We now declare certain configurations of the counter TM to be “illegal”. We
will choose these illegal configurations to be such that they are never entered
by the counter TM started from the standard input. Later on, when we come to
encode the counter TM in a local Hamiltonian, we will use penalty terms to give
energy penalties to all the configurations we declare “illegal” here, so that the
corresponding standard basis states of the spin chain are indeed illegal in the sense
of Definition 35. For now, however, the “illegal configurations” simply define a
particular subset I of the complete set of counter TM head and tape configurations.

Anticipating the later use of penalty terms, when defining illegal configurations
we will often make use of the illegal pair notation introduced above, where the top
row denotes the counter TM head position and internal state p, and the bottom row
denotes the tape symbols ab in the section of tape near the head:

p ·
a b

or
· p
a b

. (66)

A single row always denotes a section of tape:

a b . (67)
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Certain configurations that we declare to be illegal will specify that the counter
TM head is or is not located at the starting cell. Again anticipating later use of
penalty terms, we denote the starting cell by placing a symbol on the left. We
denote tape cells other than the starting cell with ¬ on the left:

p
a , ¬

p
a . (68)

Note that the counter TM started from the standard input never moves its head
before the starting cell, never reenters its initial state pα, and never enters its final
state pω. We therefore declare any counter TM configuration which is in state pα
with the head anywhere other than the starting cell to be illegal:

¬
pα
·
. (69)

We also declare any configuration in state pω to be illegal:

pω ·
· ·

. (70)

Similarly, we declare any configuration in state pα with the head adjacent to a
non-blank symbol to be illegal, i.e. any configuration containing the illegal pair

pα ·
· ¬#

. (71)

The transition table in (65) is partial; some transitions are never used, so were
not defined. For each (p, τ) for which no transition rule is defined in (65), we
declare configurations in which the counter TM is in state p and the head is reading
τ to be illegal, i.e. any configuration containing the illegal pair

p
τ
. (72)

For each configuration (pL, τ, L), (pR, τ,R) or (pN , τ,N) which is not entered by
any transition rule in (65), we declare the corresponding TM head and tape config-
urations to be illegal, i.e. any configurations containing one of the following illegal
pairs:

· pR

τ ·
,

pL ·

· τ
,

pN ·

τ ·
. (73)

Note that during the evolution of the counter TM started from a blank tape, the
head is never more than one cell to the right of a non-blank tape symbol. In fact,
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the only moment at which it is over a blank symbol at all is when the incrementer
TM needs to carry a digit, and moves the head to the next blank cell in order to
write the carry. We therefore declare configurations in which the head is more than
one cell to the right of a non-blank tape symbol to be illegal, i.e. all configurations
containing the illegal pair

· p
# #

. (74)

Note also that, when started from the standard input, the counter TM never
modifies the ` in the first cell, never writes a ` anywhere other than the first cell,
and never creates an embedded blank symbol on the tape. We therefore define all
tape configurations without a ` in the starting cell, all tape configuration with a `
anywhere other than the first cell, and all tape configurations with an embedded
blank, to be illegal. These illegal TM configurations correspond exactly to tape
configurations matching the regular expression

` [0, . . . , ζ − 1]∗ #∗. (75)

The little-endian numbers written by the counter TM are never padded with
leading 0’s, so the tape never has a 0 to the left of a #. We therefore define this
combination to be illegal, i.e. all tape configurations containing the illegal pair

0 # . (76)

Later on, we will only be interested in configurations of the first L cells of the
tape, and will stop the counter TM just before it tries to apply a transition rule that
maps out of this portion of tape. Therefore, a 0 will never appear in the L’th tape
cell, and we declare configurations containing a 0 in this cell to be illegal:

0 (77)

Lemma 37 (Evolve-to-illegal) Any counter TM configuration that is reached
starting from the standard input is legal. All other configurations with the head in
position r ∈ [0, L] are either illegal, or evolve forwards or backwards to an illegal
configuration within O(L) time steps in such a way that the head never leaves the
portion of tape [0, L].

Proof The first part of the Lemma is true by construction, since the partial transi-
tion rules of (65) implement the counter TM without using any of the undefined
transitions, and the tape configurations defined to be illegal never occur when the
counter TM is started from the standard input.

Recall that the alphabet of the counter TM is Ξ = {`, #} ∪ {0, . . . , ζ − 1}. Any
tape configuration that does not start with a `, or which contains a ` anywhere
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other than the first cell, or which contains an embedded blank, or contains a 0 to
the left of a #, or with a 0 in the L-th cell is illegal. So legal tape configurations
match the regular expression

` (¬#)∗¬[0, #]#∗. (78)

Configurations in which the head is more than one cell away from a non-blank
symbol are illegal by (74), so all legal configurations have the head located in, or
immediately adjacent to, the non-blank portion of the tape. All other configurations
are illegal.

We divide the legal configurations into separate cases, according to the internal
state of the counter TM:

State pα: All configurations in state pα are illegal by (69), except those with the
head in the starting cell. The latter are illegal by (71) unless the tape cell to the right
of the head is blank. The only such tape configuration which is legal is the standard
input. Thus the only legal configuration in state pα is the initial configuration of
the counter TM started from the standard input.

State p−1: There are no transitions out of (p−1, x) where x , # in (65), so by
(72) the only legal p−1 configurations have their head over a #. Moreover, there is
only one transition into p−1 in (65). Hence, evolving any such configuration one
step backwards according to (65) either enters a configuration that is illegal due to
(72), or steps the head left and transitions to pα. But we have shown that the only
legal pα configuration is the standard input. Thus any configuration in state p−1

not reachable starting from the standard input will evolve backwards to an illegal
configuration in one time step.

State p1: Every TM configuration of the form

p1

` 0 · · · 0 τ · · ·︸       ︷︷       ︸
n

τ ∈ Ξ/{`}, n ≥ 0

with the rest of the tape compatible with (78) is reached when evolving the counter
TM from the standard input; this configuration is produced whilst the counter TM
is incrementing the number with little-endian base-ζ expansion

(ζ − 1) . . . (ζ − 1)︸               ︷︷               ︸
n

τ · · · .
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The remaining legal configurations have at least one tape symbol x to the left
of the head that is neither 0, nor #, nor `:

p1

` i1 · · · im x 0 · · · 0 τ · · ·︸     ︷︷     ︸
n

x ∈ Ξ/{`,#,0}, i1, . . . , im ∈ Ξ/{`,#}, τ ∈ Ξ/{`}, m, n ≥ 0.

Evolving any such configuration backwards according to (65) either enters into an
illegal configuration due to (72), or rewinds the head left replacing 0’s with ζ − 1’s,
eventually reaching the configuration with the head immediately to the right of the
x:

p1

` i1 · · · im x ζ − 1 · · · ζ − 1 τ · · ·︸                 ︷︷                 ︸
n

x ∈ Ξ/{`,#,0,1}, i1, . . . , im ∈ Ξ/{`,#}, τ ∈ Ξ/{`,#}, m, n ≥ 0.

The state p1 can only be entered by moving right. But the configuration (p1, x,R)
is not entered by any transition rule in (65), so this configuration is illegal by (73).

State p2: The state p2 is entered when incrementing any digit other than 0, #
or ζ − 1, so every TM configuration of the form

p2

` 0 · · · 0 x τ · · ·︸       ︷︷       ︸
n

x ∈ Ξ/{`,#,0,1}, τ ∈ Ξ/{`}, n ≥ 0.

with the rest of the tape compatible with (78) is reached when evolving the counter
TM from the standard input. This configuration is produced whilst the counter TM
is incrementing the number with little-edian base-ζ expansion

(ζ − 1) . . . (ζ − 1)︸               ︷︷               ︸
n

(x − 1)τ · · ·

The state p2 can only be entered by moving right. Configurations (p2, x,R)
where x ∈ {`, #, 0, 1} are not entered by any transition rule in (65), so these
configurations are illegal by (73).
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The remaining legal configurations have at least one tape symbol y to the left
of the head that is neither 0, #, nor `:

p2

` i1 . . . im y 0 · · · 0 x τ · · ·︸       ︷︷       ︸
n

x ∈ Ξ/{`,#,0,1}, y ∈ Ξ/{`,#,0}, τ ∈ Ξ/{`}, i1, . . . , im ∈ Ξ/{`,#}, m, n ≥ 0.

Evolving any such configuration backwards one time step according to (65) either
produces an illegal configuration due to (72), or produces the configuration:

p1

` i1 . . . im y 0 · · · 0 x − 1 τ · · ·︸       ︷︷       ︸
n

x ∈ Ξ/{`,#,0,1}, y ∈ Ξ/{`,#,0}, τ ∈ Ξ/{`}, i1, . . . , im ∈ Ξ/{`,#}, m, n ≥ 0.

But we have already shown above that all such p1 configurations evolve backwards
in time to an illegal configuration.

States p′2, p′′2 : The argument for states p′2 and p′′2 is very similar to that for p2,
except that the legal value of x is now 1.

State p3: The state p3 is entered by stepping left from p2, so every TM configu-
ration of the form

p3

` 0 · · · 0 τ · · ·︸       ︷︷       ︸
n

τ ∈ Ξ/{`,#,0,1}, n ≥ 0.

with the rest of the tape compatible with (78) is reached when evolving the counter
TM from the standard input. This configuration is produced whilst the counter TM
is incrementing the number with little-edian base-ζ expansion

(ζ − 1) . . . (ζ − 1)︸               ︷︷               ︸
n

(τ − 1) · · ·

There is no transition out of (p3, x) where τ ∈ {`, #, 0, 1} in (65), so all such
configurations are illegal by (72). The remaining legal configurations have at least
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one tape symbol x to the left of the head that is neither 0, #, nor `:

p3

` i1 . . . im x 0 · · · 0 τ · · ·︸       ︷︷       ︸
n

τ ∈ Ξ/{`,#,0,1}, x ∈ Ξ/{`,#,0} i1, . . . , im ∈ Ξ/{`,#}, m, n ≥ 0.

Evolving any such configuration forwards one time step according to (65) ei-
ther produces an illegal configuration (for example if n = 0), or produces the
configuration:

p4

` i1 . . . im x 0 · · · 0 τ · · ·︸       ︷︷       ︸
n

τ ∈ Ξ/{`,#,0,1}, x ∈ Ξ/{`,#,0} i1, . . . , im ∈ Ξ/{`,#}, m, n ≥ 0.

We show below that any such p4 configuration evolves to an illegal configuration.

State p′3: The argument for state p′3 is very similar to that for p3, except that
τ = 1 in this case.

State p4: In a legal state p4 configuration, the head must be over a 0 or a `, since
there is no transition out of (p4, x) for x < {0, `}. We first analyse the case in which
it is over a 0.

Any TM configuration of the form

p4

` 0 · · · 0 · · ·︸       ︷︷       ︸
n

n ≥ 1

with the rest of the tape compatible with (78) is reached by evolving the counter
TM from the standard input.

The remaining legal configurations have at least one tape symbol x to the left
of the head that is neither 0, #, nor `:

p4

` i1 . . . im x 0 · · · 0 · · ·︸       ︷︷       ︸
n

x ∈ Ξ/{`,#,0}, i1, . . . , im ∈ Ξ/{`,#}, m ≥ 0, n ≥ 1
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Evolving any such configuration according to (65) steps the head left over the 0’s
until the head is over the x:

p4

` i1 . . . im x 0 · · · 0 · · ·︸       ︷︷       ︸
n

x ∈ Ξ/{`,#,0}, i1, . . . , im ∈ Ξ/{`,#}, m ≥ 0, n ≥ 1.

But there is no transition out of (p4, x) in (65), so this configuration is illegal by
(72).

We now analyse the case in which p4 is over `. Evolving one step backwards
according to (65) steps the head right and either enters an illegal configuration,
transitions to state p4 with the had over a 0, or transitions to states p3 or p′3. In all
three cases, we have already shown that all such configurations not reachable from
the standard input evolve to illegal configurations.

State p f : There are no transitions out of (p f , x) where x ,` in (65), so the only
legal p f configurations have the head over a `. The latter can only appear in the
starting cell in legal configurations. Evolving any such configuration backwards
according to (65) for one time step transitions to the state p4, and we have already
shown than all p4 configurations not reachable from the standard input evolve to
illegal configurations.

State p′f : There are no transitions out of (p′f , x) where x ∈ {`, #} in (65), so the
only legal p′f configurations have the head over a symbol in the set {0, . . . , ζ − 1}.
Evolving any such configuration backwards according to (65) for one time step
transitions to the state p f , and we have already shown than all p f configurations
not reachable from the standard input evolve to illegal configurations.

State p0: There are no transitions out of (p0, x) where x ,` in (65), so the only
legal p0 configurations have the head over a `. The latter can only appear at the
beginning of the tape in legal configurations. Since the only transitions in (65)
into p0 are from p1 or p′f , evolving any such configuration one step backwards
according to (65) either enters an illegal configuration, or steps the head right
into state p−1 or p′f . In both cases we have already shown that configurations not
reachable from the standard input evolve to illegal ones.

State pω: The counter TM never enters the state pω, and all such configurations
are illegal. �
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4.4.2 Counter TM Hamiltonian
We want all legal Track 2 configurations to contain a single state p ∈ P′ marking
the location of the counter TM head, and blanks everywhere else. I.e. the Track 2
configuration should match a regular expression ∗p ∗ where p ∈ P′.
By Lemma 36, we can enforce this using penalty terms. This Track 2 regular
expression allows us to identify Tracks 2 and 3 with the configurations of the
counter TM (with internal state p, its position being the head location, and Track 3
the tape). This will be explicitly or implicitly exploited in all that follows.

To encode the evolution of this counter TM in our local Hamiltonian, we encode
its transition rules in transition terms. However, the transition rules will only apply
when a →1 arrow on Track 1 sweeps past the counter TM head encoded on Track 2,
so that the counter TM advances exactly one step for each complete left-to-right
sweep of the →1 arrow. Since we are restricting to two-body interactions and the
arrow is moving to the right, transitions in which the head moves left must be
triggered when the →1 is to the left of the TM head, in order to both move the arrow
and update the head location. This way of implementing the left transitions means
that

→1
p
σ

(79)

never occurs during the evolution of the counter TM if δ(p, σ) = (τ, pL, L). We add
a penalty term to make such configurations illegal.

