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Abstract

We prove the existence of a non-empty class of finitely presented groups with the following
property: If the fundamental group of a compact Riemannian manifold M belongs to this class
then there exists a constant ¢(M) > 1 such that for any sufficiently large x the number of

contractible closed geodesics on M of length not exceeding z is greater than c¢(M)?.

In order to prove this result we give a lower bound for the number of contractible closed
geodesics of length £x on a compact Riemannian manifold M in terms of the resource-bounded
Kolmogorov complexity of the word problem for m (M), thus answering a question posed by

Gromov.

1. Main result

In [10] Gromov noted that if the fundamental group of a compact Rieman-
nian manifold has an unsolvable word problem, then the manifold has infinitely
many contractible closed geodesics. His paper does not contain a proof of this
result but it is not difficult to prove this result by contradiction using, for ex-
ample, the following idea: Assume that the set of contractible closed geodesics
on M is finite. This implies the existence of the following algorithm deciding
whether or not a given word w is trivial in 7y (M) (thus, giving a contradiction
to the assumption that the word problem is algorithmically unsolvable): Realize
the word w by a closed curve 7, on M. Let L be an integer number such that
any contractible closed geodesic on M can be contracted to a point by a homo-
topy passing via closed curves of length not exceeding L. This number can be
considered as a constant known to the algorithm (albeit unknown to us). Note
that any contractible closed curve of length not exceeding # can be contracted
to a point by a homotopy passing only via closed curves of length not exceed-
ing max{L, z}. Now the precompactness of the space of piecewise C''-smooth
curves on M of length bounded by any fixed constant and parametrized by the
arc length implies the existence of a trial-and-error algorithm checking whether
or not 7, is contractible. Such an algorithm is described in details in [19] for
the case when M is a non-singular algebraic hypersurface in an Euclidean space
presented as the zero set of a polynomial with algebraic coefficients. The case of
a variety that is non-singular algebraic over the field of real algebraic numbers
and which has an arbitrary codimension in a Euclidean space is quite similar. (A
description of M by a vector of coefficients of a system of defining polynomials
can be regarded as a set of constants used by the algorithm.) Tn this case the
outlined idea of the proof works without any hindrances, and one can prove even
the existence of infinitely many closed geodesics on M which are “deep” local
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minima of the length functional. To deal with an arbitrary compact Riemannian
manifold M consider a smooth algebraic submanifold A of R™ (for a sufficiently
large N) C%-close to an isometrically embedded in R copy of M. Well-known
Nash and Tognoli theorems (cf. [12] and [16]) imply the existence of such a
smooth algebraic submanifold of IR"Y. Moreover, the Tarski-Seidenberg theorem
(cf. [3]) implies that this algebraic submanifold can be defined as the zero set of
a system of polynomials with algebraic coefficients (cf. [6]). Now note that the
argument above implies the existence of infinitely many “deep” local minima of
the length functional on the space of contractible closed curves on A, whence the
existence of infinitely many contractible closed geodesics on M easily follows.

In [11] , Section 5.C, Gromov asked how one can estimate the number of
contractible closed geodesics of length < [ on a compact Riemannian manifold
in terms of its fundamental group. Proposition 2, stated in section 2 and proven
in section 3 below, provides an answer for this question. To obtain a quantitaive
version of the argument above we consider the resource-bounded Kolmogorov
complexity of the word problem for the fundamental group of the Riemannian
manifold instead of mere algorithmic solvability /unsolvability of the word prob-
lem. (The notion of resource-bounded Kolmogorov complexity and its basic
properties are reviewed at the beginning of section 2. In particular, we will
need the Barzdin theorem ([2] , [22] , Theorem 2.5) which can be regarded as
a quantitative version of the algorithmic unsolvability of the halting problem
for Turing machines. Recall that, informally speaking, a resource-bounded Kol-
mogorov complexity of a decision problem is the minimal number of bits of oracle
information required to solve the decision problem for all instances of length < [
using amount of time and/or space bounded by prescribed function(s) of I and
regarded as a function of [.) Proposition 2 provides a lower bound for the num-
ber of contractible closed geodesics of length not exceeding a given constant on
a given compact Riemannian manifold M in terms of time-bounded Kolmogorov
complexity of the word problem for w1 (M). The following theorem is almost a
direct corollary of Proposition 2 and the theorem of Barzdin mentioned above.
It will be proven in section 2. To state it we need the following definition. An
increasing function 3 : Rt — IR is called effectively majorizable if there ex-
ists a Turing computable function o : IN — IN such that for any integer n
B(n) £ a(n). (For example, the function 3(z) = exp(...(exp(z))) ([x] +1) times
is effectively majorizable.)

