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Chapter 22
Consecutive Repeating State Cycles Determine
Periodic Points in a Turing Machine

Michael Stephen Fiske

Abstract. The Turing machine is studied with new methods motivated by the notion
of recurrence in classical dynamical systems theory. The state cycle of a Turing ma-
chine is introduced. It is proven that each consecutive repeating state cycle in a Tur-
ing machine determines a unique periodic configuration (point) and vice versa. This
characterization is a periodic point theorem for Turing machines. A Turing machine
is defined to be periodic if it has at least one periodic configuration or it only has
halting configurations. Using the notion of a prime directed edge and a mathemati-
cal operation called edge pattern substitution, a search procedure finds consecutive
repeating state cycles. If the Turing machine is periodic, then this procedure eventu-
ally finds each periodic point or this procedure determines that the machine has only
halting configurations. New mathematical techniques are demonstrated such as edge
pattern substitution and prime directed edge sequences that could be quite useful in
the further study of the aperiodic Turing machines. The aperiodicity appears to play
an integral role in the undecidability of the Halting problem.

22.1 Introduction

New results are achieved here by analyzing the Turing machine from a dynamical
systems point of view. Classical dynamical systems theory has been successful by
first understanding the periodic behavior and then studying more general recurrent
behavior (as in [3], [4], [7], and [11] ). This paper follows the classical approach, by
finding a notion of recurrence that characterizes periodic configurations of a Turing
machine.

In the next section, the Turing machine is briefly reviewed and then some def-
initions are presented for studying its recurrent behavior. The Turing machine is
represented as (Q, A,η) where Q is a finite set of states, A is a finite alphabet and
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the program η is a function η : Q× A→Q× A× {−1,+1}∪ {H}× A× {0}. A
Turing machine configuration (q,k, T) is a triplet, where q is the current state of the
machine, the function T : Z→ A represents the tape, where Z is the integers and
k is an integer that is the tape head location. A machine starts program execution
at configuration (q,k, T) where T(k) = α and η determines the next configuration
according to three cases:

1. (r,k− 1,S) if η(q,α) = (r, β,−1)
2. (r,k + 1,S) if η(q,α) = (r, β,+1)
3. (H,k,S) if η(q,α) = (H, β,0)

such that for all three cases the new tape S(j) = T(j) whenever j ̸= k and S(k) = β.
Case 1 means that the machine moves to state r, replaces alphabet symbol α with

symbol β at tape square k and then moves the tape head left −1 to tape square
k − 1. Case 2 means the same as Case 1 except the tape head moves right +1 to
tape square k + 1. Case 3 means that the machine reaches a unique halting state H
and the program execution halts.

A configuration (q,k, T) is called a halting configuration if machine execution
starts at (q,k, T), and after a finite number of execution steps, the machine reaches
the halting state. A configuration (q,k, T) is periodic if after the execution of n
computational steps of the Turing machine, the new configuration (r, j,S) has the
same state and the same tape contents. This means r = q and the same tape contents
means T(x + k) = S(x + j) for every integer x. In this case, (q,k, T) is a periodic
configuration. Thus, all periodic configurations are immortal. A Turing machine is
called periodic if it has at least one periodic configuration or it only has halting
configurations.

The state cycle is a notion of recurrence for the Turing machine. A state cy-
cle is a non-halting execution sequence of input commands (q0, a0) → (q1, a1)
→ · · ·→ (qN−1, aN−1)→ (qN , aN), such that q0 = qN and where pair (q,α) in
η(q,α) is called an input command. A state cycle is called a prime state cycle if
it contains no proper state subcycles. A consecutive repeating state cycle is a state
cycle that repeats itself twice, where the second repeat immediately follows the
first: (q0, a0)→ (q1, a1) → · · ·→ (qN−1, aN−1)→ (q0, a0) → (q1, a1) → · · ·→
(qN−1, aN−1).

In theorem 22.2, a periodic point theorem that holds for any Turing machine is
proved: a consecutive repeating state cycle uniquely determines a periodic config-
uration of the Turing machine; and vice versa, a periodic configuration uniquely
determines a consecutive repeating state cycle. Thus, to search for a periodic con-
figuration, a procedure may look for consecutive repeating state cycles.

In definition 22.12, the prime directed edge is defined. The prime directed edge
represents, over a window of execution, a Turing machine program visiting only
one state twice and visiting the other states one time or not at all. A prime directed
edge contains a prime state cycle. Pattern matching determines how two prime di-
rected edges are glued together. When prime directed edges are glued together, this
is called link matching. The link matching is used to build prime directed edge se-
quences. Based on |Q| and |A|, an upper bound on the number of prime directed
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edges is computed. The prime directed edge sequences cover all Turing program
execution possibilities. As a consequence, the number of prime directed edges is
a useful measure of the Turing machine complexity. For a given Turing machine,
a procedure for finding all prime directed edges is shown. After this, a periodic
point search procedure is described whereby prime directed edges are link matched
together to form prime directed edge sequences. This procedure searches for con-
secutive repeating state cycles inside the edge sequences.

In [9], Kurka conjectured that any Turing machine that has no halting configu-
rations has a periodic configuration. In [2], Blondel et al demonstrated that some
Turing machines have only aperiodic immortal configurations. Furthermore, Blon-
del et al. showed in [2] that determining whether a given counter machine has a
periodic orbit in configuration space is undecidable.

In this context, there are two main results. First, that each consecutive repeating
state cycle determines a unique periodic point in a Turing Machine and vice versa.
Second, using this first result, if a Turing machine is periodic, then the search proce-
dure can determine whether the machine only has halting configurations or, if not,
then this procedure finds a periodic configuration of this machine. Furthermore, the
procedure demonstrated can be used to find periodic configurations of any length
when they exist. Finally, the mathematical tools developed here – e.g. the prime di-
rected edge, the edge substitution operator, link matching, and prime directed edge
sequences – can be used to study the aperiodic immortal configurations, which could
help better understand the dynamics of the Halting problem [12].

22.2 Turing Machines & Periodic Configurations

The Turing Machine is defined here so that its program η is explicitly represented
as a function.

Definition 22.1. Turing Machine
A Turing machine is a triple (Q, A,η) where

1. Q is a finite set of states that does not contain a unique halt state H.
2. The machine execution starts in an initial state s and s lies in Q.
3. A is a finite set of alphabet symbols that are read from and written to the tape.
4. −1 and +1 represent advancing the tape head to the left or right square, respec-

tively.
5. η : Q× A→ Q× A× {−1,+1} ∪ {H}× A× {0} is a function. η acts as the

program for the Turing machine. For each q in Q and α in A, η(q,α) = (r, β, x)
describes how machine (Q, A,η) executes one computational step. When in state
q and scanning alphabet symbol α on the tape:
(a) Machine (Q, A,η) changes to state r.
(b) Machine (Q, A,η) rewrites alphabet symbol α as symbol β on the tape.
(c) If x = −1, then machine (Q, A,η) moves its tape head one square to the left

on the tape and is subsequently scanning the symbol in this square.
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(d) If x =+1, then machine (Q, A,η) moves its tape head one square to the right
on the tape and is subsequently scanning the symbol in this square.

(e) If r =H, machine (Q, A,η) reaches halting state H and halts.

Definition 22.2. Turing Machine tape
The Turing machine tape T is represented as a function T : Z→ A where Z denotes
the integers. The tape T is M-bounded if there exists a bound M > 0 such that
T(k) = T(j) whenever |k|, |j| ≥ M.

The Turing machine definitions in [5], [12] assume the initial tape, before program
execution begins, is M-bounded and the tape contains only blank symbols, denoted
here as #, outside the bound. In this paper, the tape is not assumed to be M-bounded,
unless this is explicitly stated for a particular case. The symbol on the kth square of
the tape is T(k).

Definition 22.3. Turing Machine Configuration with tape head location
Let (Q, A,η) be a Turing machine with tape T. A configuration is an element of the
set C = (Q ∪ {H})× Z× {T : T is tape with range A}. If (q,k, T) is a configura-
tion, then k is called the tape head location.