Transitions in which the head moves to the right or stays still will be triggered
when the →1 is on top of the head. In order to avoid two transitions in which the
head moves right from being triggered during the same sweep of the →1 , we must
split these latter transitions into two stages, in which we first transition into an
auxiliary state p′R ∈ P′R, and then transition into the correct state pR ∈ PR in the
following time step (adapting the construction of [GI09]). Thus, when the →1 is on
top of the head and the head will move right, we will update the tape, move the
head, and step the →1 to the right. But we transition into the auxiliary state p′R ∈ P′R
instead of pR ∈ PR. In the next step, with the →1 now on top of the p′R state, we
transition to the correct state pR, and step the →1 to the right once more so that it is
no longer on top of the head. This way of carrying out the right-moving transitions
means that p′R only ever appears below a →1 , so we add a penalty term to make all
other p′R configurations illegal:

¬ →1
p′R

(80)

For TM transition rules δ(p, σ) = (τ, pN ,N), δ(p, σ) = (τ, pL, L) and δ(p, σ) =

(τ, pR,R) (where p ∈ P\{pα}, pL,N,R ∈ PL,N,R and σ, τ ∈ Ξ), the following local
transition terms on Tracks 1 to 3 implement the desired transformations (cells
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marked · can be in any state, and are left unchanged by the transition):

→1
p
σ ·

−→

→1
pN

τ ·

,

→1
p
σ

−→

→

1

pN

τ

, (81a)

→1
p
· σ

−→

→1
pL

· τ

,

→1
p
σ ·

−→

→1
p′R

τ ·

, (81b)

→1
p′R
· ·

−→

→1
pR

· ·

,

→1
p′R
·

−→

→

1

pR

·

. (81c)

Transitions in which the head moves left from the end of the chain are already
covered by the left-moving transition in (81b). Transitions in which the head would
move right off the end of the chain are not implemented. (Transitions in which the
head would move left off the beginning of the chain are not implemented either,
but in fact the counter TM construction of Section 4.4 will never attempt such a
transition when initialised properly. Moreover, we just declared such configurations
illegal in (79).)

When started from the blank input (which represents the number 0), the encoded
counter TM will loop ζL−3 times before it exceeds the L − 2 tape space available
on Track 2 (the space overhead of 1 is due to the way the incrementer TM is
implemented in (64)). The incrementer machine takes Θ(log x) steps to increment
the number x (written on the tape in base-ζ). Thus the counter TM will run for at
least Ω(ζL) (and at most O(log LζL)) time-steps before it exceeds the available tape
space.

The transition function for the counter TM defines a transition rule for each pair
(p, τ) ∈ P×Ξ. So for any legal configuration containing a p ∈ P on Track 2, exactly
one of the transition rules in (81a) and (81b) will apply during each →1 sweep.
Similarly, for any configuration containing a p′R ∈ P′R, a (81c) rule will apply. It
is easy to verify that if any of the transition rules from (81a)–(81c) is applied to
any legal configuration, none of the (81a) and (81b) rules can apply again to the
resulting configuration. If the final (81b) rule applies, the (81c) rule will apply
exactly once in the following step, after which none of the rules can apply again to
the resulting configuration. The transition rules in (81a)–(81c) therefore implement
a single step of the TM during each left-to-right sweep of the →1 state on Track 1,
as required. We call this phase of the evolution, in which Track 1 contains a →1 or→

1 , the computation phase.
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We also modify the clock oscillator rules from Section 4.2 involving a right-
moving →1 arrow to only apply when there is no TM head under the →1 , since the
→1 movement is already taken care of by the above transition rules when there is a
TM head present:

→1
−→

→1
,

→1
−→

→1
,

→1
−→

→

1

. (82)

We must also enforce illegality of all the configurations declared to be illegal in
Section 4.4.1. To do this, we simply introduce local penalty terms corresponding
to the combinations declared illegal in (69)–(74), (76) and (77), and enforce the
Track 3 regular expression of (75) using penalty terms and Lemma 36.

The complete set of Track 1 to 3 transition rules is summarised in Table 2. The
regular expressions on Tracks 1 to 3 enforced by penalty terms, together with all
the additional illegal pairs defined so far, are summarised in Table 3.

Table 2: All transition rules for Tracks 1 to 3.

Track 1 rules

, rules

→
1 rules

−→

→

1 −→

→

1 (∗)1

−→

−→

−→

1Transition rules marked with an (∗) will be replaced in Section 4.6 by a set of rules that also
act on Tracks 4, 5 and 6.
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Track 1 and 2 rules

, rules →1 rules

→

1 rules

pα
−→

→1
pα

→1
−→

→1 →

1

¬pα
−→

→1
¬pα

(∗)

→1
−→

→1

→1
−→

→

1

(∗)
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Track 1, 2 and 3 rules

, rules →1 rules

→

1 rules

→1
p

· σ

−→

→1
pL

· τ

→1
p

σ ·

−→

→1
pN

τ ·

→1
p

σ

−→

→

1

pN

τ

(∗)

→1
p

σ ·

−→

→1
p′R

τ ·

→1
p′R
· ·

−→

→1
pR

· ·

→1
p′R
·

−→

→

1

pR

·

(∗)
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Table 3: All illegal pairs and regular expressions enforced by
illegal pairs for Tracks 1 to 3.

Regular expressions

Track 1 Track 2 Track 3

∗[ , , , →1 , →

1 ] ∗ ∗ p ∗ ` i∗ #∗

Illegal pairs

Tracks 1 and 2

¬
¬

,
¬pα

,

→

1

pα
,

¬ →1
p′R

Illegal pairs

Tracks 1 and 3 Track 2 Tracks 2 and 3 Track 3

¬
¬#

¬ pα
pα ·

· ¬#
0 #

p

# #
0

Illegal pairs

Tracks 2 and 3 for undefined transitions in (65)

p

τ
,

pR

τ ·
,

pL

· τ
,

pN

τ ·
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Illegal pairs

Tracks 1, 2 and 3 if δ(p, σ) = (pL, τ, L) (79)

→1
p

σ

4.5 Clock Hamiltonian
Before considering the remaining tracks, it is helpful to analyse in depth the
Hamiltonian defined so far on the first three tracks. For that we start with the
definition of well-formed states.

Definition 38 (Well-formed state) We say that a standard basis state on Tracks 1
to 3 is well-formed if it is a bracketed state, its Track 1 configuration matches the
regular expression ∗[ , , ,

→

1 , →1 ] ∗ , and its Track 2 configuration
matches the regular expression ∗p ∗ where p ∈ P′.

The penalty terms defined previously give an energy penalty of at least 1 to any
standard basis state in Sbr that does not match the desired regular expressions on
Tracks 1–3. Thus only well-formed states can have zero energy. The following
result shows that only one transition rule can apply to each well-formed state.

Lemma 39 (Well-formed transitions) For any well-formed standard basis state,
at most one transition rule applies in the forward direction, and at most one in the
backwards direction. Furthermore, the set of well-formed states is closed under
the transition rules.

Proof A well-formed standard basis state contains exactly one of , , , →1
or

→

1 on Track 1. Thus clearly only transition rules from one of the sets in Table 2
(the set of , rules, →1 rules, or

→

1 rules) can apply in the forward direction.
The left hand sides of the rules within the , and

→

1 sets are manifestly
mutually exclusive. Since the counter TM is deterministic, there is a unique TM
transition that applies at any step, so the left-hand-sides of the →1 rules are also
mutually exclusive.

The counter TM is reversible, so there is also a unique backwards TM transition
at every step. Thus the same argument applies in the backwards direction to the
right hand sides of the rules in each set, with the exception of the turning rule
that changes a →1 into a (in the backwards direction). But this rule clearly
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cannot apply at the same time as the right hand side of any rule from the →1 set,
which concludes the proof of the first part of the lemma.

It is straightforward to verify that all the transition rules in Table 2 preserve
well-formedness, implying the second part. �

Recall that the state |φ0〉 is the standard basis state with ∗ on Track 1,
pα ∗ on Track 2, and ` #∗ on Track 3. This corresponds to having

the clock oscillator in the first state of the Track 1 sequence (see Figure 4), and the
counter TM Tracks 1 and 2 in their initial configurations. There is no backwards
transition out of |φ0〉, so we will refer to it as the initial clock state. Let |φt〉 be the
standard basis state obtained by applying t transitions (in the forwards direction) to
|φ0〉, which is well-defined thanks to Lemma 39.

Let us consider the form of the states |φt〉. Note that |φ0〉 contains a on
Track 1. The only transition rules that apply when Track 1 contains a , or
(see Table 2) are those that sweep the arrow all the way to the right and back again,
without affecting Tracks 2 or 3. We saw in Section 4.2 that one complete oscillator
cycle takes 2(L−2) steps. Thus t ≤ 2(L−2) corresponds to the initialisation sweep,
in which the state |φt〉 contains a , or on Track 1, and Tracks 2 and 3
remain in their initial configurations.

At t = 2(L − 2) + 1, the turns around and (because Track 2 contains a pα
at the beginning of the chain) becomes a →1 . This →1 is now over a pα on Track 2.
Thus the next step implements the first step of the counter TM on Tracks 2 and 3,
causing Track 2 to transition to pα.

Recall from Section 4.4 that the transition rules implement one step of the
counter TM during each left-to-right sweep of the →1 on Track 1, and then move
the

→

1 back to the beginning of the chain in the second half of the oscillator cycle.
Note that the counter TM construction of Section 4.4 never transitions back to its
initial state pα. So when the

→

1 reaches the beginning of the chain, it will never find
a pα on Track 3. Thus it will always transition into →1 , never into (see Table 2).
Therefore, for all t > 2(L − 2) the state |φt〉 contains a →1 or

→

1 on Track 1. At
t = 2(L − 2)(n + 1) the →1 in |φt〉 is back at the beginning of the chain, and Tracks 2
and 3 are in the configuration corresponding to the n’th step of the counter TM.

Eventually, the number written on Track 3 will be incremented until it reaches
ζL−4, the maximum number that can be written in base-ζ in L − 4 digits (the −4
accounts for the space-overhead of 2 required by the Inc TM implementation, plus
the two bracket states at the ends of the chain). When the counter TM tries to
increment this number, the head will move right until it reaches the cell adjacent
to the at the end of the chain. At this point, it will be in an internal state that
would normally step right in order to write the carry. But the site to the right of the
head contains instead of a blank Tape 2 cell. When the →1 on Track 1 reaches
the head at the end of on Track 2, there is no further forwards transition out of
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this configuration (see Table 2). Let T be the number of transitions required to
reach this configuration |φT 〉 starting from the initial state |φ0〉. We will refer to
|φT 〉 as the final clock state. Since this configuration occurs when the counter TM
is about to exceed L tape space, which occurs after at most O(log LζL) steps of
the TM (see Section 4.4) each of which requires 2(L − 2) transitions, we have that
T = O(L log LζL). (Though this bound on the run-time will not be important for
our purposes.)

The following result will be important later when we come to analyse the
Hamiltonian.

Lemma 40 (Evolve-to-illegal) Evolving any |φt〉 forwards or backwards in time
according to the transition rules will never reach an illegal configuration. All other
well-formed standard basis states will evolve either forwards or backwards to an
illegal configuration after O(L2) transitions.

Proof As in Lemma 37 the first part of the Lemma is true by construction. For the
second part, let us analyse all possible well-formed standard basis states, which we
divide into two cases depending on the type of arrow state we have on Track 1:

Case 1: Track 1 contains , or . If Tracks 2 and 3 are in the initial
configuration, then we are in one of the |φt〉 states with 0 ≤ t ≤ 2(L − 2).

If Tracks 2 and 3 are not in the initial configuration, then within at most O(L)
steps the or , will move forwards or backwards along the chain due to the
initialisation sweep clock oscillator transition rules, until it is over a site containing
the wrong initial Track 2 or Track 3 state. But this is illegal due to the Track 1–3
illegal pairs from Table 3.

Case 2: Track 1 contains →1 or

→

1 . Recall that there is a one-to-one correspon-
dence between configurations of the counter TM and well-formed standard basis
states that do not contain a p′R ∈ P′R on Track 2.

Well-formed configurations containing a p′R ∈ P′R on Track 2 evolve by a single
backwards transition from (81b) to a configuration containing a p < P′R on Track 2,
and evolve by a single forwards transition from (81c) to a configuration containing
a pR ∈ PR. A configuration containing p′R ∈ P′R is therefore reachable (resp.
unreachable) by transition rules from the initial configuration iff the corresponding
counter TM configuration with p′R replaced by the corresponding pR is reachable
(resp. unreachable).

For any well-formed configuration, each sweep of →1 , the transition rules im-
plements exactly one step of the counter TM encoded in Tracks 2 and 3. The only
counter TM transitions that are not implemented are those that would move the
head beyond the L sites between the and . Therefore, if the configuration
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of Tracks 2 and 3 is not reachable from the initial configuration, then Lemma 37
guarantees that evolving it forwards or backwards by the transition rules will reach
an illegal configuration in O(L) steps of the counter TM, which takes O(L2) transi-
tions. (Note that it is crucial for this argument that to reach an illegal configuration
in Lemma 37 never requires moving the head outside the portion of tape [0, L].)

It only remains to consider well-formed states with Track 2 and 3 configura-
tions that are reachable from the initial configuration. For the initial Tracks 2–3
configuration itself, if →1 is in the starting cell then we have the state |φt〉 for
t = 2(L − 2) + 1. If not, either we have →1 to the right of the head or

→

1 on Track 1,
with pα at the start of Track 2. In both cases, evolving such a state forwards in time
will reach a state with a

→

1 over the pα within O(L) transitions, which is illegal by
the second Track 1 and 2 illegal pair from Table 3.