THEOREM 1.  There exists a non-empty class of finitely presented groups X
with the following property: If M is a compact Riemannian manifold such that
w1 (M) € X then there exists a constant ¢(M) > 1 such that for any sufficiently
large | the number N(l) of non-constant contractible closed geodesics of length
< 1 on M satisfies the inequality N(I) > ¢(M)'. Moreover, for any increas-
ing effectively majorizable function 3 there exists a number (M, 3) such that
for any L 2 I(M, 3) there exist at least [c(M)L] contractible closed geodesics
Y1+ e s V()2 of length < L with the following property: For any i, v; cannot
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be connected by a homotopy passing through curves of length < B(length(y;))
neither with a constant curve nor with v; for any j # 1.

Remarks:

1. Although the effective majorizability is a very mild restriction on 3, it
cannot be removed. It is not difficult to see that for any M there exists an
increasing function Gy such that any contractible closed geodesic v on M can
be contracted to a point by a homotopy passing only through closed curves of
length < Bar(length(y)). (However, if the word problem for the fundamental
group of M is unsolvable, then there is no effectively majorizable function 3y
with this property. This fact was first observed by Gromov.)

2. Informally speaking, in our proof of Theorem 1 the geodesics 4; arise as
obstructions to fast solvability of the word problem for 7y (M). The mentioned
exponential lower bound for their number is due to the fact that not only the
word problem for groups from the class X is algorithmically unsolvable, but this
problem is unsolvable in recursive time using any amount of oracle information
which grows subexponentially with the length of considered words.

3. Note that the constant ¢(M) does not depend on !

4. Assume that instead of the last statement of Theorem 1 one wants to
prove only the following weaker statement: For some (arbitrary) fized increasing
effectively majorizable function 3 for all sufficiently large L there are [c(M)%]
contractible closed geodesics v1,. .., v (ar)r) of length < L such that, for any 1,
v; can be connected with neither a constant geodesic nor with +; for some j # ¢
by a homotopy passing only through curves of length < 3(length(v;)). Then one
can find also groups with solvable word problem for which this weaker statement
is true.

5. Tt will be clear from the proof that the number of closed geodesics of length
<l in any fixed homotopy class also grows at least exponentially with .

6. Our proof of Theorem 1 can be used to write down specific examples of
finite presentations of groups from X.

2. Time-bounded Kolmogorov complexity of the word problem for
the fundamental group and contractible closed geodesics.

Recall that the resource-bounded Kolmogorov complexity of a finite binary
sequence can be defined as follows (for more details see [14] , [22], [7], [4] , [17]
): Consider an universal Turing machine T' with an input tape, worktape(s) and
an output tape. (We assume that the alphabet consists of three symbols : 0,
1 and the blank.) Tet us say that a binary sequence x can be computed from
a binary sequence y in time ¢t and space s if T produces x on the output tape
using not more than s squares on worktapes and in not more than ¢ steps, when
it starts its work with y on the input tape and empty worktapes and the output
tape. The minimal length of a binary sequence y such that z can be computed
from y in time ¢ and space s will be denoted by K;’s(x). It is known that there
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exists an optimal universal Turing machine U with two worktapes such that for
any universal Turing machine 7" and any binary sequence x

(*) I([c]onst t Int,const S(x) i I(;,S(x) + CORSt,

where const denote constants depending only on U and T (cf. [17], p.240, [14] ).