Consider the configuration (p,2, . . .##αβ## . . . ). The 1st coordinate indicates that
the Turing machine is in state p. The 2nd coordinate indicates that its tape head is
currently scanning tape square 2, denoted as T(2). The 3rd coordinate indicates that
tape square 1 contains symbol α, tape square 2 contains symbol β, and all other tape
squares contain the # symbol. Sometimes a periodic configuration p = (q,k, T) is
called a periodic point or immortal periodic point.

Definition 22.4. Computational Period and Hyperbolic Degree
Consider immortal periodic point p. If the machine starts its execution at point p,
then the minimal number of computational steps, denoted C(p), for the machine to
return to point p is called the computational period of p. Observe that C(p) = R+ L
where R and L denote the number of right and left tape head moves respectively.
Define the hyperbolic degree of p as m(p) = R− L. If m ̸= 0, the periodic point is
called hyperbolic. Otherwise, p is called non-hyperbolic.

The computational period is motivated by the classical dynamical systems definition
of the period of a point p in X for an autonomous (e.g. [6]) dynamical system
f : X → X where X is a topological space, f is a function and m is the minimal
positive integer such that f m(p) = p . The hyperbolic degree is analogous to the
classical dynamical systems definition of a hyperbolic periodic point of f : X→ X
when X is a manifold and f is differentiable.

A pattern W is a finite sequence of alphabet symbols chosen from A. In other
words, W : {0,1, . . . ,n− 1}→ A. The length of W = n and is denoted as |W|= n.
The kth element of the pattern W is denoted as W(k) or wk. Thus, pattern W is
sometimes explicitly expressed as w0w1 . . . wn−1. S is a subpattern of W if S =
wjwj+1 . . . wk−1wk for some j and k satisfying 0≤ j≤ k ≤ n− 1 and the length of
S = k− j + 1. A pattern represents a finite sequence of the tape.
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The expression [4,121212] represents the point p where the machine is in state
4; the tape head is located at the underlined 1; the tape to the right of the tape head
contains the periodic pattern 212 212 . . . ; and the tape to the left of the tape head
contains the periodic pattern . . . 12 12 12.

Example 22.1. Non-Hyperbolic Periodic Point

The state set is Q = {q,r} and the alphabet set is A = {1,2}. The halting state is
H. η is defined below.

η(q,1) = (H,1,0) η(q,2) = (r,2,−1)
η(r,1) = (q,2,+1) η(r,2) = (q,1,+1)

Consider program execution steps: [r, x22y] )→ [q, x12y] )→ [r, x12y] )→
[q, x22y] )→ [r, x22y], where x is any infinite left tape sequence chosen from A and
y is any infinite right tape sequence. The tape head moves for this non-hyperbolic
immortal periodic point are [+1,−1,+1,−1]. All points of the form p = [r, x22y]
are non-hyperbolic periodic points with period 4.

Example 22.2. Hyperbolic Periodic Point

The state set is Q = {q,r, s, t,u,v,w, x} and the alphabet set is A = {1,2}. η is
defined below.

η(q,1) = (r,1,+1) η(q,2) = (H,2,0)
η(r,1) = (H,1,0) η(r,2) = (s,2,+1)
η(s,1) = (t,1,+1) η(s,2) = (H,2,0)
η(t,1) = (H,1,0) η(t,2) = (u,2,+1)
η(u,1) = (H,1,0) η(u,2) = (v,1,+1)
η(v,1) = (H,1,0) η(v,2) = (w,2,+1)
η(w,1) = (H,1,0) η(w,2) = (x,1,−1)
η(x,1) = (H,1,0) η(x,2) = (q,2,+1)

The point p = [q,12 1 212222] is an immortal periodic point with computational
period 8 and hyperbolic degree 6.

Definition 22.5. Window of Execution
Consider the next N computational steps of a Turing machine. The window of exe-
cution, denoted as [ℓ,µ] or [ℓ,ℓ+ 1, . . . ,µ], is the sequence of integers representing
the tape squares that the tape head visited during these N computational steps. The
length of the window of execution is µ− ℓ+ 1 which is also the number of distinct
tape squares visited by the tape head during these N steps. To express the window
of execution for the next n computational steps, the lower and upper bounds are
expressed as a function of n: [ℓ(n),µ(n)]. If j ≤ k, then [ℓ(j),µ(j)]⊆ [ℓ(k),µ(k)]
which follows from the definition.

The purpose of the window of execution is to describe only the portion of the tape
that the tape head visits during the next N computational steps. This is useful be-
cause all tape squares outside the window of execution remain unchanged during
those N steps. Since the tape squares may be renumbered without changing the re-
sults of the machine execution, for convenience it is often assumed that the machine
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starts execution at tape square 0. In example 22.2, during the next 8 computational
steps – that is, one cycle of the immortal periodic point – the window of execution
is [0, 6] and its length is 7.

22.3 State Cycles

This section introduces state cycles and consecutive repeating state cycles. Subse-
quently, a proof shows that a consecutive repeating state cycle determines a unique
periodic point and a periodic point determines a unique consecutive repeating state
cycle.

Definition 22.6. State Cycle
Consider N execution steps of Turing Machine (Q, A,η). After each execution step,
the machine is in some state qk and the tape head is pointing to some alphabet sym-
bol ak. Relabel the indices of the states and the alphabet symbols if necessary and as-
sume the machine has not halted after N execution steps. This execution sequence of
input commands is (q0, a0) )→ (q1, a1) )→ . . . )→ (qN−1, aN−1) )→ (qN , aN), where
each pair (qk, ak) executed as η(qk, ak) is called an input command. A state cycle
is a non-halting execution sequence of input commands such that the first and last
input command in the sequence have the same state: (qk, ak) )→ (qk+1, ak+1) )→
. . . )→ (qN−1, aN−1) )→ (qk, ak). The length of this state cycle equals the number of
input commands minus one. A state cycle is called a prime state cycle if it contains
no proper state subcycles. For a prime state cycle, the length of the cycle equals the
number of distinct states in the sequence. For example, (2,0) )→ (3,1) )→ (4,0) )→
(2,1) is called a prime 3-state cycle because it has length 3 and also 3 distinct states
{2,3,4}.

Remark 22.1. Any prime state cycle has length ≤ |Q|

Proof. This follows from the pigeonhole principle and the definition of a prime state
cycle.

Remark 22.2. Any state cycle contains a prime state cycle

Proof. Relabeling if necessary let ζ(q1,q1) = (q1, a1) )→ . . . )→ (qn, an) )→
(q1, an+1) be a state cycle. If q1 is the only state visited twice, then the proof is com-
pleted. Otherwise, define ℓ= min{|ζ(qk,qk)| : ζ(qk,qk) is a subcycle of ζ(q1,q1)}.
Then ℓ exists because ζ(q1,q1) is a subcycle of ζ(q1,q1). Claim: Any state cycle
ζ(qj,qj) with |ζ(qj,qj)|= ℓ must be a prime state cycle. Suppose not. Then there is
a state r ̸= qj that is visited twice in the state cycle ζ(qj,qj). But then ζ(qr ,qr) is a
cycle with length less than ℓ which contradicts ℓ′s definition.

Definition 22.7. Consecutive repeating state cycle
If machine (Q, A,η) during program execution repeats a state cycle two consecu-
tive times, (q1,b1) )→ . . . )→ (qn,bn) )→ (q1,b1) )→ . . . )→ (qn,bn) )→ (q1,b1), then
(Q, A,η) has a consecutive repeating state cycle.
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Theorem 22.1. Each periodic point determines a unique consecutive repeating
state cycle

Proof. Suppose p is an immortal periodic point with period n. Let the input com-
mand sequence (q1,b1) )→ . . . )→ (qn,bn) )→ (qn+1,bn+1) denote the first n input
commands that are executed. Since p has period n, (q1,b1) = (qn+1,bn+1). Thus,
the first n steps are a state cycle (q1,b1) )→ . . . )→ (qn,bn) )→ (q1,b1). Since the
n + 1 computational step corresponds to applying η to p, the window of execution
is identical for the next n steps as it was for the first n steps. Thus, the next n steps
have an input command sequence that is identical as the first n steps. Thus, the se-
quence of input commands for 2n steps is (q1,b1) )→ . . . )→ (qn,bn) )→ (q1,b1) )→
. . . )→ (qn,bn) )→ (q1,b1).