If the Track 2–3 configuration is not the initial one, then all positions of →1 and→

1 give rise to elements in the set {|φt〉}t except exactly those declared illegal in
(79) and (80). This completes the proof of the Lemma. �

4.6 QTM Hamiltonian
With the clock in place, encoding an arbitrary quantum Turing Machine in the
Hamiltonian is now possible using ideas from [GI09] (and is similar to the construc-
tion used in Section 4.4 to encode the reversible counter TM). The configurations
are now quantum states, so there can be arbitrary superpositions over standard
basis states. But it suffices to verify that the construction does the right thing on
standard basis states; this then extends to arbitrary superpositions by linearity and
well-formedness.

When we later come to analyse the spectrum, we will require our Hamiltonian
to be standard-form in the following sense:

Definition 41 (Standard-form Hamiltonian) We say that a Hamiltonian H =

Htrans + Hpen acting on a Hilbert spaceH = (CC ⊗CQ)⊗L = (CC)⊗L ⊗ (CQ)⊗L =:
HC ⊗ HQ is of standard form if Htrans,pen =

∑L−1
i=1 h(i,i+1)

trans,pen, and htrans,pen satisfy the
following conditions:

(i). htrans ∈ B
(
(CC ⊗CQ)⊗2

)
is a sum of transition rule terms, where all the

transition rules act diagonally on CC ⊗ CC in the following sense. Given
standard basis states a, b, c, d ∈ CC, exactly one of the following holds:

• there is no transition from ab to cd at all; or

• a, b, c, d ∈ CC and there exists a unitary Uabcd acting on CQ ⊗ CQ

together with an orthonormal basis {|ψi
abcd〉}i for CQ ⊗ CQ, both de-

pending only on a, b, c, d, such that the transition rules from ab to cd
appearing in htrans are exactly |ab〉 |ψi

abcd〉 → |cd〉Uabcd |ψ
i
abcd〉 for all i.
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(ii). hpen ∈ B
(
(CC ⊗CQ)⊗2

)
is a sum of penalty terms which act non-trivially

only on (CC)⊗2 and are diagonal in the standard basis.

In our case, CC corresponds to Tracks 1–3 and CQ to Tracks 4–6. Transitions
from ab to cd will correspond exactly to the transitions shown for Tracks 1–3
in Table 2. While adding new transitions involving Tracks 4–6, we will need
to remove some of the transitions in Tracks 1–3, but they will be recovered as
restrictions of the new rules to those tracks. (In Table 2, transitions that will be
replaced later are marked with an asterisk.) We will define the unitaries Uabcd

partially, and then complete them to a full unitary. All we have to take care of
is, firstly, the new transition involving the rest of the tracks, when restricted to
Tracks 1–3, recover exactly the transitions removed from Table 2; and, secondly,
that orthogonality is preserved in the construction.

By the standard form,

htrans =
∑

ab→cd

(|ab〉 − |cd〉)(〈ab| − 〈cd|) ⊗ (21 − Uabcd − U†abcd) . (83)

Now, if we start with a family of QTM Pn that satisfies part (iii) of Theorem 10, it
will be immediate from our construction that the partial definition of all Uabcd will
only involve elements in the set

S =

{
0, 1,±

1
√

2
, eiπϕ, eiπ2−|ϕ|

}
. (84)

As argued above, the same will hold for the full Uabcd, which gives part (vi) in
Theorem 32.

4.6.1 QTM transition rules
We first analyse how to incorporate the QTM transition rules into the Hamiltonian.
We will simulate the QTM transition rules δ(p, σ) =

∑
τ,q,D δ(p, σ, τ, q,D) |τ, q,D〉

during the second half of the clock oscillator cycle, when the Track 1

→

1 state
sweeps from right to left. This is done by including the following transition rule
terms (cf. (81a)–(81c)), where q is any state in Q/{q f } (i.e. we exclude all the
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transitions out of the QTM’s final state):∣∣∣∣∣∣∣∣∣

→

1

q
σ ·

〉
−→

∑
τ,qR

δ(q, σ, τ, qR,R)

∣∣∣∣∣∣∣∣∣

→

1

qR

τ ·

〉
+

∑
τ,qN

δ(q, σ, τ, qN ,N)

∣∣∣∣∣∣∣∣∣

→

1

qN

τ ·

〉

+
∑
τ,qL

δ(q, σ, τ, qL, L)

∣∣∣∣∣∣∣∣∣

→

1

q′L
τ ·

〉
,

(85a)

∣∣∣∣∣∣∣∣∣

→

1

q′L
· ·

〉
−→

∣∣∣∣∣∣∣∣∣

→

1

qL

· ·

〉
. (85b)

As in the implementation of the reversible counter TM (Section 4.4), these transition
rules implement the Right-moving, Non-moving and Left-moving transitions
separately. This time, since the

→

1 arrow is sweeping to the left, it is the left-
moving transitions that are implemented in two stages, first transitioning to an
auxiliary state q′L ∈ Q′L, then in a second step transitioning to the corresponding qL

state.
Note that if the QTM head ever ends up at the end of the chain, the transition

rules of (85) can never apply, because they require the

→

1 to be to the right of the
QTM head. Thus the final Track 5 tape cell is not used, and the effective tape
length available to the QTM for a chain of length L + 3 is only L rather than1 L + 1.
If the Track 4 QTM head ends up next to the at the very end of the chain, this
indicates that the head has stepped off the usable portion of the tape, regardless of
the internal state.

We also include the following transition rules involving a left-moving

→

1 arrow
to cover the case where there is no QTM head present:

→

1

−→

→

1

,

→

1

−→

→

1

,

→

1

q
−→

→

1

q
, (86)

4.6.2 QTM Unitarity
With the set of transition rule terms defined so far in (85), there is no transition
out of the final state q f of the QTM. There is also no transition out of a QTM
configuration in which the QTM head is at the end of the chain, and the next step
would move the head to the right, off the end of the chain. The same is true of

1Two cells are always used by the , markers.
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configurations trying to move the head left when it is located at the beginning of
the chain.1

Ideally, we would like it if, when the QTM reaches one of these configurations,
the clock continued ticking but the encoded QTM did nothing for the remaining
time steps. However, simply omitting transitions out of these configurations causes
a subtle but important issue relating to unitarity of the quantum transition rules,
which will be crucial to the analysis of the resulting Hamiltonian in Section 4.7.

If we complete the partial U (associated with the Track 1–3 transitions

→

1 −→→

1 ) as defined so far by (85)–(87) to a unitary, this will add additional transitions
out of the final state q f , and also out of configurations with the head at the beginning
or end of the chain. But this means that, instead of the encoded QTM doing nothing
for the remaining time steps after reaching such a configuration, it will continue to
evolve in some arbitrary way, depending on the particular choice of completion
of U. On the other hand, if we omit transitions out of these configurations, the
resulting U will only be a partial isometry, not a full unitary.

We need to use up any remaining time steps in a controlled way, such that the
Track 5 QTM tape is left unaltered after the QTM enters q f or runs out of tape.
To this end, we deliberately add additional transitions out of the final state q f , and
also out of configurations with the head at the beginning or end of the chain, which
cause the QTM to switch over to running some other, inconsequential computation
to use up the remaining time. This time-wasting computation will use Track 6 as
its tape, leaving the configuration of the Track 5 QTM tape untouched.

The only requirement on this time-wasting computation is that it must be
guaranteed not to halt or run out of tape before it has used up all the remaining
time steps of the clock (otherwise we face the same unitarity issue once again).
The natural choice is simply to run the same base-ζ counter computation as the
clock (but running on Tracks 4 and 6). The counter TM never halts; it increments
the number written on its tape forever, or – when encoded on a finite chain – until
it runs out of tape space. Furthermore, since the clock will already have “ticked”
for some positive number of time steps before this time-wasting counter TM starts
running, the clock counter TM is guaranteed to run out of tape (and hence the clock
stop ticking) first.

Transitioning from q f to the time-wasting counter TM can be accomplished
simply by dovetailing the counter TM after the QTM, and encoding this dovetailed
machine instead of the original QTM. Concretely, this means we must add to
the Hamiltonian more transition rule terms of the form (85) that encode all the
transition rules of the counter TM from (65).2 Note that Track 6 contains additional

1Although the QTMs we will encode will in fact never do this.
2Since these are the transition rules of a classical reversible TM, they have a particularly simple

form, the right hand side of each (85a) rule containing a single term.
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subscripted variants `q of the ` tape symbol; the time-wasting counter TM transition
rules simply ignore the subscript, and treat all of these as a `. (I.e. the counter
TM rules that read a ` symbol in (65) are duplicated for each `q variant.) These
time-wasting counter TM transition rules involve a disjoint set of Track 4 internal
states q ∈ P′ to those q ∈ Q′ used by the QTM. Thus the left- and right-hand
sides of all time-wasting counter TM (85) transition rules are orthogonal to those
encoding the QTM transition rules.

We also add the following transition out of the final state q f of the original
QTM into the initial state pα of the counter TM, which dovetails the counter TM
after the QTM. This transition rule acts on Tracks 1, 4 and 6:

→

1

q f

` ·

−→

→

1

pα
`q f ·

. (87)

We must also add transitions that switch to running the time-wasting counter
TM if the QTM runs out of tape, i.e. if it enters a configuration in which the head
is at the beginning of the tape and would move left in the next time step, or one
with the head at the end of the chain that would move right. (Though in the case of
the proper machines considered in parts (iv) to (vi) of Theorem 32, the former will
never occur.) Moving left off the beginning of the tape is particularly easy, both
because the head is already at the beginning of the chain, and because left-moving
QTM transitions are implemented by first transitioning to an auxiliary q′L ∈ Q′L
state without moving the head. The following transition rule acting on Tracks 1, 2,
4 and 6 accomplishes this:

→

1

¬pα
q′L
`

−→

→1
¬pα
pα
`q′L

. (88)

Note that, to preserve reversibility (unitarity), we must keep a record of which
internal state q′L led to the QTM running out of tape. We record this in the `q

symbol written to the Track 6 time-wasting TM tape.
Configurations in which the head steps right off the end of the chain involve

slightly more effort, as the head is at the wrong end of the chain to start running the
time-wasting counter TM. From Section 4.6, a configuration in which the Track 4
QTM head is at the very end of the chain indicates that the head has stepped
right off the usable portion of the Track 5 tape. We first transition from any such
configuration into an auxiliary Track 4 head reset state r, which moves the head
all the way back to the beginning of the chain, before transitioning into the initial
state of the counter TM. This requires three additional sets of transition rules.
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We want the first new rule to act on Tracks 1 and 4 at the very end of the chain,
and transition into the auxiliary reset state rq (depending on the state q it was in
immediately before). However, we have to make it compatible with the transitions
already defined for Tracks 1–3. Hence we include the following transitions acting
on Tracks 1,2,4 and 1,2,3,4:

→1

q
−→

→

1

rq

,

→1
p
σ
q

−→

→

1

pN

τ
rq

,

→1
p′R
·

q

−→

→

1

pR

·

rq

(89)

The second new rule also acts on Tracks 1 and 4, and steps the auxiliary r state
to the left along with the

→

1 :

→

1

rq
−→

→

1

rq
. (90)

The third acts on on Tracks 1, 2 4 and 6 at the very beginning of the chain, and
transitions into the initial configuration of the time-wasting counter TM:

→
1

¬pα
rq

`

−→

→1
¬pα
pα
`q

. (91)

Again, to preserve reversibility, we record in the `q symbol which internal state
caused the QTM to run out of tape.
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Table 4: All transition rules for Tracks 4, 5 and 6.

Track 1 and 4 rules

→

1

−→

→

1

,

→

1

−→

→

1

→

1

rq

−→

→

1

rq

,

→

1

p
−→

→

1

p

Track 1, 4 and 5 rules

∣∣∣∣∣∣∣∣∣∣∣

→

1

p

σ ·

〉
−→

∑
τ,qR

δ(p, σ, τ, qR,R)

∣∣∣∣∣∣∣∣∣∣∣

→

1

qR

τ ·

〉

+
∑
τ,qN

δ(p, σ, τ, qN ,N)

∣∣∣∣∣∣∣∣∣∣∣
→

1

qN

τ ·

〉

+
∑
τ,qL

δ(p, σ, τ, qL, L)

∣∣∣∣∣∣∣∣∣∣∣

→

1

q′L
τ ·

〉

∣∣∣∣∣∣∣∣∣∣∣

→

1

q′L
· ·

〉
−→

∣∣∣∣∣∣∣∣∣∣∣

→

1

qL

· ·

〉
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Track 1, 4 and 6 rules

→

1

q f

` ·

−→

→

1

pα
`q f ·

,

→

1

p

σ ·

−→

→

1

pR

τ ·

,

→

1

p

σ ·

−→

→

1

pN

τ ·

→

1

p

· σ

−→

→

1

p′L
· τ

,

→

1

p′L
· ·

−→

→

1

pL

· ·

Track 1, 2 and 4 rules

→1

q

−→

→

1

rq

Track 1, 2, 4 and 6 rules

→

1

¬pα
q′L
`

−→

→1
¬pα
pα
`q′L

.

→

1

¬pα
rq

`

−→

→1
¬pα
pα
`q

.

Track 1, 2, 3 and 4 rules

→1
p

σ

q

−→

→

1

pN

τ

rq

,

→1
p′R
·

q

−→

→

1

pR

·

rq
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The transition rules in Table 4 implement all the transitions that will take place
for a properly initialised QTM. All of them have the desired form |ab〉 |i j〉 →
|cd〉Uabcd |i j〉 where ab→ cd is a Track 1–3 transition and Uabcd are partial isome-
tries defined by their action on a subset |i j〉 of the computational basis of Tracks
4–6. We can now complete the unitaries Uabcd at will. All we have to check is that
they do indeed define a partial isometry.

The left hand sides of each transition rule in (85)–(91) are manifestly orthogonal.
The right hand sides of all (85b) and (86)–(91) rules are clearly mutually orthogonal
and normalised, and are also orthogonal to the right hand sides of all (85a) rules.