Now let ¢(n), s(n) be any increasing functions from IN to IN. For any subset
P C IN we can regard its characteristic function kp as an infinite sequence of
0’s and 1’s. Denote this sequence by S(P) and the sequence formed by the first
n digits of S(P) by S (P). Now consider the function K[t](n)’s(n)(s(”)(P)).
This function slightly depends on the choice of U. To avoid this problem
we can introduce the following equivalence relations on the sets of functions
from IN to IN: for two time bounds #; and t5, t1 =gme to if, for any n,
max{t1(n)/t2(n), t2(n)/ti(n)} < const(max{Inti(n), Inty(n)})*"*; for two
space bounds si(n), s2(n) s1 =space S2 if max{si(n)/s2(n), s2(n)/si(n)} <
const, where const denotes constants not depending on n. We will regard the
functions ¢(n), s(n) as representatives of the corresponding equivalence classes.
Also consider the equivalence relation defined as follows: f =g, ¢ if and only
if there exists ¢ € IN such that, for any n, |f(n) — g(n)] £ ¢. Consider the
union of equivalence classes with respect to the relation =g, of all functions

K[t](n)’ g(n)(S(”)(P)), where ¢ and 5 run over all functions from the equivalence
classes =¢;me of t(n) and =;,4cc Of s(n), correspondingly. The formula (*) shows
that the resulting set of functions does not depend on the particular choice of
U. Tt will be denoted K"*(P,n) and called resource-bounded Kolmogorov com-
plexity of the membership in P problem. Sometimes we will use this term for
specific functions from this class. If one does not impose any bounds on time
(equivalently, we can formally let ¢ be equal to oo), or on space, or on neither
time, nor space, then one obtains, correspondingly, space-bounded Kolmogorov
complezxity, time-bounded Kolmogorov complexity or just Kolmogorov complexity
of the membership in P problem. In this paper we will be mostly interested
in the time-bounded Kolmogorov complexity. From now on we will sometimes
omit the superscript indicating the infinite space bound in the notation for the
time-bounded Kolmogorov complexity.

The notion of time-bounded Kolmogorov complexity of the word problem
of a finitely presented group G can be introduced as follows: First, fix a finite
presentation F' of . Consider a numeration of the set of all words in generators
of G and their inverses by consecutive integers such that numbers assigned to
words increase with the length of words and such that words of the same length
are numerated using a lexicographic order. The set of words representing the
trivial element of G can be now regarded as a recursively enumerable subset Np
of IN.

Consider the time-bounded Kolmogorov complexity of the membership in Np
problem K'(Ng, n). Denote by Gen the number of generators in F. Now con-
sider the class of functions K%, = K'°l8cenl(Np, (2Gen)” +1). (We substitute
(2Gen)™ + 1 for the argument of this function because the first (2Gen)” + 1
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natural numbers correspond to the words of length < n of GG, where Gen is the
number of generators of GG in the considered finite presentation. The purpose of
taking the composition of ¢ with [log,.,] is to reexpress the time bound which is
supposed to be a function of the length of the word as a function of the number
of the word in the considered numbering.) We will call this class of functions
of n time-bounded Kolmogorov complexity of the word problem for GG in finite
presentation F. The union of all such classes K% over the set of all finite presen-
tations F of G will be called time-bounded Kolmogorov complexity of the word
problem for GG and denoted by K'(Word(G), n). (We will also use the same
term for any specific function from this set of functions.) Observe, however, that
if F1 and Fy are two finite presentations of the same group, then there exists a
constant ¢ such that for any function ¢ € K}l there exists a function ¢ € K;E
such that ¢1(n) < @2(cn) for every n. So, informally speaking, all functions in
the class K'(Word((), n) have similar growth. Space-bounded or, more gener-
ally, resource-bounded Kolmogorov complexity of the word problem for a finitely
presented group can be defined in a similar way. For any given functions ¢ and
s, K" (Word(G),n) indicates the growth of the minimal number of bits of or-
acle information necessary to solve the the word problem for G for any given
word of length < n in time not exceeding ¢(n) and using the amount of space on
worktapes not exceeding s(n), when n — oo.