Theorem 22.2. Each consecutive repeating state cycle determines a unique peri-
odic point

Proof. Suppose Turing machine (Q, A,η) begins or resumes execution at some tape
square and repeats a state cycle two consecutive times denoted as (q1,b1) )→ . . . )→
(qn,bn) )→ (q1,b1) )→ . . . )→ (qn,bn) )→ (q1,b1). Let sk denote the tape square just
before input command (qk,bk) is executed the first time where 1 ≤ k ≤ n. Let tk
denote the tape square just before input command (qk,bk) is executed the second
time where 1≤ k≤ n.

Thus, just before input command (q1,b1) is executed a second time, the window
of execution for the first state cycle is In = ∪n+1

j=1 {sj} where sn+1 = t1. The window

of execution for the second repetition of the state cycle is Jn = ∪n+1
j=1 {tj}, where

tn+1 = tn + t1 − sn.
Furthermore, observe that the window of execution for the computational steps

1 thru k is Ik = ∪k+1
j=1{sj} where the tape head is located at tape square sk+1 after

input command (qk,bk) is executed the first time. Also, observe that the window of
execution for the computational steps n + 1 thru n + k is Jk = ∪k+1

j=1{tj} where the
tape head is located at tape square tk+1 after the input command (qk,bk) is executed
the second time in the second repeating cycle.

Next a useful notation represents the tape patterns for each computational step.
Then the proof is completed using induction. Let V1 denote the tape pattern, which is
the sequence of alphabet symbols in the tape squares over the window of execution
In, just before input command (q1,b1) is executed the first time. Thus, V1(s1) = b1.
Let Vk denote the tape pattern, which is the sequence of alphabet symbols in the
tape squares over the window of execution In, just before input command (qk,bk) is
executed the first time. Thus, Vk(sk) = bk.

Let W1 denote the tape pattern, which is the sequence of alphabet symbols in the
tape squares over the window of execution Jn, just before input command (q1,b1)
is executed the second time. Thus, W1(t1) = b1. Let Wk denote the tape pattern,
which is the sequence of alphabet symbols in the tape squares over the window of
execution Jn, just before input command (qk,bk) is executed the second time. Thus,
Wk(tk) = bk.
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Using induction, it is shown that V1 on window of execution In equals W1 on
window of execution Jn. This completes the proof.

Base Case. Since (q1,b1) is the input command before computational step 1 and
(q1,b1) is the input command before computational step n + 1, then V1(s1) = b1 =
W1(t1). Thus, V1 restricted to window of execution I1 equals W1 restricted to win-
dow of execution J1.

η(q1,b1) = (q2, a1, x) for some a1 in A and where x = −1 or +1.

Case x = +1. Right Tape Head Move

s1 s2 t1 t2
V1 . . . b1 b2 . . . W1 . . . b1 b2 . . .
V2 . . . a1 b2 . . . W2 . . . a1 b2 . . .

Then s2 = s1 + 1 and t2 = t1 + 1 and V1(s2) = b2 = W1(t2). It has already been
observed that V1(s1) = b1 =W1(t1). Thus, V1 restricted to the window of execution
I2 equals W1 restricted to the window of execution J2 . Furthermore, the tape head
is at s1 just before computational step 1 and input command (q1,b1) is executed;
the tape head is at t1 just before computational step n + 1 and input command
(q1,b1) is executed. Also, V2(s1) = a1 =W2(t1) and V2(s2) = b2 = W2(t2). Thus,
V2 restricted to the window of execution I2 equals W2 restricted to the window of
execution J2. Furthermore, the tape head is at s2 just before computational step 2 and
input command (q2,b2) is executed; the tape head is at t2 just before computational
step n + 2 and input command (q2,b2) is executed.

Case x = −1. Left Tape Head Move
s2 s1 t2 t1

V1 . . . b2 b1 . . . W1 . . . b2 b1 . . .
V2 . . . b2 a1 . . . W2 . . . b2 a1 . . .

Then s2 = s1 − 1 and t2 = t1 − 1 and V1(s2) = b2 = W1(t2). And V1(s1) = b1 =
W1(t1). Thus, V1 restricted to the window of execution I2 equals W1 restricted to
the window of execution J2. Furthermore, the tape head is at s1 just before com-
putational step 1 and input command (q1,b1) is executed; the tape head is at t1
just before computational step n + 1 and input command (q1,b1) is executed. Also,
V2(s1) = a1 = W2(t1) and V2(s2) = b2 = W2(t2). Thus, V2 restricted to the win-
dow of execution I2 equals W2 restricted to the window of execution J2. Further-
more, the tape head is at s2 just before computational step 2 and input command
(q2,b2) is executed; the tape head is at t2 just before computational step n + 2 and
input command (q2,b2) is executed. This completes the base case of induction.

Induction Hypothesis. Suppose that for the 1,2, . . . ,k− 1 computational steps and
the corresponding n + 1,n + 2, . . . ,n + k− 1 steps that for every i with 1≤ i ≤ k:

1. V1 restricted to the window of execution Ii equals W1 restricted to the window
of execution Ji; and for each remaining p where p ≤ i, Vp restricted to the
window of execution Ii equals Wp restricted to the window of execution Ji.
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2. Furthermore, the tape head is at si just before computational step i and input
command (qi,bi) is executed; the tape head is at ti just before step n + i and
input command (qi,bi) is executed.

Induction Step. Since (qk,bk) is the input command before computational step k
and before computational step n + k, then Vk(sk) = bk = Wk(tk).

η(qk,bk) = (qk+1, ak, x) for some ak in A and x = −1 or +1.

Case x = +1. Right Tape Head Move for computational steps k and n + k.
sk sk+1 tk tk+1

Vk . . . bk bk+1 . . . Wk . . . bk bk+1 . . .
Vk+1 . . . ak bk+1 . . . Wk+1 . . . ak bk+1 . . .

By the inductive hypothesis Vk restricted to window of execution Ik equals Wk
restricted to window of execution Jk and the only change to the tape and tape
head after executing η(qk,bk) = (qk+1, ak,+1) for the steps k and n + k is that
Vk+1(sk) = ak = Wk+1(tk) and Vk+1(sk+1) = bk+1 = Wk+1(tk+1) and that the
tape heads move right to sk+1 and tk+1 respectively. Thus, Vk+1 restricted to win-
dow of execution Ik+1 equals Wk+1 restricted to window of execution Jk+1. And for
each j satisfying 1 ≤ j ≤ k, then Vj restricted to window of execution Ik+1 equals
Wj restricted to window of execution Jk+1.

Case x = −1. Left Tape Head Move for computational steps k and n + k.
sk+1 sk tk+1 tk

Vk . . . bk+1 bk . . . Wk . . . bk+1 bk . . .
Vk+1 . . . bk+1 ak . . . Wk+1 . . . bk+1 ak . . .

By the inductive hypothesis Vk restricted to window of execution Ik equals Wk
restricted to window of execution Jk and the only change to the tape and tape
head after executing η(qk,bk) = (qk+1, ak,−1) for the steps k and n + k is that
Vk+1(sk) = ak = Wk+1(tk) and Vk+1(sk+1) = bk+1 = Wk+1(tk+1) and that the
tape heads move left to sk+1 and tk+1 respectively. Thus, Vk+1 restricted to win-
dow of execution Ik+1 equals Wk+1 restricted to window of execution Jk+1. And for
each j satisfying 1 ≤ j ≤ k, then Vj restricted to window of execution Ik+1 equals
Wj restricted to window of execution Jk+1.