It remains to show that (85a) defines an isometry. Recall that there are two
sets of (85a) terms, one encoding the QTM transition rules, and the other the
time-wasting counter TM. The left- and right-hand sides of all rules in the QTM
set are orthogonal to those of the counter TM set, as they involve disjoint sets of
internal states Q′ and P′ (respectively). Thus it suffices to prove that each set of
transition rules considered separately defines an isometry. Since classical reversible
TMs are special cases of QTMs, we prove the result for QTMs.

Let |ψ(p, σ)〉 denote the state on the RHS of (85a). Then

‖ψ(p, σ)‖ =
∑
τ,qR

|δ(p, σ, τ, qR,R)|2 +
∑
τ,qN

|δ(p, σ, τ, qN ,N)|2

+
∑
τ,qL

|δ(p, σ, τ, qL, L)|2

= ‖δ(p, σ)‖ = 1

(92)

by the normalisation condition of Theorem 18, so the right hand sides of (85a) are
normalised.

Similarly, for (p1, τ1) , (p2, τ2),

〈ψ(p1, σ1)|ψ(p2, σ2)〉 =
∑
τ,qR

δ(p1, σ1, τ, qR,R)∗δ(p2, σ2, τ, qR,R)

+
∑
τ,qN

δ(p1, σ1, τ, qN ,N)∗δ(p2, σ2, τ, qN ,N)

+
∑
τ,qL

δ(p1, σ1, τ, qL, L)∗δ(p2, σ2, τ, qL, L)

= 〈δ(p1, τ1), δ(p2, τ2)〉 = 0

(93)

by the orthogonality condition of Theorem 18, so the right hand sides of (85a) are
mutually orthogonal. Thus the QTM and time-wasting counter TM transition rules
from (85a) preserve orthonormality, as required.
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4.6.3 QTM initialisation sweep
We use penalty terms that only apply during the initialisation sweep to enforce
the correct initial configurations of Tracks 4, 5 and 6. For Track 4, we use the
following penalty terms, which force a single q0 at the very beginning of the track:

¬
¬

,
¬q0

. (94)

The Track 1 states only ever occur during the initialisation sweep in the final
K sites at the right end of the chain. We use these to force the initial configuration
of Track 5 to contain K blank symbols at the very end, as required by Theorem 32.1

¬1
,

¬#
. (95)

Track 6 is forced to be in the all-blank configuration, except for the very first
cell which contains a `:

¬
¬#

,
¬ `

. (96)

Table 5: Initialisation illegal pairs for Tracks 4–6.

Illegal pairs

Tracks 1 and 4 Tracks 1 and 5 Tracks 1 and 6

¬
¬ ¬1

¬
¬#

¬q0 ¬# ¬ `

4.7 Analysis
Lemmas 39 and 40 are the key results needed to prove the desired ground state prop-
erties of the Hamiltonian we have constructed, thanks to the “Clairvoyance Lemma”

1These additional blank symbols will be needed later to provide for the small space overhead
of the QTM constructed in Theorem 10.
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from Aharonov et al. [Aha+09, Lemma 4.2] (see also [GI09, Lemma 5.6]).1 Since
the Clairvoyance Lemma has previously only been stated and proven for specific
constructions, we state and prove a very general version of the Lemma here, which
applies to any standard-form Hamiltonian, as defined above:

Lemma 42 (Invariant subspaces) Let Htrans and Hpen define a standard-form
Hamiltonian as in Definition 41. Let S = {S i} be a partition of the standard
basis states ofHC into minimal subsets S i that are closed under the transition rules
(where a transition rule |ab〉CD |ψ〉 → |cd〉CD Uabcd |ψ〉 acts onHC by restriction to
(CC)⊗2, i.e. it acts as ab→ cd).

ThenH =
(⊕

S KS i

)
⊗HQ decomposes into invariant subspaces KS i ⊗HQ of

H = Hpen + Htrans where KS i is spanned by S i.

Proof Hpen is diagonal in the standard basis by definition (part (ii) of Definition 41),
so KS i ⊗HQ are trivially invariant under Hpen. But, by the form of the transition
rule terms (part (i) of Definition 41), the image Htrans |x〉C |ϕ〉Q of a standard basis
state |x〉C under Htrans has support only on standard basis states of HC that are
reachable by transition rules from |x〉C. Closure of KS i ⊗ HQ under Htrans is then
immediate from the definition of S i. �

Lemma 43 (Clairvoyance Lemma) Let H = Htrans + Hpen be a standard-form
Hamiltonian as specified in Definition 41, and let KS be defined as in Lemma 42.
Let λ0(KS ) denote the minimum eigenvalue of the restriction H|KS⊗HQ of H =

Htrans + Hpen to the invariant subspace KS ⊗HQ.
Assume that there exists a subsetW of standard basis states forHC with the

following properties:

(i). All legal standard basis states forHC are contained inW.

(ii). W is closed with respect to the transition rules.

(iii). At most one transition rule applies in each direction to any state inW.

(iv). For any subset S ⊆ W that contains only legal states, there exists at least
one state to which no backwards transition applies.

Then each KS falls into one of the following categories:

(1). S contains only illegal states, and λ0(KS ) ≥ 1.

(2). S contains both legal and illegal states, and λ0(KS ) = Ω(1/|S |3).
1Note that our definition of “legal” states follows that of [GI09], which differs from the

definition in [Aha+09].
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(3). S contains only legal states, and λ0(KS ) = 0. The corresponding eigenspace
is

ker
(
Htrans + Hpen

)
= span

 1
√
|S |

|S |−1∑
t=0

|t〉C |ψt〉Q

 (97)

where |t〉C are the states in S , |ψ0〉 is any state inHQ, and |ψt〉 := Ut . . .U1 |ψ0〉Q
where Ut is the unitary on HQ appearing in the transition rule that takes
|t − 1〉c to |t〉C. All other states in KS ⊗HQ have energy at least Ω(1/|S |2).

To prove this, we will need Kitaev’s geometrical lemma:

Lemma 44 (Geometrical Lemma – Lemma 14.4 in [KSV02]) Let A, B ≥ 0 be
positive semidefinite operators such that ker A ∩ ker B = {0}, λmin(A|supp A) ≥ µ and
λmin(B|supp B) ≥ µ. Then

A + B ≥ 2µ sin2
(
θ

2

)
(98)

where
cos θ := max

|ψ〉∈ker A
|ϕ〉∈ker B

|〈ψ|ϕ〉|. (99)

Proof (of Clairvoyance Lemma 43)
Case (1) is trivial since 〈x|C 〈ψ|Q Hpen |x〉C |ψ〉Q ≥ 1 for any illegal standard basis
state |x〉C.

Now consider cases (2) and (3). By assumption, all legal standard basis states
of HC are contained inW, which is closed under transition rules. Thus closure
of S (Lemma 42) implies S ⊆ W. Consider the directed graph of states inW
formed by adding a directed edge between pairs of states connected by transition
rules. By assumption, only one transition rule applies in each direction to any state
inW, so the graph consists of a union of disjoint paths (which could be loops in
case (2)). Minimality of S (Lemma 42) implies that S consists of a single such
connected path.

Let t = 0, . . . , |S | − 1 denote the states in S enumerated in the order induced by
the directed graph. Htrans then acts on the subspace KS ⊗HQ as

Htrans

∣∣∣
KS⊗HQ

=

T∑
t=0

1
2

(
|t〉〈t| ⊗ 1 + |t + 1〉〈t + 1| ⊗ 1 − |t + 1〉〈t| ⊗ Ut − |t〉〈t + 1| ⊗ U†t

)
,

(100)
where Ut is the unitary on HQ appearing in the transition rule that takes |t〉C to
|t + 1〉C. T = |S | − 1 if the path in S is a loop, otherwise T = |S | − 2.
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Consider a single term Ht := |t〉〈t| ⊗ 1 + |t + 1〉〈t + 1| ⊗ 1 + |t + 1〉〈t| ⊗ Ut +

|t〉〈t + 1| ⊗ U†t from (100). Defining the unitary Wt = |t + 1〉〈t + 1| ⊗ U†t + (1 −
|t + 1〉〈t + 1|) ⊗ 1, we have

WtHtW
†
t = (|t〉 − |t + 1〉) (〈t| − 〈t + 1|) ⊗ 1 ≥ 0. (101)

Thus, whether the path in S forms a loop or not, we have1

Htrans

∣∣∣
KS⊗HQ

≥

|S |−2∑
t=0

1
2

(
|t〉〈t| ⊗ 1 + |t + 1〉〈t + 1| ⊗ 1 − |t + 1〉〈t| ⊗ Ut − |t〉〈t + 1| ⊗ U†t

)
=: Hpath, (102)

with equality if the path is not a loop.
Defining the unitary

W =

|S |−2∑
t=0

|t〉〈t| ⊗
t∏

i=0

U†i + |(|S | − 1)〉〈(|S | − 1)| ⊗ 1, (103)

we have Hpath ' WHpathW† = E ⊗ 1 where

E =



1
2 −1

2 0 . . . . . . 0 0

−1
2 1 −1

2
. . . 0

0 −1
2 1 −1

2

...
...

. . . −1
2 1 . . .

. . .
. . .

. . .
...

...
. . .

. . . 0

0 . . .
. . . 1 −1

2
0 0 . . . . . . 0 −1

2
1
2



. (104)

The matrix E is the Laplacian of the random walk on a line, and it is well known
that its eigenvalues are given by λk = 1−cos qk where qk = kπ/|S |, k = 0, . . . , |S |−1,
with corresponding eigenvectors |φk〉 ∝

∑|S |−1
j=0 cos

(
qk( j + 1

2 )
)
| j〉 [KSV02]. Thus

ker Hpath = span

W† 1
√
|S |

|S |−1∑
t=0

|t〉C |ψ0〉Q

 = span

 1
√
|S |

|S |−1∑
t=0

|t〉C |ψt〉Q

 (105)

where |ψt〉 := Ut . . .U0 |ψ0〉 for any |ψ0〉.
1This operator has the same form as Kitaev’s Hamiltonian, and the analysis from here on is

similar to that in Kitaev, Shen, and Vyalyi [KSV02].
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First consider case (2). Take A = Hpath and B = Hpen|KS⊗HQ in Lemma 44. We
have λmin(A|supp A) = 1 − cos q1 = Ω(1/|S |2) and λmin(B|supp B) = 1. Furthermore,
since S contains at least one illegal state in case (2), we have ker A ∩ ker B = {0}
and

cos2 θ = max
|ψ〉
〈φ0|C 〈ψ|Q W†Πker BW |φ0〉C |ψ〉Q ≤ 1 − 1/|S |, (106)

where Πker B is the projector onto ker B and we have used the fact that B =

Hpen|KS⊗HQ is diagonal in the standard basis. Invoking Lemma 44, we obtain(
Htrans + Hpen

)∣∣∣
K⊗HQ

≥ Hpath + Hpen|K⊗HQ = Ω(1/|S |3), (107)

thus λ0(KS ) = Ω(1/|S |3) as claimed.
Finally, consider case (3). Since S contains only legal states in this case,

Hpen|KS⊗HQ = 0. Furthermore, by condition (iv) the states in S cannot form a loop,
so H|KS⊗HQ = Htrans|KS⊗HQ = Hpath ' E ⊗ 1. The claim in the Lemma now follows
from the form of the eigenvalues and kernel of E, given above. �

Note that the proof of the Clairvoyance Lemma relied crucially on unitarity of
the operators Uabcd appearing in the transition rules (see Lemma 42). In particular,
it is not sufficient for the Uabcd to be partial isometries. That would not allow us to
unitarily transform Htrans|KS⊗HQ into E ⊗ 1 using the unitary W in (103) and (104).
Thus, in order to apply the Clairvoyance Lemma 43, we must complete the quantum
parts of the transition rules to a full unitary. This necessitates the “time-wasting”
construction in Section 4.6.2 (or similar).

We are finally in a position to prove Theorem 32, the main result of this section.
As commented above, let HC = (CC)⊗L and HQ = (CQ)⊗L be the Track 1–3 and
Track 4–6 Hilbert spaces, respectively, for a chain of length L, as specified in (56).
Let htrans ∈ B((CC ⊗CQ)⊗2) be the sum of all the transition rule terms defined in
Tables 2 and 4 (omitting those marked in Table 2) after completing to a full unitary
so that the resulting Hamiltonian is standard-form. Let hpen ∈ B((CC ⊗CQ)⊗2) be
the sum of all penalty terms defined in Tables 1 and 3, and hinit ∈ B((CC ⊗CQ)⊗2)
be the sum of all Track 4–6 initialisation penalty terms defined in Table 5.

Define the standard-form (Definition 41) Hamiltonian H(L) = Htrans(L) +

Hpen(L) ∈ HC ⊗ HQ on a chain of length L, where Htrans,pen =
∑L−1

i=1 h(i,i+1)
trans,pen, and

similarly define Hinit(L) :=
∑L−1

i=1 h(i,i+1)
init .

Proposition 45 (Unique ground state) The unique 0-energy eigenstate of(
Htrans(L) + Hpen(L) + Hinit(L)

)∣∣∣
Sbr

is the computational history state

1
√

T

T∑
t=0

|φt〉C |ψt〉Q , (108)
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where T = Ω
(
L ζL

)
, |ψ0〉Q ∈ HQ is the initial configuration of the QTM with the

unary representation of the number L − K − 3 as input, and |ψt〉Q ∈ HQ is the
sequence of states produced by evolving |ψ0〉 under the QTM and time-wasting
counter TM transition rules (where each such state is duplicated O(L) times in
succession in the sequence).

Proof Let us first apply the Clairvoyance Lemma to
(
Htrans(L) + Hpen(L)

)∣∣∣
Sbr

. We
have to check that htrans and hpen fulfil the requirements of the Lemma.