Note that for any universal machine U and any natural number ¢ the time-
bounded Kolmogorov complexity K[tj “(z) of a binary sequence z is a Turing
computable function of ¢ and z. (Indeed, we can try one by one all binary
sequences y. For every binary sequence y we can check whether or not z is
computed from y in not more than ¢ steps. However, note that the standard
Kolmogorov complexity K;;'*(z) is not Turing computable!) Hence Theorem
2.5 in [22] implies the following result of Barzdin ( [2] ): There exists a recursively
enumerable set £ C IN and a positive number C'onst such that for any Turing
computable function #(n) the time-bounded Kolmogorov complexity with time
resources bounded by ¢ of the memberhip in F problem is bounded from below
by z2— (see also section 3 of [18] ). (Theorem 2.5 in [22] states that there
exists a recursively enumerable set F and a positive number C'onst such that
for any recursive majorant ® of Kolmogorov complexity of binary sequences
(without any bounds on resources) there exists a constant ¢ such that, for any
n, ®(S")(F)) 2 n/Const — ¢.) The proof of Theorem 2.5 in [22] is constructive.
One can use this proof to write down an explicit (one-tape) Turing machine Tg
such that Tk halts if and only if the input is an element of the set E. (A proof
of a very similar result in [7] (Theorem 9) implies that for any specific Turing
computable function ¢(n) one can construct a recursive set F; C IN such that
the time-bounded Kolmogorov complexity with time resources bounded by ¢ of
the membership in E; problem is bounded from below by n/const. Similarly,
one can use the idea of the proof of Theorem 9 in [7] to find a specific Turing
machine T; such that Fy is its halting set. This remark (together with the proof
of Theorem 1 below) is the basis for Remark 4 after the text of Theorem 1.)
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The classical proof of the algorithmic unsolvability of the triviality problem
for finitely presented groups which can be found in [21] implies that it is possible
to write down explicitly a finite presentation Fg of a group Gg with the following
property: For any number m € IN one can indicate a word w,, € G'g of length
not exceeding consto(logy m + 1) such that wy, = e in Gg if and only if m € E.
(Here constg is a specific constant which can be explicitly found. The appearance
of the logarithm is due to the fact that when m is regarded as an input for the
Turing machine Tg it is presented by a binary sequence of length [log, m]+1.)
Hence for any recursive function ¢ and any function ¢ € K (Word(Gg),n)

é(n) 2 [2wgnu ], where C' > 0 is a constant depending on Fg, ¢ and the choice
of ¢. Therefore, Theorem 1 directly follows from the following Proposition 2:

PrOPOSITION 2. For any compact Riemannian manifold M, any finite pre-
sentation F of w1 (M) and any increasing effectively majorizable function 3 there
erist a constant ¢ > 0, a constant C'r > 0 depending only on F and M, and
a Turing computable function t(n) such that for a certain function k(n) in the

1
class Kt = K&L(Word(mi(M)), n) there erist at least [%] geometrically

distinct non-constant contractible closed geodesics ~; of length not exceeding l on
M such that, for any i, v; is not contractible to a constant loop via closed curves
of length not exceeding B(length(v;)) and for any i, j such that i # j ~; and ~;
cannot be connected by a homotopy passing through closed curves of length not
exceeding B(max{length(y;), length(v;)}).

Important remark. If one is interested in the number of all geometrically
distinct contractible non-constant closed geodesics v of length < [ on M and
not only of those which cannot be contracted to a point by a homotopy passing
only via closed curves of length < B(length(7)), then the lower bound given in
the proposition can be easily improved. For example, it seems very plausible
(although T did not check the details) that the number of contractible closed
geodesics of length <1 is greater than ko(!)/(const 1), where ko(l) is some func-
tion from the equivalence class K!(mD*""", {Word(m(M)), 1). We postpone
the explanation of this statement till the end of section 3 (see Remark after the
proof of Proposition 2).