22.4 Prime Directed Edge Sequences

Edge pattern substitution is the mathematical operation used to link match prime
directed edges. Prime directed edges are link matched to construct prime directed
edge sequences. The notion of an overlap match expresses how a part or all of one
tape pattern may match part or all of another tape pattern.

Definition 22.8. Overlap Matching & Intersection Patterns
Let V and W be patterns. (V, s) overlap matches (W, t) if and only if V(s + c) =
W(t + c) for each integer c satisfying −ℓ ≤ c ≤ µ such that ℓ = min{s, t} and
µ = min{|V|− 1− s, |W|− 1− t} where 0≤ s < |V| and 0≤ t < |W|. The index
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s is called the head of pattern V and the index t is called the head of pattern W. If V
is also a subpattern, then (V, s) submatches (W, t). If (V, s) overlap matches (W, t),
then define the intersection pattern I with head u = ℓ as (I,u) = (V, s) ∩ (W, t),
where I(c) = V(c + s − ℓ) for every integer c satisfying 0 ≤ c ≤ (ℓ+ µ) where
ℓ= min{s, t} and µ = min{|V|− 1− s, |W|− 1− t}.

Definition 22.9. Edge Pattern Substitution Operator
Given patterns V = v0v1 . . . vn and W = w0w1 . . . wn with heads s, t satisfying
0 ≤ s, t ≤ n and pattern P = p0 p1 . . . pm with head u satisfying 0 ≤ u ≤ m. If
(P,u) overlap matches (V, s), define the edge pattern substitution operator ⊕ as
E = (P,u)⊕ [(V, s)⇒ (W, t)] according to the four different cases A, B, C and D.

Case A u > s and m− u > n− s

E(k) = W(k + s− u) if u− s ≤ k ≤ u + n− s
P(k) if 0≤ k < u− s or u + n− s < k ≤ m

The head of E is u + t− s and |E|= m + 1.
p0 p1 . . . pu−s . . . pu . . . pu+n−s . . . pm

v0 . . . vs . . . vn
w0 . . . ws . . . wn

Case B u > s and m− u≤ n− s

E(k) = W(k + s− u) if u− s ≤ k ≤ n + u− s
P(k) if 0≤ k < u− s

The head of E is u + t− s and |E|= n + u− s + 1.
p0 p1 . . . pu−s . . . pu . . . pm

v0 . . . vs . . . vs+m−u . . . vn
w0 . . . ws . . . ws+m−u . . . wn

Case C u≤ s and m− u ≤ n− s
E(k) = W(k) when 0≤ k≤ n. The head of E is t and |E| = |W| = n + 1.

p0 . . . pu . . . pm
v0 . . . vs−u . . . vs . . . vs+m−u . . . vn
w0 . . . ws−u . . . ws . . . ws+m−u . . . wn

Case D u≤ s and m− u > n− s

E(k) = P(k + u− s) if n < k ≤ m + s− u
W(k) if 0≤ k≤ n

The head of E is t and |E|= m + s− u + 1.

p0 . . . pu . . . pu+n−s . . . pm
v0 . . . vs−u . . . vs . . . vn
w0 . . . ws−u . . . ws . . . wn

Set pattern P = 0101 110. Set pattern V = 11 0101. Set pattern W = 01 0010.
Then (P,0) overlap matches (V,2). Thus, the edge pattern substitution operation
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is well-defined so E = (P,0) ⊕ [(V,2) ⇒ (W,4)] = 01 0010 110. The head or
index of pattern E = 4. Furthermore, (P,4) overlap matches (V,0). Thus, F =
(P,4)⊕ [(V,0)⇒ (W,4)] = 0101 010010. The index of pattern F = u + t− s =
4 + 4− 0 = 8.

Definition 22.10. Execution node for (Q, A,η)
An execution node is a triplet N = [q,w0w1 . . . wn, t] for some state q in Q where
w0w1 . . . wn is a pattern of n + 1 alphabet symbols each in A such that t is a non-
negative integer satisfying 0 ≤ t ≤ n. Intuitively, w0w1 . . . wn is the pattern of al-
phabet symbols on n + 1 consecutive tape squares and t represents the location of
the tape head.

Definition 22.11. Halting Execution Node
Suppose [q,v0v1 . . . vn, s] is an execution node and over the next |Q| computational
steps a prime state cycle is not found. In other words, a prime directed edge is not
generated. Then the Turing machine execution halted in |Q| or less steps. Let W be
a pattern such that (W, t) submatches (V, s) and W spans the window of execution
until execution halts. Define the halting node as H = [q,W, t].

Definition 22.12. Prime directed edge
A prime head execution node H = [q,v0v1 . . . vn, s] and prime tail execution node
T= [r,w0w1 . . . wn, t] are called a prime directed edge iff all of the following hold:

1. When Turing machine (Q, A,η) starts execution, it is in state q and the tape head
is located at tape square s. For each j satisfying 0≤ j ≤ n tape square j contains
symbol vj. In other words, the initial tape pattern is v0v1 . . . vs . . . vn.

2. During the next N computational steps, state r is visited twice and all other states
in Q are visited at most once. In other words, the corresponding sequence of input
commands during the N computational steps executed contains only one prime
state cycle.

3. After N computational steps, where 1 ≤ N ≤ |Q|, the machine is in state r.
The tape head is located at tape square t. For each j satisfying 0 ≤ j ≤ n tape
square j contains symbol wj. The tape pattern after the N computational steps is
w0w1 . . . wt . . . wn.

4. The window of execution for these N computational steps is [0,n].

A prime directed edge is denoted as [q,v0v1 . . . vn, s]⇒ [r,w0w1 . . . wn, t] or H⇒T.
The number of computational steps N is denoted as |H⇒ T|.
Definition 22.13. Overlap matching of a node to a prime head node
Execution node N overlap matches head execution node H iff the following hold:

1. N= [r,w0w1 . . . wn, t] is an execution node satisfying 0≤ t ≤ n.
2. H= [q,v0v1 . . . vm, s] is a prime head node satisfying 0≤ s ≤ m.
3. State q = State r.
4. Pattern (W, t) overlap matches (V, s), where W = w0w1 . . . wn and V =

v0v1 . . . vm.
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Lemma 22.1. Overlap matching prime head nodes are equal

If Hj = [q, P,u] and Hk = [q,V, s] are prime head nodes and they overlap match,
then they are equal. Distinct prime directed edges have prime head nodes that do
not overlap match.

Proof. From the definition of prime edge, 0≤ u≤ |P| and 0≤ s≤ |V|. Let (I,m) =
(P,u)∩ (V, s) where m = min{s,u}. Suppose the same machine begins execution
on tape I with tape head at m in state q. If s = u and |P| = |V|, then the proof is
complete. Otherwise, s ̸= u or |P| ̸= |V| or both. Hj has a window of execution
[0, |P|− 1] and Hk has window of execution [0, |V|− 1]. Let the ith step be the first
time that the tape head exits finite tape I. This means the machine would execute
the same machine instructions with respect to Hj and Hk up to the ith step, so on
the ith step, Hj and Hk must execute the same instruction. Since it exits tape I at the
ith step, this would imply that either pattern P or V are exited at the ith step. This
contradicts either that [0, |P|− 1] is the window of execution for Hj or [0, |V|− 1]
is the window of execution for Hk.

Theorem 22.3. The number of prime directed edges is ≤ |Q|2|A||Q|+1

Proof. From lemma 22.1, each prime head node determines a unique prime directed
edge so an upper bound for head nodes provides an upper bound for the prime
directed edges. Consider prime head node [q,V, s]. There are |Q| choices for the
state q. Any pattern that represents the window of execution has length ≤ |Q|+ 1.

Furthermore, lemma 22.1 implies, for any pattern P where (V, s) submatches
(P, t), then the resultant pattern is the same since V spans the window of execution.
Thus, |A||Q|+1 is an upper bound for the number of different patterns V.