Take HC to be the Hilbert space of Tracks 1–3, and HQ the Hilbert space of
Tracks 4–5. DefineW to be the set of all well-formed Track 1–3 standard basis
states. Any state that is not well-formed violates an illegal pair enforcing a regular
expression, so all legal Track 1–3 states are well-formed. W therefore fulfils
condition (i) of Lemma 43. By Lemma 39, the set of well-formed states is closed
under the transition rules and at most one transition rule applies in each direction to
any well-formed state, soW fulfils conditions (ii) and (iii) of Lemma 43. Finally,
by Lemma 40, the only subset of legal Track 1–3 standard basis states that is closed
under the transition rules is the set of clock states {|φt〉}, which has one state |φ0〉

to which no backward transition applies, and one state |φT 〉 to which no forward
transition applies. SoW also fulfils condition (iv) of Lemma 43.

All penalty terms are diagonal in the standard basis, as required by Lemmas 42
and 43, and all transition rules are of the form required in Lemma 43, by construc-
tion. htrans and hpen therefore fulfil all the requirements of Lemmas 42 and 43.

Invoking the Clairvoyance Lemma 43, the 0-energy eigenspace of (Htrans +

Hpen)|Sbr has the form

ker
(
Htrans + Hpen

)∣∣∣
Sbr

= span

 1
√
|S |

|S |−1∑
t=0

|φt〉C |ψt〉Q

 , (109)

where |ψt〉Q = Ut . . .U1 |ψ0〉Q and |ψ0〉Q is any state ofHQ.
Now we include the hinit terms, and show that |ψ0〉Q must be as claimed in

Proposition 45. For 0 ≤ t ≤ 2L − 1, the clock states |φt〉 consist of an
that sweeps from left to right and back along the chain (where for the time steps
t = L+1, . . . , L+K of this sweep, the arrow is in the states , . . . , , respectively).
The transition rules that apply during the initialisation sweep act trivially on
Tracks 4–5, so |ψt〉Q = |ψ0〉Q for t ≤ 2L − 1. By construction, the hinit penalty terms
from Table 5 give an additional energy penalty to any Track 4–5 states that are not
in the desired initial QTM configuration when the sweeps past.

Consider any Track 4–5 state |ψ0〉Q that is not the desired initial QTM configu-
ration. Then there is some 0 ≤ t ≤ 2L − 1 for which 〈φt|C 〈ψt|Q Hinit |φt〉C |ψt〉Q > 0.
Noting that the overall Hamiltonian H ≥ 0 and the |φt〉 are mutually orthogonal,
this immediately implies that the unique 0-energy state is that given in (108).
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The initial state |ψ0〉Q on Track 4 matches the regular expression ∗q ∗ .
The transition rules Ut preserve this form – which allows us to identify Tracks 4
and 5 with the head and tape configuration of the QTM – and by construction
implement one step of the QTM or time-wasting counter TM in each

→

1 sweep (all
other unitaries applied to Tracks 4 and 5 during each sweep being identities).

Finally, the clock counter TM counts up to Ω(ζL) before it runs out of tape,
and each step of this TM requires one complete sweep of the Track 1 arrow which
takes Ω(L) steps. Thus T = Ω(L ζL) as claimed.1) We are done. �

The local Hilbert space dimension in (56) manifestly depends only on the
alphabet size and internal states of the counter TM encoded on Tracks 2 and 3, the
QTM encoded on Tracks 4 and 5, and the time-wasting counter TM encoded on
Tracks 4 and 6. However, the alphabet size and internal state space of both counter
TMs depends only on the base ζ we choose, and this is completely determined by
the alphabet size and internal state space of the QTM. Thus the local Hilbert space
dimension d depends only on the alphabet size and number of internal states of the
QTM, as claimed in part (i) of Theorem 32.

Since the local interaction h of our Hamiltonian is constructed by summing
transition rule terms and penalty terms, and htrans, hpen, hinit ≥ 0, we have h ≥ 0. But
we have shown that the overall Hamiltonian has a 0-energy eigenstate, hence it is
frustration-free, satisfying part (ii) of Theorem 32.

Proposition 45 implies that the unique ground state of H|Sbr has the computa-
tional history state form claimed in part (iii) of Theorem 32. Moreover, since the
history state encodes Ω(|Q × L|L) complete sweeps of the Track 1 arrow, and the
QTM is advanced by exactly one step in each right-to-left sweep, the computational
history state encodes Ω(|Q× L|L) steps of the computation. If the QTM halts before
this, it transitions by the q f rule of (87) to running the time-wasting counter TM,
which never alters the QTM tape encoded on Track 5. Track 5 is therefore only in
the state q f for one time step. Thus part (iv) of Theorem 32 is also satisfied.

Now imagine that the QTM reaches a configuration in which the next step
would move the head before the starting cell. (Though in the case of the proper
machines considered in parts (iv) to (vi) of Theorem 32, this will never occur.)
Consider the corresponding |ψt〉 in the computational history state. The QTM
transition rules do not alter Track 6, so Track 6 is still in its initial configuration.
Since the QTM has deterministic head movement, at no point during the evolution
is its head ever in a superposition of locations. |ψt〉 is therefore of the form:

|ψt〉 = | 〉

∑
q

|q . . . 〉Track 4 ⊗ |ϕq〉Track 5 ⊗ |`q # . . . #〉Track 6

 | 〉 , (110)

1This lower-bound is certainly not tight, as incrementing the base-ζ number on the tape takes
more than one step of the TM, but it suffices for our purposes.
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where |ϕq〉 are unnormalised Track 5 QTM tape states, and all configurations in the
superposition would step the QTM head left in the next time-step. The q f transition
rule from (87) therefore applies to all states in the superposition, and the next state
must have the form:

|ψt+1〉 = | 〉

∑
q

|pα . . . 〉Track 4 ⊗ |ϕq〉Track 5 ⊗ |`q # . . . #〉Track 6

 | 〉 . (111)

Thenceforth, only time-wasting counter TM transition rules apply.
A very similar argument applies if the QTM reaches a configuration in which

the head moves beyond cell L. Since the time-wasting counter TM transitions
never alter Track 5, part (v) of Theorem 32 follows.

This concludes the proof of Theorem 32, and this section.
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5 Quasi-periodic tilings
In order to ultimately prove the required spectral properties of our final Hamiltonian,
we require significantly stronger properties of quasi-periodic tilings than those
used to prove tiling results. In particular, we will need strong “rigidity” results,
which show that the quasi-periodic structure is in a sense robust to errors. As far as
we are aware, these rigidity results are new. All the tiling results used in the proof
of our main results are gathered in this section.

We exploit the very particular properties of a quasi-periodic tiling due to
Robinson, which we briefly review in the following section. The Robinson tiling
has a hierarchical geometric structure that lends itself to inductive proofs of the
required rigidity results.

5.1 Robinson’s tiling
We now describe Robinson’s quasi-periodic tiling. It was discovered by Robinson
in 1971 [Rob71] as a tool to simplify Berger’s proof of the undecidability of the
tiling problem [Ber66].

(a) (b) (c) (d) (e){ {
Figure 5: The five basic tiles of Robinson’s tiling (top), and a simplified schematic
representation of these used in Figure 7 (bottom).

Robinson’s tiling is based on the five basic tiles showed in Figure 5 and all
rotations and reflections thereof. Tile (a) is called a cross, whereas tiles (b)–(e)
are called arms. In a valid tiling, arrow heads must meet arrow tails. As drawn,
cross (a) is said to face up/right. An arm is said to point in the direction of its
unique complete central arrow.

For each one of the five basic tiles of Figure 5, we introduce two possible
colours, red or green, to each of the side arrows (note that there is one tile without
colour) with the following restrictions: at most one colour may be used horizontally
and at most one colour may be used vertically; for the cross, the same colour must
be used in both directions; for tile (b) one colour must be used horizontally and
the other colour vertically. Moreover, we impose the restriction that green crosses
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(b)	   (d)	  (a)	   (c)	  

Figure 6: Parity markings to force the position of the crosses.

must appear in alternate positions in alternate rows (and maybe in other positions
too).

The latter can be achieved by adding parity markings to the above tiles: the
additional arrows showed in Figure 6, which should match properly in any valid
tiling, with the following rules: parity marking (a) is associated with green crosses,
parity marking (b) with horizontal green arrows, and (c) with vertical green arrows.
Parity marking (d) is associated with all tiles. It is important to remark here that
parity markings “live in a different layer” than the five basic tiles. That is, arrows
from the parity markings must match only those from the parity markings and
arrows from the basic tiles must match only those from the basic tiles.

If we now draw only the red coloured lines, one possible tiling of the plane
looks like Figure 7, which has the crucial (for our purposes) quasi-periodic structure
consisting of interlocking squares of increasing size.

Let us try to explain briefly (full details can be found in [Rob71]) how Figure 7
emerges, and the remaining freedom it allows in constructing valid tilings of the
plane. The fact that crosses must appear in alternate rows in alternate positions,
together with the form of the five basic tiles, means that any given cross completely
determines the structure of the 3 × 3 square constructed in the direction it faces.
For example, assume we start with a green cross facing left/down. Then we are
forced to complete the 3 × 3 square having the cross we started as the top/right
corner, as shown in Figure 8. Furthermore, the central tile must be a red cross, with
the only freedom being the choice of direction it faces.

Once the direction of the central cross is fixed, the 7 × 7 square obtained by
extending the 3 × 3 square in the direction this red cross faces is fixed as shown in
Figure 8. The green cross in the central position is forced, with the only freedom
again being the choice of direction it faces. Continuing this procedure gives a tiling
similar to that shown in Figure 7. It consists of a quasi-periodic structure of squares
(called borders) of sizes 4n (which—following Robinson’s terminology—means
that the distance between two of the facing crosses delimiting the border is 4n + 1)
repeated with period 2n+1, for all n ∈ N. Such a tiling can tile the whole plane,
a half-plane or a quarter-plane, depending on how we sequentially choose the
orientation of the central crosses. Lines between valid half or quarter planes must
consist only of arms. If the tiling divides the plane into two half-planes, the patterns
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Figure 7: A possible Robinson tiling of the plane.
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Figure 8: Left: A 3 × 3 square of the Robinson tiling, with the choice of a right/up
facing cross in the middle tile. Right: A 7 × 7 square of the Robinson tiling, with
the choice of a right/down facing cross in the middle tile. (To avoid confusion, we
have only drawn the coloured lines of the tiles in this second figure.)

in these half-planes may be shifted relative to one another by an arbitrary even
number of cells. In this case, the line separating the two half-planes is called a
fault. However, if a half-plane is further divided into two quarter-planes, no further
shift is possible between these quarter-planes.

5.2 Rigidity of the Robinson tiling
We have just seen that with the original Robinson tiles, the quasi-periodic pattern
of borders does not necessarily extend throughout the entire plane; there can be a
fault line between two half-planes, with “slippage” between the patterns on either
side of the fault (see Section 5.1 and [Rob71, § 8]). It will be convenient to slightly
modify the Robinson tiles in order to prevent fault lines. To this end, wherever one
of the five basic tiles does not have side-arrows, we add dashed side-arrows parallel
to the solid central arrows (see Figure 9). We then extend the five basic tiles to the
full tile set by rotation and reflection, adding parity markings, and adding red and
green colourings to the solid side arrows, exactly as in Section 5.1. We refer to
these as the modified Robinson tiles. (Similar modifications to the Robinson tile
set appear elsewhere in the literature, e.g. in [Mię97].)

(b) (d)(a) (c) (e)

Figure 9: The basic tiles of the modified Robinson tiling.

Since the all original tile markings are still present, any tiling using the modified
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tiles must also be a valid tiling using the original tiles if the dashed side-arrows
are ignored. It is easy to verify that, for any tiling in which the 2n-borders repeat
periodically throughout the plane for all n (i.e. any tiling that does not contain a
fault line), dashed side-arrows can be added to make it into a valid tiling using the
modified tiles.

However, if the tiling contains a fault line, there is no way to consistently add
dashed side-arrows. To see this, assume without loss of generality that the fault
line is vertical. Then there must exist two back-to-back crosses on either side of
the fault that are not aligned, so that one points up and the other down. Consider
the cross to the left of the fault line. The dashed side-arrow on this cross that points
to the right forces a dashed arm to extend in that direction, towards the other cross.
Similarly, the left-pointing dashed side-arrow on the cross to the right of the fault
forces a dashed arm to extend to the left. These dashed arms must meet somewhere
between the two crosses. But, since one cross points up and the other down, one
of these arms has the dashed side-arrow on top, the other has it on the bottom, so
there is no way to consistently join up the arms.

The crucial property we will use is that the Robinson tiling has a very “rigid”
structure. Even if we start from a tile configuration that contains a defect (a pair of
non-matching adjacent tiles), outside of a ball around the defect, the defect has no
effect on the pattern of borders that appears in the rest of the tiling. The following
Lemmas make this rigorous.1

Lemma 46 (Cross rigidity) In any tiling of a connected region with Robinson
tiles, crosses must occur in alternate columns and in alternate rows.

Proof Immediate from the observation that, for each “parity tile” in Figure 6, its
neighbour in each direction is uniquely defined. �

Lemma 47 (Robinson rigidity) Consider a connected region of a 2D square grid
made up of square blocks of size 2n+1 × 2n+1. Any tiling of such a region with
modified Robinson tiles must contain a periodic pattern of 2n-borders (some of
which may be incomplete due to boundaries), repeating horizontally and vertically
with period 2n+1. That is, the tiling must contain the same periodic pattern of
2n-borders as a section of the tiling of the infinite plane, up to translation and
defects that do not affect the 2n borders.

Proof By Lemma 46, crosses must occur in alternate rows and columns throughout
the region being tiled. Following Robinson [Rob71], we refer to these crosses as
“1-squares”. (Note that there may be additional crosses in the tiling that do not

1Our “rigidity” results for the Robinson tiling could certainly be strengthened, but they suffice
for our purposes.
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constitute 1-squares.) Pick an orientation for one of these 1-square crosses. Its
solid side-arrows force a solid arm to extend in the directions it faces. Unless there
is insufficient space to the boundary of the region, there must be a cross two cells
away in the direction of each arm. Just as in Robinson [Rob71, §3], these solid
arms force the orientation of any two facing crosses to be mirror images.