3. Proof of Proposition 2.

First, we are going to prove Proposition 2 assuming that M is a smooth
semialgebraic submanifold of an Euclidean space defined as the set of solutions
of a system of polynomial equations and inequalities such that all coefficients
of polynomials in this system are algebraic. Thus, M can be represented by
a finite set of data and this representation of M can be used in an algorithm
we are going to describe below. Let 3 be any increasing effectively majorizable
function. For any ! define the equivalence relation =g on the set Geodo(!) of all
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non-constant geometrically distinct contractible closed geodesics of length < 1
M as follows: v1 =g 79 if and only if there exists a homotopy between vy and
v2 passing through curves of length not exceeding 3(I). Denote the number of
equivalence classes of Geodp(l) with respect to this relation by mg ar(l). Propo-
sition 2 can be reformulated as the statement that for any finite presentation
F of m(M) and any increasing effectively majorizable function 3 there exists a
constant ¢, a constant Cr > 0 not depending on 8, and a Turing computable
function ¢ such that elmg ar(l) majorizes the time-bounded Kolmogorov com-
plexity K& (Word(mi(M)), [Cl—F]) of the word problem for 71 (M). To prove this
statement it is sufficient to show the existence of an algorithm which solves the
word problem for 71 (M) for all words of length £ n in a time bounded by a
Turing computable function of n and using as an oracle information descriptions
of one geodesic from every equivalence class of Geodg(const n) with respect to
=5 for some constant const. Here one is allowed to use only Const [ bits of
information in order to represent a geodesic of length < [. (In order to rep-
resent a geodesic v; using not more than Const length(y;) bits of information
we proceed as follows. Let inj(M) denotes the injectivity radius of M. The
geodesic y; will be (approximately) represented by a piecewise-geodesic curve
¥; passing through points po,...,pm from a certain fixed (i.e. not depending
on ¢) (inj(M)/1000)-net NET on M. For any 7 the points p; are defined as
follows: We can assume that ; : [0,length(y;)] — M is parametrized by the
arclength. Let m = [100length(y;)/inj(M)]+1. For every j = 0,1,...,m define
p; as the closest to v; (j%ﬂ) point of NET. For any j, 4; connects p; and
pj+1 via the (unique) shortest geodesic. Note that closed curves 4; will be also
contractible, that length(y;) < 2length(7;), and that, for any 7, v; and 7; can be
connected by a homotopy passing through curves of length not exceeding 101.
To be able to represent points from N FET in a finite form we can assume that
any point x of NET is the closest point of M to some point z* with rational
coordinates in a sufficiently small neighborhood of M in the ambient Euclidean
space. The vector of coordinates of x* will be used to represent x € NET. It
is clear that the amount of information required to represent any point of N ET
(and in particular p;) will not exceed a constant depending on M and on a par-
ticular choice of NET but not on 4;.) Here is a sketch of the algorithm (see
section 4 of [19] for a more detailed description): We realize a given word by
an embedded loop 7. Compute an integer upper bound L* for the length of ~.
For a sufficiently small positive € construct a (finite) e-net N, in the space of
all closed curves of length < 1003(L*) uniformly (with respect to the arclength)
parametrized by ¢ € [0,1]. (The distance between two curves p; and py is, by
definition, dist(p1, p2) = maxsejo,1)distar(pi(t), p2(t)).) The value of ¢ should
be chosen rational and small enough to ensure that if for two closed curves py, p2
dist(p1, p2) < 10¢, then p; and py are homotopic. (It is easy to see that one can
choose any rational € < inj(M)/20. For details see statement (d) in section 2 of
[19] ). Although a value of such ¢ can be computed, instead we can just assume
that such a value is known to the algorithm. (This algorithm must work for a
particular fixed M, so this value is just a constant.) The curves in the net N, can
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be chosen piecewise-geodesic and given by a finite sequence of points from a fixed
sufficiently dense net on M. Then we form a graph Gr. such that its vertices
correspond to curves from N, and two vertices are connected by an edge if the
corresponding curves are 3e-close, and not connected if they are not 5e-close. (If
neither of these two possibilities occur, then the corresponding vertices can be
either connected by an edge or not. Thus, we have a room for an error in approx-
imate computations of distances.) Now find a closed curve p € N sufficiently
close to v as well as curves o; € N, sufficiently close to 7;. Also consider a con-
stant curve o9 € Ne. Tt is clear that v will represent the trivial element of 1 (M)
if and only if the vertex of G'r. corresponding to p is in the same component of
G'r. as one of the vertices corresponding to oy, i = 0,1,...,mg ar(l).