There are two choices for s in a |Q| + 1 length pattern because the maximum
number of execution steps is |Q| (i.e., the tape head move sequence is either |Q|
consecutive left tape head moves or |Q| right tape head moves). Thus, |Q| is an
upper bound for the number of choices for s unless |Q|= 1. The bound holds in the
trivial case that |Q|= 1. Thus, there are at most |Q|2|A||Q|+1 prime directed edges.

|Q|2|A||Q|+1 is not a strict upper bound. Procedure 2 describes an algorithm for
finding all the prime directed edges of a Turing machine, which also provides the
number of prime directed edges.

Definition 22.14. Edge Node Substitution Operator
Let H⇒ T be a prime directed edge with prime head node H= [q,v0v1 . . . vn, s] and
tail node T = [r,w0w1 . . . wn, t]. If execution node N = [q, p0 p1 . . . pm,u] overlap
matches H, then the edge pattern substitution operator in definition 22.9 induces a
new execution node N⊕ (H⇒ T) = [r, (P,u) ⊕ [(V, s)⇒ (W, t)],k] with head
k = u + t− s if u > s and head k = t if u≤ s such that 0≤ s, t≤ n and 0≤ u≤m
and patterns V = v0v1 . . . vn and W = w0w1 . . . wn and P = p0 p1 . . . pm.

Let P = {H1 ⇒ T1, . . . ,Hk ⇒ Tk, . . . ,HN ⇒ TN} denote the finite set of prime
directed edges for (Q, A,η). The number of prime directed edges in P is |P| and is



22 Consecutive Repeating State Cycles 405

called the prime directed edge (PE) complexity of (Q, A,η). As defined in 22.14, the
link matching step compares two tape patterns, one from execution nodeNk and the
other from head node Hk+1. If the tape patterns overlap match and the state of Nk
equals the state of Hk+1, then the edge node substitution operation is well-defined
and is used to glue prime directed edge Hk+1 ⇒ Tk+1 to execution node Nk. In
other words, Nk+1 =Nk ⊕ (Hk+1⇒ Tk+1) is computed.

Definition 22.15. Prime directed edge sequence and Link Matching
A prime directed edge sequence is defined inductively. Each element is a coordinate
pair, where the first element is a prime directed edge, the second element is an
execution node and each element is expressed as (Hk⇒ Tk,Nk). The first element
of a prime directed edge sequence is (H1⇒ T1,N1) where N1 = T1, and H1⇒ T1
is some prime directed edge in P. For simplicity in this definition, the indices in P
are relabeled if necessary so the first element has indices equal to 1. If N1 overlap
matches some non-halting prime head node H2, the second element of the prime
directed edge sequence is (H2 ⇒ T2,N2) where N2 = N1 ⊕ (H2 ⇒ T2). This is
called a link match step. Otherwise, N1 overlap matches a halting node, as defined
in 22.11. In this case, the prime directed edge sequence terminates and this is called
a halting match step. This is expressed as [(H1⇒ T1,T1),H].

If the first k− 1 steps are link match steps, then the edge sequence up to the kth
element is inductively defined as [(H1⇒ T1,N1), (H2⇒ T2,N2), . . . ,
(Hk ⇒ Tk,Nk)] where Nj overlap matches prime head node Hj+1 and Nj+1 =
Nj ⊕ (Hj+1⇒ Tj+1) for each j satisfying 0≤ j < k.

22.5 Search Procedure for Periodic Points

This section demonstrates how to search for any periodic point – when they exist
– by looking for consecutive repeating state cycles inside a prime directed edge
sequence. This procedure is useful because it does not search over a tape pattern
that has already been previously examined. This is due to Lemma 22.1 that proves
if two head nodes overlap match in their respective prime directed edges, then the
prime directed edges are equal.

Although there are other methods to look for periodic points, this search proce-
dure demonstrates a broader approach because each aperiodic immortal configura-
tion corresponds to a unique prime directed edge sequence. This is relevant because
the non-trivial recurrence of the M-bounded aperiodic immortal configurations is
integral to the undecidability of the Halting problem.

Link matching is a computational operation used to construct prime directed edge
sequences. The following example link matches two prime directed edges.

Example 22.3. Link matching prime directed edges

State set Q = {q,r, s, t,u}. Alphabet set A = {0,1}. Program η is defined below.
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η(q,0) = (r,1,+1) η(q,1) = (r,1,−1)
η(r,0) = (H,1,0) η(r,1) = (s,0,+1)
η(s,0) = (t,0,+1) η(s,1) = (H,1,0)
η(t,0) = (u,1,−1) η(t,1) = (q,0,+1)
η(u,0) = (q,1,−1) η(u,1) = (t,0,+1)

The execution steps of [u,00010,1]⇒ [q,10000,4] are shown in table 1.

Table 22.1 Prime Directed Edge [u,00010,1]⇒ [q,10000,4]

STATE TAPE HEAD COMMAND

u 00010 1 η(u,0) =
(q,1,−1)

q 01010 0 η(q,0) = (r,1,+1)
r 11010 1 η(r,1) = (s,0,+1)
s 10010 2 η(s,0) = (t,0,+1)
t 10010 3 η(t,1) = (q,0,+1)
q 10000 4

The execution steps of [q,01010,0]⇒ [q,10000,4] are shown in table 2.

Table 22.2 Prime Directed Edge [q,01010,0]⇒ [q,10000,4]

STATE TAPE HEAD COMMAND

q 01010 0 η(q,0) = (r,1,+1)
r 11010 1 η(r,1) = (s,0,+1)
s 10010 2 η(s,0) = (t,0,+1)
t 10010 3 η(t,1) = (q,0,+1)
q 10000 4

Prime edge [u,00010,1] ⇒ [q,10000,4] can be link matched to prime edge
[q,01010,0] ⇒ [q,10000,4]. After link matching, the sequence of input com-
mands is [(u,0), (q,0), (r,1), (s,0), (t,1), (q,0), (r,1), (s,0),(t,1)]. Observe that
[(q,0), (r,1), (s,0), (t,1), (q,0), (r,1), (s,0), (t,1)] is a consecutive repeating state
cycle, which corresponds to the periodic configuration [q,1000 0101 0101].

Definition 22.16. Prime Input Command Sequence
Suppose (q1, a1) )→ . . . )→ (qn, an) is an execution sequence of input commands

for (Q, A,η). Then (q1, a1) )→ . . . )→ (qn, an) is a prime input command sequence
if qn is visited twice and all other states in this sequence are visited once. In other
words, a prime input command sequence contains exactly one prime state cycle.

Lemma 22.2. Prime Directed Edges⇔ Prime Input Command Sequences

Prime directed edges and prime input command sequences are in one-to-one corre-
spondence.
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Proof. (⇒) Let H⇒ T be a prime directed edge where H = [q,v0v1 . . . vn, s] and
T = [r,w0w1 . . . wn, t]. From the definition of a prime directed edge, over the next
N computational steps some state r is visited twice, all other states in Q are vis-
ited at most once and there is a sequence of input commands (q,vs) )→ (q1, a1) )→
. . . (r, ak) . . . )→ (r,wt) corresponding to these N steps. This is a prime input com-
mand sequence.

(⇐) Let (q1, a1) )→ . . . )→ (r, aN+1) be a prime input command sequence with N
computational steps. Then r is visited twice and all other states in the sequence are
visited only once. Let v0v1 . . . vn be the initial tape pattern over the window of exe-
cution during the N computational steps. Now a1 = vs for some s. Let w0w1 . . . wn
be the final tape pattern over the window of execution as a result of these N steps.
From the definition of the window of execution, the tape head is at some t satisfying
0≤ t≤ n after these N steps. Thus, [q,v0v1 . . . vn, s]⇒ [r,w0w1 . . . wn, t] is a prime
directed edge.

Lemma 3. Any consecutive repeating state cycle is contained in a composition
of one or more prime input command sequences.

Proof. The proof is in the appendix.

Example 22.4

This example illustrates the correspondence between prime directed edges and
prime input command sequences for machine (Q, A,η) where Q = {2,3,4}, H
is the halting state, A = {0,1} and η is specified as η(2,0) = (3,1,−1), η(2,1) =
(4,0,−1), η(3,0) = (4,1,+1), η(3,1) = (4,0,+1), η(4,0) = (H,0,0), and
η(4,1) = (2,0,+1). The correspondence is shown below.