Meanwhile, the dashed side-arrows force a dashed arm to extend in the di-
rections that the cross faces away from. Again, these arms force the orientations
of any back-to-back crosses to be mirror images. Thus, as soon as we pick the
orientation of a single 1-square cross, the orientations of all adjacent crosses are
forced, and hence the orientations of all 1-square crosses throughout the connected
region.

Base case Consider first the case n = 1 with 4 × 4 blocks. Since orientations of
adjacent pairs of 1-square crosses are mirror images of each other, they are forced
to form groups of four facing towards the centre of a 3 × 3 block. As in Robinson
[Rob71, §3], these blocks must be completed to form “3-squares” with 2-borders
running around the edges and crosses in the centre. (The orientation of the central
crosses is not fixed.) In our modified Robinson tiles, the dashed side-arrows also
force the orientations of back-to-back crosses to be mirror images, which forces
adjacent 3-squares to be aligned. Thus the pattern of complete 2-borders must
repeat horizontally and vertically with period 4 throughout the region.

However, in general some of the 1-squares will be too close to the boundaries
of the region to form complete 3-squares. We need to show that these still force
partial 2-borders. If a 1-square faces a boundary and is located at that boundary,
then there is no further section of 2-border in that direction in any case, and we
have nothing to show. If a 1-square faces a boundary and is more than two cells
away from it, there must be another 1-square facing it before reaching the boundary,
and the section of 2-border between them must be completed as usual. The only
interesting case is if a 1-square faces a boundary one cell away from it. In this
case, the solid side-arrows still force the cell between the cross and the boundary
form an arm extending to the boundary. The only difference is that there is no
facing cross in that direction to force the side-arrows of the arm to point inwards;
they could instead point towards the boundary. Thus any of the arm tiles with
solid side-arrows (in a suitable orientation) can be used to form this piece of the
2-border. For our purposes, we consider any of these to still constitute a section of
the 2-border. So partial 2-borders are still forced at the boundaries.

This completes the proof for the base case n = 1. It will be important for later
to note that, if a partial 2-border is large enough to contain the cell that would
normally be at the centre of the border, then the central cross is still forced in that
cell. To see this, note that because our region is made up of adjacent square blocks,
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there must be arms on at least two sides of the central cell (not necessarily opposite
sides, if the partial 2-square is located in a corner of the region). Regardless of
which tile is used to form these arms, the central arrows perpendicular to the arms
must face outwards as usual, because the solid side-arrows on the arms must be
on the side away from the central cell. But the only tile that has outward-facing
central arrows on adjacent sides is the cross, so it is forced.

n = 2 case Before proving the general case, it is instructive to consider the next
case n = 2 (with 8×8 blocks). We can always divide each 8×8 block into four 4×4
blocks and apply the previous argument, so the 2-borders must repeat horizontally
and vertically with period 4, throughout the region, with a cross at the centre of
each 2-border (whether partial or complete). Each 8 × 8 block must therefore
contain at least one complete 2-border, and all 2-borders must be aligned (hence
their central crosses are also aligned).

Pick an orientation for one of these central crosses. The side-arrows of this
cross force solid arms extending in the directions that the cross faces, and dashed
arms extending in the directions it faces away from. Now, the only tile at which
an arm can terminate is the cross. But there can be no crosses between adjacent
2-borders. Thus the arms must extend all the way from a central cross to its
neighbours, again forcing the orientation of both facing and back-to-back crosses
to be mirror images of each other, so that they form groups of four facing towards
the centre of a 5 × 5 block. As in Robinson [Rob71, §3], these blocks must
be completed to form “5-squares” with 4-borders running around the edges and
crosses in the centre. As before, the dashed arms force adjacent 5-squares to be
aligned. So the pattern of complete 4-borders repeats horizontally and vertically
throughout the region, with period 8.

It remains to consider crosses that are too close to the boundaries to form
complete 4-borders. If the central cross of a 2-border faces a boundary (rather
than another cross), its solid side-arrows still force an arm that extends towards
the boundary. The only tile that can terminate an arm is a cross. However, we
cannot place a cross anywhere within the 3-square surrounding the central cross,
as it would break the tiling within the 3-square. The only remaining possibility
is to place a cross in the one-cell-wide corridor that runs along each side of a
3-square. However, where an arm intersects a 2-border it must point outwards,
which prevents placing a cross in the corridor. Thus the arm must be extended all
the way to the boundary to form a partial 4-border (with some additional freedom
in which arm tiles are used to form this section of 4-border).

This proves the Lemma for n = 2. As in [Rob71, § 3], a cross is forced at the
centre of all complete 4-borders. If a partial 4-border is large enough to surround
the cell that would be at the centre of the complete border, a cross is forced there
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too. To see this, observe that for partial borders of this size, the centre cell has
partial 4-borders on at least two sides. The central arrows perpendicular to a
border necessarily have arrow tails on the inside of the border. These force an arm
extending back towards the central cell. That cell therefore has arrow tails on at
least two sides, and the central cross is forced.

General case The argument for general n is very similar to the argument for the
n = 2 case, and proceeds by induction on n. Assume for induction that the pattern
of 2n−1-borders repeats horizontally and vertically with period 2n in any connected
region made up of 2n × 2n blocks, and that a cross is forced at the centre of each of
those 2n−1-borders (whether partial or complete).

Now consider a connected region made up of 2n+1 × 2n+1 blocks. We can
always divide each block into four 2n × 2n blocks. So, by assumption, the pattern
of 2n−1-borders must repeat horizontally and vertically with period 2n throughout
the region, with a cross at the centre of each (partial or complete) 2n−1-border.
Each 2n+1 × 2n+1 block therefore contains at least one complete 2n−1-border, and
adjacent borders (hence also their central crosses) are aligned. The solid and
dashed side-arrows of these central crosses force arms extending between adjacent
crosses, which in turn force the orientations of adjacent crosses to be mirror images.
Thus the arms extending between facing crosses form 2n-borders, and adjacent
2n-borders are aligned. The pattern of 2n-borders therefore repeats horizontally
and vertically throughout the region, with period 2n+1.

For central crosses that face a boundary instead of an adjacent cross, the solid
side-arrows on the cross still force an arm extending towards the boundary. To
show that this arm necessarily extends all the way to the boundary, we must
show that it is impossible to place a cross anywhere along the arm. Within the
(2n − 1)-square surrounding the central cross, we cannot place a cross along the
arm without breaking the tiling within 2n − 1-square (cf. [Rob71, § 3]). Thus the
arm must extend to the boundary of this (2n − 1)-square. Similarly, we cannot place
a cross along the arm anywhere within the adjacent (2n − 1)-square. So, if the arm
reaches the adjacent (2n − 1)-square, it must continue onwards to the boundary.
The only remaining possibility is to place a cross in the one-cell-wide corridor
between the adjacent (2n − 1)-squares. However, the arm necessarily points out of
the (2n − 1)-square, which prevents placing a cross in the corridor.

Finally, for the induction step we must show that a cross is forced at the
centre of each (complete or partial) 2n-border. The argument applies to any border
that extends sufficiently far to surround its centre cell (which includes complete
borders). The central cell has (complete or partial) 2n-borders on at least two
sides. The central arrows perpendicular to a border necessarily have arrow tails
pointing inwards, which force arms extending back towards the central cell. That
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cell therefore has arrow tails on at least two sides, forcing the central cross.
Together with the base case n = 1, this completes the proof. �

We refer to the top edge of a 2n-border as a 2n-segment.1

Lemma 48 (Segment bound) The number of 2n-segments in a tiling of an L × H
rectangle (width L, height H) using modified Robinson tiles is≥ bH/2n+1c

(
bL/2n+1c−

1
)

and ≤
(
bH/2n+1c + 1

)
bL/2n+1c for all n.

Proof Lemma 47 implies that the tiling must contain the usual periodic pattern of
2n-borders, up to translation. The result then is a trivial consequence of the fact
that borders repeat vertically and horizontally with period 2n+1. �

The following Lemma is the key rigidity result that we will need later. It shows
that a defect in the tiling (i.e. a non-matching pair of adjacent tiles) cannot affect
the pattern of 2n-borders in the tiling outside a ball of size 2n+1 centred on the
defect.

Lemma 49 (Segment rigidity) In any tiling of an L×H rectangle (width L, height
H) with d defects using modified Robinson tiles, the total number of 2n-segments is
at least bH/2n+1c

(
bL/2n+1c − 1

)
− 2d.

Proof Divide the L×H rectangle into contiguous square blocks of size 2n+1 × 2n+1,
with bL/2n+1c blocks in each row and bH/2n+1c in each column. (Any leftover
cells play no further role in the argument.) Delete any block that contains at
least one defect (arbitrarily assigning defects that occur at block boundaries to the
bottom/left block). Consider any horizontal row of blocks. If the row contains di

deleted blocks, those missing blocks divide it into at most di + 1 strips of height
2n+1.

Since each strip is a connected, defect-free region made up of 2n+1×2n+1 blocks,
Lemma 47 implies that it must be tiled with the usual periodic pattern of 2n-borders,
up to translations. The strip may be connected to strips in adjacent rows, in which
case we are not free to translate the tiling in each strip independently. Nonetheless,
we can lower-bound the number of 2n-segments by allowing the tiling within each
strip to be translated independently, and minimising over all such translations.

Each strip has height 2n+1, so, regardless of how the pattern is translated
vertically, it must contain exactly one row of 2n-segments. The minimum number
of segments within a strip of block-length l is l − 1 (obtained by translating the
pattern horizontally so that there are incomplete segments at the beginning and
end of the strip). In other words, each block in the strip effectively contributes one

1It is on these 2n-segments that the QTMs will ultimately “run” in the final construction.
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segment to the total, except for the block at the right end of the strip, which does
not contribute (we assign the segment between adjacent blocks to the left one).

If the row contains di deleted blocks, those missing blocks divide it into at most
di + 1 strips.1 Thus the row contains bL/2n+1c − di non-deleted blocks, with at most
di + 1 of them located at ends of the strips. The whole row therefore contains at
least bL/2n+1c − di −

(
di + 1

)
= bL/2n+1c − 2di − 1 segments.

Summing over all bH/2n+1c rows, and noting that the total number of deleted
blocks cannot be more than the total number of defects, we obtain the claimed
lower bound on the total number of 2n-segments. �

1For di > n/2, this substantially over-counts the number of strips, but it is sufficient for our
purposes.
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6 Putting it all together
6.1 Undecidability of the g.s. energy density
To prove our first main result, Theorem 5, we will prove a sequence of lemmas
which allow us to combine together the Hamiltonian constructions from the previ-
ous sections, and progressively build up the final Hamiltonian.

We will repeatedly need to refer to 1D translationally-invariant Hamiltonians
with a particular set of properties. For conciseness, we will call these “Gottesman-
Irani Hamiltonians”, captured in the following definition:

Definition 50 (Gottesman-Irani Hamiltonian) Let CQ be a finite-dimensional
Hilbert space with two distinguished orthogonal states labelled | 〉, | 〉. A
Gottesman-Irani Hamiltonian is a 1D, translationally-invariant, nearest-neighbour
Hamiltonian Hq(r) on a chain of length r ≥ 2 described by Hilbert space (CQ)⊗r

with local interaction hq ∈ B(CQ ⊗CQ), which satisfies the following properties:

(i). hq ≥ 0.

(ii). [hq, | 〉〈 |⊗| 〉〈 |] = [hq, | 〉〈 |⊗| 〉〈 |] = [hq, | 〉〈 |⊗| 〉〈 |] =

[hq, | 〉〈 | ⊗ | 〉〈 |] = 0.

(iii). λ0(r) := λ0(Hq(r)|Sbr) < 1, where Sbr is the subspace of states with fixed
boundary conditions | 〉 , | 〉 at the left and right ends of the chain, respec-
tively.

(iv). ∀n ∈ N : λ0(4n) ≥ 0 and
∑∞

n=1 λ0(4n) < 1/2.

(v). λ0(Hq(r)|S <
) = λ0(Hq(r)|S >

) = 0, where S < and S > are the subspaces of
states with, respectively, a | 〉 at the left end of the chain or a | 〉 at the
right end of the chain.

Lemma 51 (Tiling + quantum layers) Let hrow
c , hcol

c ∈ B(CC ⊗CC) be the local
interactions of a 2D tiling Hamiltonian Hc, with two distinguished states (tiles)
|L〉 , |R〉 ∈ CC. Let hq ∈ B(CQ ⊗CQ) be the local interaction of a Gottesman-Irani
Hamiltonian Hq(r), as in Definition 50. Then there is a Hamiltonian on a 2D
square lattice with nearest-neighbour interactions hrow, hcol ∈ B(CC+Q+1 ⊗CC+Q+1)
with the following properties: For any region of the lattice, the restriction of the
Hamiltonian to that region has an eigenbasis of the form |T 〉c ⊗ |ψ〉q, where |T 〉c is
a product state representing a classical configuration of tiles. Furthermore, for
any given |T 〉c, the lowest energy choice for |ψ〉q consists of ground states of Hq(r)
on segments between sites in which |T 〉c contains an |L〉 and an |R〉, a 0-energy
eigenstate on segments between an |L〉 or |R〉 and the boundary of the region, and
|0〉’s everywhere else.
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Proof The idea is to sandwich the two Hamiltonians Hc and Hq together in two
“layers”, so that the overall Hamiltonian acts as Hc on the c-layer, with constraints
between the layers that force low-energy configurations of the q-layer to be in the
auxiliary |0〉 “blank” state, except between pairs of |L〉 and |R〉 states appearing in
the same row of the c-layer, where the q-layer acts like Hq on that line segment.