To be more rigorous note that it is entirely obvious from the description of
the algorithm how to realize it by a register machine, say, MRAM (see [8] , p.24,
for the definition of MRAM. MRAM is a straightforward formalization of the
notion of computation in an intuitive sense. For the reader not familiar with
the definition of register machines note that any computer program written in a
programming language such as FORTRAN, PASCAL or C and using only data
of the integer type can be trivially rewritten as a MRAM). On the other hand
any MRAM can be simulated by a Turing machine (with only a constant-factor
space overhead) (cf. [8] , p.29). Thus, the above-described algorithm can be
written as a Turing machine. This completes the proof in the case when M is
isometric to a smooth semialgebraic submanifold of an Euclidean space defined
as a set of solutions of a system of polynomial equations and inequalities such
that all coefficients in this system are algebraic.

Now we are going to prove Proposition 2 in the general case. Note that
by virtue of the Nash embedding theorem (cf. [12]) M can be isometrically
embedded in an Euclidean space. By virtue of the Nash-Tognoli theorem (cf.
[3], [16]) the isometric copy M of M can be approximated arbitrarily closely
in C%-norm by semialgebraic smooth submanifolds of an Euclidean space. The
Tarski-Seidenberg theorem ([3] ) implies that these manifolds can be chosen to
be sets of solutions of systems of algebraic equations and inequalities where all
coefficients are algebraic numbers (see [6] for details). (Actually, it seems that
the fact that the approximating manifolds can be chosen as smooth semialge-
braic or even algebraic sets defined over the field of real algebraic numbers or
even over the field of rationals follows directly from the proof of the Nash-Tognoli
theorem, although T did not check the details (see [1] , where a slightly weaker
statement was proven).) The Cheeger inequality (cf. [5], [9]) providing a lower
bound for the injectivity radius of a Riemannian manifold in terms of its vol-
ume, diameter and the supremum of the absolute value of sectional curvatures
implies that the injectivity radii of these approximating manifolds will be uni-
formly bounded from below by a positive constant. Thus, in particular, there
exists a smooth semialgebraic submanifold A of an Euclidean space such that
the Gromov-Hausdorff distance dgp (A, M) between A and M does not exceed
min{inj(A), inj(M)}/100, and such that A is a solution of a system of algebraic
equations and inequalities where all coefficients are algebraic numbers. (Here we
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regard A and M as metric spaces with the inner metrics. The definition and
simplest properties of the Gromov-Hausdorff metric on the space of all compact
metric spaces can be found, for example, in [13] or [20] .) We have already proven
that Proposition 2 holds for A. Hence Proposition 2 for M immediately follows
from the inequality

mge a(l/2) < mg g (1),
=4

where * is defined by the formula 5* (/)
this inequality.

We are going to use several simple observations which are proven in a slightly
more general form in section 2 of [19] . First note that if py,ps : [0,1] —
T are two closed curves on a Riemannian manifold 7' such that for any ¢
disty (p1(t), p2(t)) < inj(T)/4, then p; and ps can be connected by a homotopy
passing through curves of length not exceeding 10 max{length(p1), length(ps)}.
(This is a particular case of the statement (d) in section 2 of [19] ; see [19] for a
detailed proof of this statement.) Further, let My, M3 be two compact Rieman-
nian manifolds such that the Gromov-Hausdorff distance between M; and M,
does not exceed min{inj(My), inj(M3)}/100. Let 7:[0,1] — My be a closed

08(21). Thus, it remains to prove

parametrized curve. Choose an increasing sequence of points ¢ = 0,%1, ..., <
1,41 = 1 in such a way that for every j the length of the segment of 7 be-
length(t)