Prime Directed Edges Prime Input Command Sequences
[2,000,1]⇒ [2,100,2] (2,0) )→ (3,0) )→ (4,1) )→ (2,0)
[2,100,1]⇒ [2,000,2] (2,0) )→ (3,1) )→ (4,1) )→ (2,0)
[2,11,1] ⇒ [2,00,1] (2,1) )→ (4,1) )→ (2,0)
[2,001,1]⇒ [2,101,2] (2,0) )→ (3,0) )→ (4,1) )→ (2,1)
[2,101,1]⇒ [2,001,2] (2,0) )→ (3,1) )→ (4,1) )→ (2,1)
[3,010,0]⇒ [3,101,1] (3,0) )→ (4,1) )→ (2,0) )→ (3,0)
[3,110,0]⇒ [3,001,1] (3,1) )→ (4,1) )→ (2,0) )→ (3,0)
[4,10,0] ⇒ [4,11,1] (4,1) )→ (2,0) )→ (3,0) )→ (4,1)
[4,11,0] ⇒ [4,00,1] (4,1) )→ (2,1) )→ (4,0)

There are 9 distinct prime directed edges. Observe that |Q|2|A||Q|+1 = 3224 = 144.

Definition 22.17. Edge Sequence contains a consecutive repeating state cycle
Lemma 22.2 implies that an edge sequence corresponds to a sequence of prime input
commands. The expression an edge sequence contains a consecutive repeating state
cycle means that the corresponding sequence of prime input commands contains a
consecutive repeating state cycle.
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Theorem 22.4. Any consecutive repeating state cycle is contained in a prime
directed edge sequence.

Proof. This follows immediately from definitions 22.15, 22.17 and lemmas 22.2
and 22.3.

Procedure 1. Searching for a consecutive repeating state cycle in a prime di-
rected edge sequence

Given an edge sequence whose corresponding prime input command sequence
(q0, a0) )→ (q1, a1) )→ ... )→ (qN , aN) has length N.

Set n = N
2 if N is even; otherwise, set n = N+1

2 if N is odd.

For each k in {0,1,2, . . . ,n− 1}
For each j in {0,1, . . . , N − 2k− 1}
{

If (qj, aj) )→ . . . )→ (qj+k, aj+k) equals (qj+k+1, aj+k+1) )→ . . . )→
(qj+2k+1, aj+2k+1)

return consecutive repeating state cycle
(qj, aj) )→ . . . (qj+k, aj+k) . . . (qj+2k+1, aj+2k+1)

}
If the outer for loop is exited without finding a consecutive repeating state cycle
return NO consecutive repeating state cycles were found.

Procedure 2. Prime Directed Edge Search Procedure

Read Turing Machine (Q, A,η) as input.
Set P= ∅.
For each non-halting state q in Q
For each pattern a−|Q| . . . a−2a−1a0a1a2 . . . a|Q| selected from A2|Q|+1

{
Square −|Q| . . . −1 0 1 . . . |Q|
Contents a−|Q| . . . a−1 a0 a1 . . . a|Q|

1. In start state q, T(k) = ak where −|Q| ≤ k ≤ |Q|, and tape head location 0,
execute (Q, A,η) until one state is visited twice or a halting state is reached.
The execution takes ≤ |Q| steps.

2. If execution does not halt, set r equal to the state that is first visited twice.

3. Over this window of execution, construct a prime directed edge H⇒ T where
H= [q,v0v1 . . . vn, s], T= [r,w0w1 . . . wn, t] and 0≤ s, t ≤ n ≤ |Q|.

4. Set P=P ∪ {H⇒ T}.

}

Remark 22.3. Prime Directed Edge Search Procedure finds all edges
Procedure 2 finds all prime directed edges of (Q, A,η) and all halting nodes.
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Proof. Let H⇒ T be a prime directed edge of (Q, A,η). Then H⇒ T has a head
node H = [q,v0v1...vn, s], for some state q in Q, for some tape pattern v0v1 . . . vn
that lies in An+1, such that n ≤ |Q| and 0 ≤ s ≤ n. In the outer loop of proce-
dure 2, when q is selected from Q and in the inner loop when the tape pattern
a−|Q| . . . a−2a−1a0a1a2 . . . a|Q| is selected from A2|Q|+1 such that a−s = v0 . . .
a−k = vs−k . . . a0 = vs . . . ak = vs+k . . . an−s = vn then the machine
execution in procedure 2 will construct prime directed edge H⇒ T.

When the head node is a halting node, the machine execution must halt in at most
|Q| steps. Otherwise, it would visit a non-halting state twice and be a non-halting
head node. The rest of the argument for this halting node is the same as for the
non-halting head node.

To avoid subscripts of a subscript, let pj and the subscript p(j) represent the same
number. P = {H1 ⇒ T1, . . . ,Hk ⇒ Tk, . . . ,HN ⇒ TN} is the set of all prime
directed edges. E([p1],1) is the edge sequence [(Hp(1)⇒ Tp(1),Np(1))] of length
1 where Np(1) = Tp(1) and 1≤ p1 ≤ |P|. Next E([p1, p2],2) is the edge sequence
[(Hp(1)⇒ Tp(1),Np(1)), (Hp(2)⇒ Tp(2),Np(2))] such that 1 ≤ p1, p2 ≤ |P| and
Np(2) =Np(1)⊕ (Hp(2)⇒ Tp(2)). In general,
E([p1, p2, . . . , pk],k) denotes the edge sequence of length k which is
[(Hp(1) ⇒ Tp(1),Np(1)), (Hp(2) ⇒ Tp(2),Np(2)), . . . , (Hp(k) ⇒ Tp(k),Np(k))]
where Np(j+1) =Np(j)⊕ (Hp(j+1)⇒ Tp(j+1)) for each j satisfying 1≤ j≤ k− 1
and 1≤ p(j)≤ |P|.

Procedure 3. Immortal Periodic Point Search Procedure

Read Turing Machine (Q, A,η) as input.

Use procedure 2 to find all prime directed edges P.

Set k = 1. Set E(1) = {E([1],1), E([2],1), . . . , E([|P|],1)}.

While ( E(k) ̸= ∅ )
{

Set E(k + 1) = ∅.
For each E([p1, p2, . . . , pk],k) in E(k)

For each prime directed edge Hj⇒ Tj in P
{

if Hj⇒ Tj link matches with Np(k) then
{

Set pk+1 = j.
Set E(k + 1) = E(k + 1) ∪ E([p1, p2, . . . , pk, pk+1],k + 1).
If E([p1, p2, . . . , pk, pk+1],k + 1) has a consecutive repeating state cycle
then return the consecutive repeating state cycle and exit the while loop.

}
}

k is incremented.
}
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If the while loop exits because E(m) = ∅ for some m, then return ∅; in other words,
(Q, A,η) has only halting configurations.

Remark 22.4. |E(k)|≤ |P|k

Definition 22.18. Periodic Turing Machine

A Turing machine (Q, A,η) that has at least one periodic configuration, whenever
it has an immortal configuration is said to be a periodic Turing machine.

Remark 22.5. If E([p1, p2, . . . , pr],r) contains a consecutive repeating state cy-

cle, then the corresponding periodic point has period≤ 1
2

r
∑

k=1
|Hp(k)⇒ Tp(k)|.

Proof. Theorem 22.2 implies that a consecutive repeating state cycle determines
an immortal periodic point. The length of the state cycle equals the period of the
periodic point. Further, the number of input commands corresponding to the number
of computational steps equals |Hp(k)⇒ Tp(k)| in directed edge Hp(k)⇒ Tp(k).

Theorem 22.5. When machine (Q, A,η) is periodic, procedure 3 terminates in
a finite number of steps with either a consecutive repeating state cycle or for some
positive integer J, then E(J) = ∅, which means all of the configurations of (Q, A,η)
are halting.