To this end, define the local Hilbert space to be H := Hc ⊗ (He ⊕ Hq) '
CC⊗(|0〉⊕CQ). The Hamiltonian H is defined in terms of the two-body interactions
as follows:

hcol
j, j+1 =hcol

c ⊗ 1
( j)
eq ⊗ 1

( j+1)
eq (112a)

hrow
i,i+1 =hrow

c ⊗ 1(i)
eq ⊗ 1

(i+1)
eq (112b)

+ 1(i)
c ⊗ 1

(i+1)
c ⊗ hq (112c)

+ |L〉〈L|(i)c ⊗ (1eq − | 〉〈 |)(i) ⊗ 1(i+1)
ceq (112d)

+ (1c − |L〉〈L|c)
(i) ⊗ | 〉〈 |

(i)
⊗ 1(i+1)

ceq (112e)

+ 1(i)
ceq ⊗ |R〉〈R|

(i+1)
c ⊗ (1eq − | 〉〈 |)(i+1) (112f)

+ 1(i)
ceq ⊗ (1c − |R〉〈R|c)

(i+1) ⊗ | 〉〈 |
(i+1)

(112g)

+ 1(i)
c ⊗ |0〉〈0|

(i)
e ⊗ |R〉〈R|

(i+1)
c ⊗ 1(i+1)

eq (112h)

+ |L〉〈L|(i)c ⊗ 1
(i)
eq ⊗ 1

(i+1)
c ⊗ |0〉〈0|(i+1)

e (112i)

+ 1(i)
c ⊗ |0〉〈0|

(i)
e ⊗ (1c − |L〉〈L|c)

(i+1) ⊗ (1eq − |0〉〈0|e)
(i+1) (112j)

+ (1c − |R〉〈R|c)
(i) ⊗ (1eq − |0〉〈0|e)

(i) ⊗ 1(i+1)
c ⊗ |0〉〈0|(i+1)

e , (112k)

where 1c, 1eq and 1ceq are the identity operators on the corresponding Hilbert
spaces. The Hamiltonian can be understood as follows. (112d) and (112e) force a
| 〉 in the q-layer whenever there is an |L〉 in the c-layer. (112f) and (112g) do the
same with | 〉 and |R〉. (112h) and (112i) force non-blank to the left and right of
an |R〉 or |L〉, respectively. Finally, (112j) and (112k) force a non-blank to the left
and right of any other non-blank in the q-layer, except when a non-blank coincides
with an |L〉 or |R〉 in the c-layer.

Since hc is a tiling Hamiltonian, (112b) is by assumption diagonal in the
canonical product basis onH⊗2

c (and acts trivially on (Hq ⊕ He)⊗2). Meanwhile,
(112c) is block-diagonal with respect to the four one-dimensional subspaces ofH⊗2

q

spanned by products of | 〉 and | 〉, together with the orthogonal complement
thereof. ((112c) acts trivially onH⊗2

c .) The remaining terms are manifestly block-
diagonal with respect to both of these decompositions simultaneously. The overall
Hamiltonian is therefore block-diagonal w.r.t. the product basis on the c-layer.
Hence there is a basis of eigenstates of H of the form |T 〉c |ψ〉q, where |T 〉c is a
product state in the canonical basis of the c-layer. This proves the first claim of the
Lemma.
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For a given classical tile configuration |T 〉c on the c-layer, let L denote the set
of all horizontal line segments ` that lie between an |L〉 and an |R〉 (inclusive) in the
classical configuration |T 〉c. Let LL denote the set of all horizontal line segments
between an L and the right boundary of the region, and similarly LR the segments
between the left boundary and an R.

Consider first a state |ψ0〉q consisting of the ground state of Hq(`) in the q-layer
for each ` ∈ L, a 0-energy eigenstate of Hq(`) in the q-layer for each ` ∈ LL ∪ LR,
and |0〉 everywhere else in the q-layer. The associated energy 〈T |c 〈ψ0|q |H| |T 〉c |ψ0〉q
is clearly 〈T |Hc|T 〉 +

∑
`∈L λ0(|`|). Indeed 〈T |Hc|T 〉 is the contribution of (112a)

and (112b), and
∑
`∈L λ0(|`|) the contribution of (112c), the rest of the terms being 0

as |T 〉c |ψ0〉q satisfies all constraints imposed by (112d) to (112k).
To see that this is the lowest energy state for a given classical configuration on

the c-layer, we define a signature σ for each state in the canonical basis of the q-
layer. The local Hilbert space at site i in the q-layer isHe⊕Hq, so we assign σi = 0
for states in He and σi = 1 for states in Hq. By collecting computational basis
states with the same signature, we decomposeHq into a direct sum of subspaces
with given signature, ⊗

i∈Λ

H (i)
q '

⊕
σ

Hσ. (113)

The overall Hamiltonian H is block-diagonal with respect to this decomposition, so
all eigenstates |T 〉c |ψ〉q have a |ψ〉q part with well-defined signature. We distinguish
two cases:

Case 1: σi = 1 for all i ∈ ` ∈ L. Consider a q-layer state |ψσ〉q with this
signature; that is, a state supported on the corresponding Hilbert space Hσ. Since
all Hamiltonian terms (112d) to (112k) are ≥ 0, and for all ` ∈ L the (112c)
contribution is ≥ λ0(|`|), we easily get that 〈T |c 〈ψσ|q H |T 〉c |ψσ〉q ≥ 〈T |Hc|T 〉 +∑
`∈L λ0(|`|), with equality iff |ψσ〉q = |ψ0〉q.

Case 2: There exists i ∈ ` ∈ L such that σi = 0. Let j be the rightmost position
in ` such that σ j = 0. If this is the right or left end of `, then the state picks up an
energy contribution of 1 from (112d) or (112f). If it is the position next to the right
or left end, it picks up a contribution of 1 from from (112h) or (112i). Finally, if it is
not one of the above cases, it acquires a contribution of 1 from (112k). In all cases,
the contribution is ≥ λ0(|`|) since λ0(|`|) < 1 by assumption for a Gottesman-Irani
Hamiltonian (see Definition 50). As all terms in the Hamiltonian apart from (112a)
and (112b) are positive-semidefinite, and the contribution from (112a) and (112b)
is 〈T |Hc|T 〉, we have that 〈T |c 〈ψσ|q H |T 〉c |ψσ〉q ≥ 〈T |Hc|T 〉 +

∑
`∈L λ0(|`|), which

completes the proof of the Lemma. �

With this, we can now prove the following:
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Lemma 52 (Robinson + Gottesman-Irani Hamiltonian)
Let hrow

c , hcol
c ∈ B(CC ⊗ CC) be the local interactions of the tiling Hamiltonian

associated with the modified Robinson tiles. For a given ground state configuration
(tiling) of Hc, let L denote the set of all horizontal line segments of the lattice that
lie between down/right-facing and down/left-facing red crosses (inclusive). Let
hq ∈ B(CQ ⊗CQ) be the local interaction of a Gottesman-Irani Hamiltonian Hq(r),
as in Definition 50.

Then there is a Hamiltonian on a 2D square lattice of width L and height H
with nearest-neighbour interactions hrow, hcol ∈ B(CC+Q+1 ⊗CC+Q+1) such that, for
any L,H, the ground state energy λ0(HΛ(L×H)) on a lattice of size L×H is contained
in the intervalblog4(L/2)c∑

n=1

(⌊ H
22n+1

⌋ (⌊ L
22n+1

⌋
− 1

))
λ0(4n) ,

blog4(L/2)c∑
n=1

((⌊ H
22n+1

⌋
+ 1

) ⌊ L
22n+1

⌋)
λ0(4n)


(114)

Proof Construct the Hamiltonian H as in Lemma 51, with the red down/right- and
down/left-facing crosses from the modified Robinson tile set as the designated |L〉
and |R〉 states.

The tiling and QTM Hamiltonians satisfy the requirements of Lemma 51,
implying that the lowest energy for a given c-layer configuration is attained by
putting |0〉’s in the q-layer everywhere except in the segments between an |L〉 and
an |R〉, inclusive. In the modified Robinson tiling, these are exactly the 4n-segments.
Therefore, to bound the ground state energy, we can restrict our attention to classical
configurations of Robinson tiles (not necessarily valid tilings) with an eigenstate
of hq along each 4n-segment.

By Lemma 48, the minimum energy of an eigenstate with a defect-free Robin-
son tiling on the L × H rectangle, E(0 defects) =

∑
`∈L λ0(|`|), is contained in the

interval (114). (Recall that we only use the red 4n-segments to define line-segments
on which hq acts non-trivially in the ground state.)

On the other hand, since each defect in the classical tile configuration con-
tributes energy at least 1 from the hc term, Lemma 49 implies that the energy of an
eigenstate with d defects on the L × H rectangle is at least

E(d defects) = d+
∑
`∈L

λ0(|`|) ≥ d+

blog4(L/2)c∑
n=1

(⌊ H
22n+1

⌋ (⌊ L
22n+1

⌋
− 1

)
−2d

)
λ0(4n). (115)

Since
∑∞

n=1 λ0(4n) < 1/2 by assumption for a Gottesman-Irani Hamiltonian (see
Definition 50), for all d > 0 this is in turn lower-bounded by

E(d defects) ≥
blog4(L/2)c∑

n=1

(⌊ H
22n+1

⌋ (⌊ L
22n+1

⌋
− 1

))
λ0(4n) . (116)
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The Lemma follows. �

We can now apply this Lemma to construct a Hamiltonian hu with ground state
energy that is undecidable even with a constant promise on the energy gap.

Proposition 53 (Diverging g.s. energy)
Choose any β ∈ Q, as small as desired. There exists a family of interactions
hrow

u (n), hcol
u (n) ∈ B(CU ⊗ CU) and h(1)

u (n) ∈ B(CU) with operator norm ≤ 1/2
and algebraic (hence computable) matrix entries, and there exist strictly positive
(uncomputable) functions δ1(n), δ2(n) such that either λ0(HΛ(L)

u (n)) ≤ −L β/2 for
all L, or λ0(HΛ

u (n)) ≥ L2 δ2(n) − L δ1(n) for all L ≥ L0(n) (L0(n) uncomputable),
but determining which is undecidable.

Moreover, the interactions can be taken to have the following form: h(1)
u (n) =

(α2(n) + β)1 where α2(n) is an algebraic number ≤ β, hcol
u (n) is {0, β}-valued and

independent of n and

hrow
u (n) = β

(
A + eiπϕB + eiπ2−|ϕ|C

)
+ h.c. (117)

where A ∈ B(CU ⊗CU) is independent of n and has coefficients in Z + 1
√

2
Z, and

B,C ∈ B(CU ⊗CU) are independent of n and have coefficients in Z. (Recall that
ϕ is defined as the rational number whose binary fraction expansion contains the
digits of n in reverse order after the decimal.)

Proof Let hq0 be the Hamiltonian obtained by applying Theorem 32 with K = 3
to the QTM from Theorem 10 with a proper reversible universal TM dovetailed
after it. The Hamiltonian hq(n) in Lemma 52 will then be hq(n) = hq0(n) + |>〉〈>| ⊗

1 + 1 ⊗ |>〉〈>|, where |>〉 is the halting state of the universal TM. Clearly, hq has
the form given in part (vi) of Theorem 32. We claim that this Hamiltonian is a
Gottesman-Irani Hamiltonian according to Definition 50.

The only requirements in Definition 50 that are not immediate are those con-
cerning the minimum eigenvalues restricted to various subspaces. Recall the
construction of the computational history state Hamiltonian from Theorem 32. In
the initialisation sweep, the normally sweeps once from left-to-right along the
chain, turns around at the to become a , which sweeps once right-to-left
back along the chain. The superpositions over the standard basis states in these
sequences contain no illegal pairs as long as the other tracks are initialised correctly.
However, if the is missing, then when the reaches the right end of the chain,
there is no forward transition out of the resulting state. Thus the uniform superpo-
sition over the first part of the initialisation sweep, involving just the left-to-right
sweep, is an eigenstate of hq. Furthermore, it has 0 energy if the rest of the tracks
are correctly initialised. Similarly, if the is missing, there is no further forward
transition once the reaches the left end of the chain, and the superposition over
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the full initialisation sweep is a 0-energy eigenstate of hq. Thus condition (v) of
Definition 50 is satisfied.

Let |ψ〉 = 1
√

T

∑T
t=1 |φt〉 |ψt〉 be the normalised computational history state for

the QTM, where T = Ω(|Σ × Q|r) and |ψt〉 is the state encoding the t’th step of the
computation. Note that |ψ〉 is a zero-energy eigenstate of Hq0, and at most one |ψt〉

can have support on the state |>〉 that represents the halting state of the universal
TM, by Theorem 32. For r > 2, we have

λ0(r) ≤ 〈ψ|Hq(r)|ψ〉 = 〈ψ|

∑
i

h(i,i+1)
q0 (n) + |>〉〈>|i ⊗ 1i+1 + 1i ⊗ |>〉〈>|i+1

 |ψ〉
=

T∑
t=1

1
T
〈ψt|

∑
i

|>〉〈>|i ⊗ 1i+1 + 1i ⊗ |>〉〈>|i+1

 |ψt〉 ≤ O
(

1
|Σ × Q|r

)
,

(118)

thus
∑∞

m=1 λ0(4m) < 1/2. The remaining conditions (iii) and (iv) of Definition 50
are therefore also satisfied. Hence hq(n) is a Gottesman-Irani Hamiltonian, as
claimed.

Let h̃row
u (n), h̃column

u (n) be the local interactions obtained by applying Lemma 52
to hq(n). Let N(n) := max{‖h̃row

u (n)‖, ‖h̃column
u (n)‖}, and fix any rational number

β ≤ 1
N(n) for all n. Such a β exists by the form of hq guaranteed by part (vi)

in Theorem 32 and the definition of h̃row
u (n), h̃column

u (n) based on hq. Define the
normalised local interactions hrow

u (n) := βh̃row
u (n), hcolumn

u (n) := βh̃column
u (n).