tween 7(¢;) and 7(¢;41) is equal to el gth () i inf (V) T Oy Ta - Now de-
fine 7 : [0,1] — M, as follows: For any j, 7(¢;) will be (one of) the closest
point(s) of My to 7(t;). For every j connect 7(f;) and T(¢;41) by the shortest
geodesic in Ms. Let us call the resulting curve a transfer of  to Ms. If T is not
parametrized, then the transfer of its arbitrary parametrization will be called a
transfer of 7. (Note, that in this case the transfer is not unique.) Similarly, we
can define transfer of closed curves on M to My. Observe, that if the length
of 7 is not less than 2inj(My), then the length of any transfer of 7 to My does
not exceed 2length(r). (This fact can be easily deduced using just the trian-
gle inequality. Note also that the length of any non-constant closed geodesic
on My is not less than 2inj(M;).) Now observe that if length(7) 2 2inj(My),
then 7 and a transfer to M; 7 of a transfer to My of 7 can be connected by
a homotopy passing through curves of length not exceeding 40 length(r) since
(a) length(7) £ 4 length(7); and (b) for any ¢ distyy, (7(t), 7(t)) < inj(My)/4.
(Both (a) and (b) easily follow from the triangle inequality. Tf 7 was not ini-
tially parametrized, then we must consider it with the parametrization chosen
to make the transfer to M3.) This observation can be used to demonstrate that
if 7 and m are two closed geodesics (one of them can be constant) such that
there exists a homotopy between their transfers to My 7 and 75 which passes
only through closed curves of length £ L, where L 2 2max{inj(My), inj(Mz)},
then there exists a homotopy between 7 and m which passes only through
curves of length £ max{40length(r1), 40length(m), 20L} on M;. This homo-
topy will consist of three pieces: a homotopy between 71 and the transfer 7
of 71 to My which passes through curves of length < 40length(r), a homo-
topy between 7y and the transfer 7 of 7, on My which passes through curves
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of length £ 20L and a homotopy between 75 and 7 which passes through
curves of length £ 40length(m). The homotopies between 71 and 71 and be-
tween 1 and T, were already explained above. To construct the homotopy
between 71 and 75 consider the homotopy H : [0,1] — ©Q M, between 7 and
72 which passes through curves of length < L. (Here 2 M, denotes the space
of parametrized piecewise-smooth closed curves on M3.) Consider an increasing
sequence 0 = s1,82,...,8_1,5; = 1 such that for any j and for any ¢ € [0, 1]
distyr, (H(s;)(t), H(sj41)(t)) < min{inj(M,) inj(M2)}/100. Now it is easy to
see that for any j (a) the length of the transfer of H(s;) to My does not exceed
2L; and that (b) the transfers of H(s;) and of H(s;j41) to My can be connected
by a homotopy passing through closed curves of length < 20L. Patching all these
homotopies together we obtain the required homotopy between 7, and 7.

Now we can prove the required inequality mg« 4(l/2) = mg (1), where
B*(1) = 408(21). Without any loss of generality we can assume also that, for
any I, B(I) 2 1/2. Consider a representative from every equivalence class of
closed geodesics of length < 1/2 on A with respect to the introduced above
equivalence relation =g-. Denote these geodesics by v;, ¢ = 1,...,mg+ a(l/2).
It immediately follows from the discussion above that for any ¢, j such that ¢ # j
the transfers 7; and 9; of 4; and v; to M cannot be connected by a homotopy
passing through closed curves of length < %6* (1/2) = B(1). But for any i %; can
be connected by a homotopy passing through curves of length < length(¥;) with
a closed geodesic T; on M. The closed geodesics T; for i = 1,... smge a4(l/2)
obviously belong to different equivalence classes of the set of closed geodesics of
length <[ on M with respect to the equivalence relation =5. This completes
the proof of Proposition 2.

Remark. We beleive that one can strengthen Proposition 2 (at least in the
important case when 3(!) = [/2) using a version of the Birkhoff polygonal process
or of one of known curve-shortening flows (cf. [15] ) to improve the performance
of the algorithm used in the proof described above of Proposition 2. In particular,
it seems plausible that there exists a very fast algorithm using an amount of space
on the worktapes which is linear in length(y) (and no oracle information) and
checking whether or not a given closed curve v on M can be connected with a
constant loop or with one of the geodesics from the given set of all non-constant
contractible closed geodesics on M of length £ length(v) by a homotopy passing
only through closed curves of length not exceeding the length of +. This idea is
the motivation for the remark at the end of Section 2.
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