Proof. If (Q, A,η) has at least one configuration (q,k, T) that is an immortal, then
by definition 22.18, this implies the existence of a periodic point p with some finite
period N. Thus, from Theorem 22.1, there is a consecutive repeating state cycle that
corresponds to the immortal periodic point p. Since procedure 3 searches through all
possible prime edge sequences of length k, a consecutive repeating state cycle will
be found that is contained in a prime directed edge sequence with length at most
2N. Thus, periodic point p of period N will be reached before or while computing
E(2N).

Otherwise, (Q, A,η) does not have any immortal configurations; in other words,
for every configuration, (Q, A,η) halts in a finite number of steps. Claim: There
is a positive integer J such that every edge sequence terminates while executing
procedure 3. By reductio absurdum, suppose not. Then there is at least one infinite
prime directed edge sequence that exists. This infinite edge sequence corresponds to
an immortal configuration, which contradicts that (Q, A,η) is a periodic machine.

Example 22.5. A Turing Machine with only aperiodic immortal configurations

This example is based on work in [2]. The state set Q = {a,b, c,d, e, f} and the
alphabet set A = {0,1,2,3}. The halting state is H. In the following table, the
Turing program is presented as quintuples (q, a,r,b,m) where η(q, a) = (r,b,m).
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(a,0,d,1,+1) (a,1, f ,1,+1) (a,2, f ,2,+1) (a,3, f ,3,+1)
(b,0, c,1,−1) (b,1, e,1,−1) (b,2, e,2,−1) (b,3, e,3,−1)
(c,0, a,2,−1) (c,1, f ,1,+1) (c,2, f ,2,+1) (c,3, f ,3,+1)

(d,0,b,2,+1) (d,1, e,1,−1) (d,2, e,2,−1) (d,3, e,3,−1)
(e,0, a,3,−1) (e,1, a,0,−1) (e,2,d,0,+1) (e,3, f ,0,+1)
( f ,0,b,3,+1) ( f ,1,b,0,+1) ( f ,2, c,0,−1) ( f ,3, e,0,−1)

Observe that any periodic tape pattern with any non-halting state is immortal. How-
ever, none of these configurations are periodic because none are returned to in a
finite number of execution steps.

Remark 22.6. Procedure 3 does not halt on aperiodic Turing machines.

22.6 Discussion and Further Work

In [12], Turing presented the Halting problem and proved that the Halting problem
is undecidable with a Turing Machine. In [8], Hooper proved that the Turing Immor-
tality problem is undecidable. Both papers assume that every initial machine config-
uration is M-bounded for some finite M (i.e., the tape is bounded by blank symbols
before the Turing machine program begins executing). In [1], Berger demonstrated
an aperiodic tiling that proved that the tiling problem was undecidable. In light of [2]
and the results presented here, the aperiodicity appears to be an integral part of the
undecidability.

Procedure 2 finds all the prime directed edges and works for any Turing machine.
Furthermore, the construction of the edge sequences via link matching inside Proce-
dure 3 works on any Turing machine; and at the kth pass through the outer loop, this
construction explores all possible immortal configurations up to an edge sequence
length of k prime directed edges. The limitation of procedure 3 is on the aperiodic
Turing machines and is due to the exit condition of finding a consecutive repeating
state cycle.

Although the consecutive repeating state cycle characterizes any periodic config-
uration in the Turing machine, a broader notion of recurrence is needed to address
the more complex behavior of aperiodic immortal configurations that are initially
M-bounded. Lemma 22.1 implies that every immortal configuration is contained
by a unique prime directed edge sequence, so prime directed edge sequences cover
all possible Turing program behaviors. Research that further develops the mathe-
matical notions described here could help better understand the aperiodic immortal
configurations, aperiodic Turing machines and perhaps undecidability.
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Appendix

Using the same notation as Theorem 22.2, let V1 denote the initial tape pattern,
which is the sequence of alphabet symbols in the tape squares over the window of
execution of the prime input command sequence, just before the first input command
(q1, a1) in the sequence is executed. Let s1 denote the location of the tape head,
V1(s1) = a1. Let Vk denote the tape pattern just before the kth input command
(qk, ak) in the sequence is executed and let sk denote the location of the tape head,
Vk(sk) = ak.

Definition 22.19. Composition of Prime Input Command Sequences

Let (q1, a1) )→ . . . )→ (qn, an) and (r1,b1) )→ . . . )→ (rm,bm) be prime input com-
mand sequences where Vk denotes the tape pattern just before the kth input com-
mand (qk, ak) with tape head at sk with respect to Vk. Wk denotes the tape pat-
tern just before the kth input command (rk,bk) with tape head at tk with re-
spect to Wk. Suppose (Vn, sn) overlap matches with (W1, t1) and qn = r1. Then
(qn, an) = (r1,b1). The composition of these two prime input command sequences
is defined as (q1, a1) )→ . . . )→ (qn, an) )→ (r2,b2) )→ . . . )→ (rm,bm). The com-
position is undefined if (Vn, sn) and (W1, t1) do not overlap match or qn ̸= r1. If
(q1, a1) )→ . . . )→ (qn, an) )→ (q1,b1) is a prime state cycle, then it is also prime
input command sequence.

http://www.newlisp.org/
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Example 22.6. Directed Partition procedure

Start with finite sequence ( 0 4 2 3 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2 ).

The partition steps are shown below.

1. ( (0 4 2 3) 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2). 4 lies in (0 4 2 3).

2. ( (0 4 2 3) (4 1 3 0) 1 2 0 4 2 3 4 1 3 0 1 2). 1 lies in (4 1 3 0).

3. ( (0 4 2 3) (4 1 3 0) (1 2 0 4) 2 3 4 1 3 0 1 2). 2 lies in (1 2 0 4).

4. ( (0 4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) 3 0 1 2). 3 lies in (2 3 4 1).

5. ( (0 4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) (3 0 1 2) ). 0 lies in (3 0 1 2).

Definition 22.20. Tuples

A tuple is a finite sequence of objects denoted as (σ1,σ2, . . . .,σm). The length of the
tuple is the number of objects in the sequence denoted as
|(σ1,σ2, . . . ,σm)|= m. For our purposes, the objects of the tuple may be states, input
commands or natural numbers. (3) is a tuple of length one. (1, 4, 5, 6) is a tuple of
length four. Sometimes the commas will be omitted as in the previous example. (4
6 0 1 2 3) is a tuple of length six. The 4 is called the first object in tuple (4 6 0 1 2
3). 1 is called a member of tuple (4 6 0 1 2 3).

Definition 22.21. Tuple of Tuples

A tuple of tuples is of the form (w1,w2, . . . ,wn) where each wk may have a different
length. An example of a tuple of tuples is ( (3), (1, 4, 5, 6), (4, 5, 6) ). The commas
are omitted in this example ( (0 8 2 3) (1 7 5 7) (5 5 6) ).

Definition 22.22. Directed Partition of a Sequence

A directed partition is a tuple of tuples (w1,w2, . . . ,wn) satisfying Rule A and B.

Rule A. No object σ occurs in any element tuple wk more than once.

Rule B. If wk and wk+1 are consecutive tuples, then the first object in tuple wk+1
is a member of tuple wk.

Example 22.7. Directed Partition Examples

The five examples illustrate element and partition tuples and Rule A and Rule B.

( (0 8 2 3) (8 7 5 4) (5 0 6) ) is an example of a directed partition.

( (0 8 2 3) (8 7 5 4) (5 0 6) ) is sometimes called a partition tuple.

(0 8 2 3) is the first element tuple. The first object in this element tuple is 0.

Element tuple (8 0 5 7 0 3) violates Rule A because object 0 occurs twice.