For any r ≥ |n| + 6, the QTM from Theorem 10 has sufficient tape and time
to finish, and we can be sure that the reversible universal TM starts. Consider
first the case in which the universal TM does not halt on input n. In that case, for
all r ≥ |n| + 6 we have that λ0(r) = 0. Let L0(n) denote the minimal L such that
the modified Robinson tiling of Λ(L) necessarily contains a 4m-segment of size
4m ≥ |n| + 6. If we take L ≥ L0(n), thanks to Lemma 52 we can bound the ground
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state energy for HΛ(L)(n):

λ0(HΛ(L)) ≤ β
∑

1≤r≤|n|+6
r=4m, m∈N

⌊ L
2r

⌋ (⌊ L
2r

⌋
+ 1

)
λ0(r) (119a)

= βL2
[ ∑

1≤r≤|n|+6
r=4m, m∈N

λ0(r)
4r2

]
+ βL

[ ∑
1≤r≤|n|+6

r=4m, m∈N

λ0(r)
2r

(
1 − 2 frac

( L
2r

))]

− β

[ ∑
1≤r≤|n|+6

r=4m, m∈N

λ0(r) frac
( L
2r

) (
1 − frac

( L
2r

))]
(119b)

=: β
(
L2α2(n) + Lα1(n, L) − α0(n, L)

)
, (119c)

where frac(x) := x− bxc denotes the fractional part of x. Since the number of terms
in the sum is bounded by |n| and for any fixed r the quantity λ0(r) is an eigenvalue
of a finite-dimensional matrix, α2(n) is an algebraic number. Moreover, α2(n) ≤ β.

We now shift the ground state energy by adding β1 ⊗ 1 to hrow and adding a
1-body term β (1 − α2(n))1. Overall, this adds the Hamiltonian

∑
rows

∑
c∈cols(β1c ⊗

1c+1) +
∑

i∈Λ(L) β(1 − α2(n))1i = −β(L2α2(n) + L)1Λ(L). Note that this commutes
with all the other terms in the Hamiltonian. After this shift, and using the fact that
α0(n, L) ≥ 0, the ground state energy in the non-halting case becomes

λ0(HΛ(L)) ≤ βL (α1(n, L) − 1) ≤ −
β

2
L , (120)

since

α1(n, L) =
∑

1≤r≤|n|+6
r=4m, m∈N

λ0(r)
2r

(
1 − 2 frac

( L
2r

))
≤

∑
1≤r≤|n|+6

r=4m, m∈N

λ0(r)
2r
≤

1
2
. (121)

Consider now the case in which the universal TM does halt on input n. Take
r of the form 4m large enough so that the TM has sufficient time and tape to halt.
Let r1(n) denote the minimal such r. The computational history state encoding the
evolution necessarily has support on |>〉 and is the unique ground state of hq0 ≥ 0.
Thus λ0(r) > 0 and by Lemma 52 the ground state energy λ0(HΛ(L)) is, after the
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energy shift, lower-bounded by

λ0(HΛ(L)) ≥ −βL2α2(n) − βL + β
∑

1≤r≤|n|+6
r=4m, m∈N

⌊ L
2r

⌋ (⌊ L
2r

⌋
− 1

)
λ0(r)

+ β
∑

r≥r1(n)
r=4m, m∈N

⌊ L
2r

⌋ (⌊ L
2r

⌋
− 1

)
λ0(r) (122a)

= βL2


∑

r≥r1(n)
r=4m, m∈N

λ0(r)
4r2

 − βL

1 +
∑

|r|≤n+6 or r≥r1(n)
r=4m, m∈N

λ0(r)
2r

(
2 frac

( L
2r

)
+ 1

)
+ β


∑

|r|≤n+6 or r≥r1(n)
r=4m, m∈N

λ0(r) frac
( L
2r

) (
frac

( L
2r

)
+ 1

) (122b)

=: β
(
L2 δ2(n) − L δ1(n, L) + δ0(n, L)

)
(122c)

≥ β
(
L2 δ2(n) − L δ1(n)

)
, (122d)

where

δ1(n) :=

1 +
∑

|r|≤n+6 or r≥r1(n)
r=4m, m∈N

3λ0(r)
2r

 ≥ δ1(n, L) , (123)

and δ2(n) > 0, since in the halting case λ0(r) > 0 for all r ≥ r1(n).
Summarizing, the ground state energy of HΛ(L) in the non-halting case is

bounded by

λ0(HΛ(L)) ≤ −L
β

2
(124)

whereas in the halting case we have the bound

λ0(HΛ(L)) ≥ L2 δ2(n) − L δ1(n). (125)

The Proposition follows from undecidability of the Halting Problem. �

The following corollary follows immediately by letting L(n) be the minimal L
in Proposition 53 such that, in the halting case, L2δ2(n) − Lδ1(n) ≥ 1. This will be
useful shortly.

Corollary 54 (Undecidability of g.s. energy with promise) There exists a fam-
ily of interactions hrow

u (n), hcol
u (n) ∈ B(CU ⊗CU) and h(1)

u (n) ∈ B(CU) with operator
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norm ≤ 1/2 and algebraic (hence computable) matrix entries, and an (uncom-
putable) function L(n), such that either λ0(HΛ(L)

u (n)) ≤ 0 for all L, or λ0(HΛ
u (n)) ≥ 1

for all L ≥ L(n), but determining which is undecidable. Moreover, the interactions
can be taken to have the same form as in Proposition 53.

Undecidability of the ground state energy density is now immediate from
Proposition 53 by the definition Eρ := limL→∞ λ0(HΛ(L))/L2 of the ground state
energy density. We restate this result here for convenience:

Theorem 5 (restated) Let d ∈ N be sufficiently large but fixed, and consider
translationally-invariant nearest-neighbour Hamiltonians on a 2D square lattice
with open boundary conditions, local Hilbert space dimension d, algebraic (hence
computable) matrix entries, and local interaction strengths bounded by 1. Then
determining whether Eρ = 0 or Eρ > 0 is an undecidable problem. �

6.2 From g.s. energy density to spectral gap
We are finally in a position to prove our main result: undecidability of the spectral
gap, which we restate here for convenience. Recall that for each natural number
n, we define ϕ = ϕ(n) to be the rational number whose binary fraction expansion
contains the digits of n in reverse order after the decimal.1

Theorem 3 (restated) For any given universal Turing Machine UTM, we can
construct explicitly a dimension d, d2 × d2 matrices A, A′, B,C,D,D′,Π and a
rational number β which can be as small as desired, with the following properties:

(i). A is diagonal with entries in Z.

(ii). A′ is Hermitian with entries in Z + 1
√

2
Z,

(iii). B,C have integer entries,

(iv). D is diagonal with entries in Z,

(v). D′ is hermitian with entries in Z.

(vi). Π is a diagonal projector.

For each natural number n, define:

h1(n) = α(n)Π, α(n) ≤ 2 β an algebraic number
hcol(n) = D + βD′, independent of n

hrow(n) = A + β
(
A′ + eiπϕB + e−iπϕB† + eiπ2−|ϕ|C + e−iπ2−|ϕ|C†

)
.

Then:
1The reverse order being an unimportant artefact of the way we constructed the phase-estimation

QTM in Section 3.
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(i). The local interaction strength is bounded by 1, i.e.
max(‖h1(n)‖, ‖hrow(n)‖, ‖hcol(n)‖) ≤ 1.

(ii). If UTM halts on input n, then the associated family of Hamiltonians {HΛ(L)(n)}
is gapped in the strong sense of Definition 1 and, moreover, the gap γ ≥ 1.

(iii). If UTM does not halt on input n, then the associated family of Hamiltonians
{HΛ(L)(n)} is gapless in the strong sense of Definition 2. �

Proof We assign a Hilbert spaceH (i) := |0〉 ⊕ Hu ⊗Hd ' C ⊕C
U ⊗CD to each

site i ∈ Λ, where |0〉 denotes the generating element ofC. Let h(i, j)
u be the two-body

interactions obtained in Corollary 54 (keeping the one-body term h(i)
u (n) separate,

for later convenience).
Let hd be the two-body interaction of any nearest-neighbour Hamiltonian Hd

with 0 ground state energy whose spectrum becomes dense in the thermodynamic
limit (cf. Definition 2): limL→∞ spec HΛ(L)

d → [0,∞). (For example [LSM64], we
can take D = 2 and hd to be the critical XY-model hrow = σx ⊗σx +σy ⊗σy +σz ⊗

1 + 1 ⊗ σz along the rows, where σx,y,z are the Pauli matrices, with no interactions
along the columns.) We normalise the interaction strength such that ‖hd‖ ≤

1
2 .

Define the Hamiltonian H(n) in terms of its two-body and one-body interactions
h(n) as follows (with α(n) = α2(n), Π = Πud):

h(i, j)(n) := |0〉〈0|(i) ⊗ Π
( j)
ud + Π

(i)
ud ⊗ |0〉〈0|

( j) (126a)

+ 1
(i)
u ⊗ 1

( j)
u ⊗ h(i, j)

d , (126b)

+ h(i, j)
u (n) ⊗ 1(i)

d ⊗ 1
( j)
d (126c)

h(i)(n) :=β(1 − α2(n))Π(i)
ud. (126d)

Clearly, both have norm bounded by 1. Note that we can also rescale hd so that
‖hd‖ ≤ β.

As in Lemma 51, 1u,1d denote the identity operators on Hu,Hd, and Πud

denotes the projection ofH onto itsHu ⊗Hd subspace. We decompose the global
Hamiltonian in the square Λ(L) as HΛ(L) =: H̃0 + H̃d + H̃u, where H̃0, H̃d, H̃u are
defined by taking the sum over sites separately for the expressions in (126a), (126b),
and (126c) + (126d), respectively. Note that the three terms commute with each
other and

spec H̃d = spec Hd , spec H̃u = {0} ∪ spec Hu , spec H̃0 ⊂ Z≥0 (127)

Let us analyze the spectrum of H(Λ(L) in both the halting and non-halting cases.
First consider the halting case, and take L ≥ L(n) as defined in Corollary 54. In
that case, H̃d, H̃u ≥ 0 and hence HΛ(L) ≥ H̃0. Since |0〉⊗Λ(L) is the unique ground
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state of H̃0, with energy 0, and is also a 0-enery state for HΛ(L), we have that the
spectral gap of HΛ(L) is at least as large as the spectral gap of H̃0, which is 1.

In the non-halting case, it is clear from the structure of the Hamiltonians (126)
that

spec H̃u + spec H̃d ⊂ spec HΛ(L) ⊂ spec H̃u + spec H̃d + spec H̃0 . (128)

Since spec H̃0 is contained in the set of non-negative integers, spec H̃d ⊂ [0,+∞)
and converges in the thermodynamic limit to [0,+∞), and λ0(H̃u) ≤ 0 for all L by
(127), statement (iii) in the Theorem follows. �

6.3 Periodic boundary conditions
The previous section proves Theorem 3 for open boundary conditions. This is
arguably the most important type of boundary conditions in the context of the
spectral gap problem. Both physically, because periodic boundary conditions rarely
occur in real physical systems, and mathematically, because the thermodynamic
limit is better behaved. Nonetheless, our result can also be extended to other types
of boundary condition. Extending it to fixed boundary conditions is trivial, so
we omit the argument. In this section, we consider the more interesting case of
periodic boundary conditions.

To extend our result to periodic boundary conditions, we add to the modified
Robinson tiles of Section 5 the three new tile types shown in Figure 10.

Figure 10: Boundary tiles for periodic boundary condition construction.

Let hc be the standard tiling Hamiltonian of the modified Robinson tiles. We
consider the Hamiltonian given by 3hc plus the weighted terms given by the
following tables (where ·� stands for any modified Robinson tile):

Right tile
·� –� |� +�

L
ef

tt
ile ·� 0 5 0 5

–� 5 0 5 1
|� 0 5 5 5
+� 5 1 5 5

Tile above
·� –� |� +�

Ti
le

be
lo

w ·� 0 0 5 5
–� 0 5 5 5
|� 5 5 0 1
+� 5 5 1 5

(129)

The resulting weighted tiling Hamiltonian h̃c effectively turns the weighted
tiling problem for an L × L square region with periodic boundary conditions (a
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torus), into the standard tiling problem for the modified Robinson tile set on a
square region with open boundary conditions of size (L − 1) × (L − 1):

Lemma 55 (Periodic to open b.c.) For any L ∈ N, all minimum weight tilings
of an L × L torus using the tile set described above consist of a single +� tile at
an arbitrary location, a complete row of –� tiles extending horizontally from the
+�, a complete column of |� tiles extending vertically from the +�, and a valid
modified Robinson tiling of the remaining (L − 1) × (L − 1) region.

Proof The tilings described in the statement of the Lemma have total weight +4
(coming from the |� and –� tiles adjacent to the +�). We must show that all
other tilings have higher weight. First, consider the case in which only modified
Robinson tiles are used. By the aperiodicity of Robinson tiling, there are at least
two mismatching tiles in an L×L torus, one in the vertical and one in the horizontal
direction. Since we multiplied the original modified Robinson tiling Hamiltonian
Hc by a factor of 3, each of these mismatches has weight 3 and we get a total
weight of 6. Thus any weight < 5 tiling must contain at least one –�, |� or +�.

If the tiling contains any tile other than –� or +� to the left or right of a –�,
it has weight ≥ 5. Thus, in any weight ≤ 5 tiling, –� tiles can only appear in
complete rows of –� and +� tiles. The analogous argument for columns implies
that |� tiles can only appear in complete rows of |� and +� tiles. A +� adjacent
to a modified Robinson tile has weight +5, so +� tiles can only appear where such
rows and columns meet. Moreover, adjacent –� and |� tiles have weight +5, so
all such rows and columns must meet at +� tiles.

Therefore, any tiling with weight < 5 must consist of some non-zero number
of rows of –� tiles and columns of |� tiles meeting at +� tiles, with modified
Robinson tiles everywhere else. Each intersection of a –� row with a |� column
at a +� contributes weight +4, so the weight is minimised by having just one such
row and column.

Finally, the remaining region to be filled with modified Robinson tiles is a
square of size (L − 1) × (L − 1). It contributes weight 0 iff, in addition, they form a
valid tiling. �

Using this weighted tile set in Lemma 51, the proofs of Lemmas 51 and 52,
Proposition 53, and Corollary 54 go through unchanged for square lattices with
periodic boundary conditions. Undecidability of the ground state energy density
(Theorem 5), and undecidability of the spectral gap (Theorem 3) follow easily.
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