( (0 8 2 3) (1 7 5 4) (5 0 6) ) violates Rule B since 1 does not lie in tuple (0 8 2 3).
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Definition 22.23. Consecutive Repeating Sequence and Extensions

A consecutive repeating sequence is a sequence (x1, x2, . . . , xn, . . . , x2n) of length
2n for some positive integer n such that xk = xn+k for each k satisfying 1 ≤
k ≤ n. An extension sequence is the same consecutive repeating sequence for
the first 2n elements (x1, x2, . . . , xn, . . . , x2n . . . x2n+m) such that xk = x2n+k for
each k satisfying 1 ≤ k ≤ m. A minimal extension sequence is an extension se-
quence (x1, . . . , xn, . . . x2n+m) where m is the minimum positive number such that
there is one element in x2n, x2n+1, . . . , x2n+m that occurs more than once. Thus,
x2n+k = x2n+m for some k satisfying 0≤ k < m.

For example, the sequence S = (4234130120 4234130120) is a consecutive repeat-
ing sequence and S = (4234130120 4234130120 42341) is an extension sequence.
S contains consecutive repeating sequence S .

Definition 22.24. Directed partition extension with last tuple satisfying Rule B

Suppose (x1 . . . xn . . . x2n, x2n+1, . . . x2n+m) is an extension of consecutive repeating
sequence (x1 . . . xn . . . x2n). Then (w1,w2, . . . ,wr) is a directed partition extension
if it is a directed partition of the extension: The last tuple wr satisfies Rule B if
x2n+m is the last object in tuple wr and xm+1 lies in tuple wr.

For example, the extension (4 2 3 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2 0 4 2 3) has directed
partition extension ((4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) (3 0 1 2) (0 4 2 3)) and
the last tuple satisfies Rule B since 4 lies in (0 4 2 3).

Procedure 4. Directed Partition procedure

This procedure converts a finite sequence into a directed partition.

Given a finite sequence (x1 . . . xn) of objects.

Initialize element tuple w1 to the empty tuple ( ).

Initialize partition tuple P to the empty tuple ( ).

For each element xk in sequence (x1 . . . xn)
{

if xk is a member of the current element tuple wr
{

Append element tuple wr to the end of partition tuple P so that
P = (w1 . . . wr).

Initialize current element tuple wr+1 = (xk).
}
else update wr by appending xk to end of element tuple wr.

}

The result is the current partition tuple P after element xn is examined in the
loop. Observe that the tail of elements from (x1 . . . xn) with no repeated elements
will not lie in the last element tuple of the final result P.
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Procedure 5. Directed Partition Procedure implemented in newLISP
<www.newlisp.org>

The function findpartition converts any finite sequence represented as a list into
a directed partition.

(define (addobject etuple object)
(if (member object etuple)

nil
(append etuple (list object))

))

(define (findpartition seq)
(let(

(partition ’())
(etuple ’())
(testadd nil)

)
(dolist (object seq)
(set ’testadd (addobject etuple object))
(if testadd

(set ’etuple testadd)
(begin
(set ’partition (append partition (list etuple)))
(set ’etuple (list object))

)
))

partition
))

> (set ’seq ’(4 2 3 4 1 3 0 1 2 0 4 2 3 4 1 3 0 1 2 0 4 2 3 4))

> (findpartition seq)
((4 2 3) (4 1 3 0) (1 2 0 4) (2 3 4 1) (3 0 1 2) (0 4 2 3))

4 lies in the last tuple (0 4 2 3).

Remark 22.7. Every Consecutive Repeating Sequence has an extension sequence
with a directed partition such that the last tuple satisfies the Rule B property.

Proof. As defined in 22.23, extend consecutive repeating sequence
(x1 . . . xn . . . x2n) to the extension sequence (x1 . . . xn . . . x2n, x2n+1, . . . x2n+m) such
that m is the minimum positive number such that there is one element in
x2n, x2n+1, . . . x2n+m that occurs more than once. Thus, x2n+k = x2n+m for some k
satisfying 0≤ k < m.

Apply procedure 4 to S = (x1 . . . xn . . . x2n, x2n+1, . . . x2n+m). Then the resulting
partition tuple P extends at least until element x2n and the last tuple in P satis-
fies rule B. If the partition tuple P is mapped back to the underlying sequence of
elements, then it is an extension sequence since it reaches element x2n.

Lemma 22.3. Any consecutive repeating state cycle is contained in a composi-
tion of one or more prime input command sequences.

www.newlisp.org
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Proof. Let σ = [(q1, a1) )→ . . . )→ (qn, an)(q1, a1) )→ . . . )→ (qn, an)] be a consec-
utive repeating cycle. Procedure 4 and remark 22.7 show that this sequence of
consecutive repeating input commands may be extended to a minimal extension
sequence [(q1, a1) )→ . . . )→ (qn, an) )→ (q1, a1) )→ . . . )→ (qn, an) )→ (q1, a1) )→
. . . )→ (qm, am)].

For simplicity, let νk denote input command (qk, ak). Apply procedure 4 to
(ν1 . . . νnν1 . . . νnν1 . . . νm) so that the result is the partition tuple P = (w1 . . . wr).
Then the sequence of element tuples in P represent a composition of one or more
prime input command sequences.

Rules A and B imply that for consecutive tuples wk = (νk(1)νk(2) . . . νk(m)) and
wk+1 = (ν(k+1)(1)ν(k+1)(2) . . . ν(k+1)(m)) , then
(qk(1), ak(1)) )→ . . . )→ (qk(m), ak(m)) )→ (q(k+1)(1), a(k+1)(1)) is a prime input com-
mand sequence. Remark 22.7 implies that the last tuple wr corresponds to a prime
input command sequence and that the consecutive repeating state cycle is contained
in the partition P mapped back to the sequence of input commands.

Definition 22.25. Finite sequence rotation

Let (x0x1 . . . xn) be a finite sequence. A k-rotation is the resulting sequence
(xkxk+1 . . . xnx0 x1 . . . xk−1). The 3-rotation of (8 7 3 4 5) is (3 4 5 8 7).

Definition 22.26. Rotating a state-symbol cycle

Let (q1, a1) )→ . . . )→ (qn, an) )→ (q1,b1) be a state cycle. This state cycle is called a
state-symbol cycle if a1 = b1. A rotation of this state-symbol cycle is the state cycle
(qk, ak) )→ . . . , (qn, an) )→ (q1, a1) )→ . . . (qk,bk) for some k satisfying 0 ≤ k ≤ n.
In this case, the state-symbol cycle has been rotated by k− 1 steps.

Lemma 22.4. Any consecutive repeating rotated state cycle generated from a
consecutive repeating state cycle induces the same immortal periodic orbit.

Proof. Let p be the immortal periodic point induced by this consecutive repeating
state cycle. Rotating this state cycle by k steps corresponds to starting at periodic
machine configuration p and executing the Turing machine k steps.

Procedure 6. A newLISP [10] function that searches for a consecutive repeating
sequence.

(define (findpatternrepeats plength seq)
(let (

(k 0)
(maxk (- (length seq) (+ plength plength)) )
(pattern nil)
(repeatpair nil)
(norepeats true)

)

(while (and (<= k maxk) norepeats)
(set ’pattern (slice seq k plength))
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(if (= pattern (slice seq (+ k plength) plength))
(begin
(set ’repeatpair (list pattern k))
(set ’norepeats false) )

)
(set ’k (+ k 1))

)
repeatpair

))

(define (findrepeats seq)
(let (

(plength 1)
(maxplength (/ (length seq) 2) )
(repeatpair nil)

)
(while (and (<= plength maxplength) (not repeatpair))

(set ’repeatpair (findpatternrepeats plength seq))
(set ’plength (+ plength 1))

)
repeatpair

))

(set ’seq1 ’(3 5 7 2 3 5 7 11 5 7 ) )
(set ’seq2 ’(3 5 7 2 3 5 7 11 5 7 11 2 4 6 8 ) )
(set ’seq3 ’(1 2 0 2 1 0 2 0 1 2 0 2 1 0 1 2 1 0 2 1 2 0

2 1 0 1 2 0 2 1 2 0 1 2 1 0 1 2 0 1 0 1) )

> (findrepeats seq1)
nil

> (findrepeats seq2)
((5 7 11) 5)

> (findrepeats seq3)
((0 1) 38)
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