Instability of periodic points in non-autonomous systems

When modelling a physical system, we want to rely only on concepts or prop-
erties which remain unchanged if we use slightly different functions from the “actual
modelling” functions. For example, one might prove that a particular training al-
gorithm under certain conditions will always have a periodic orbit. However, if this
periodic orbit could be annihilated, by arbitrarily small changes in the functions in
the non-autonomous system, then in actual implementations of this training algo-
rithm, we can not expect the periodic orbit to exist, or utilize the periodic orbit,

when modelling physical systems with these functions.

*

To illustrate this point with an example, define the function f : [0,1] — [0, 1]
a8 f{2)= % - %x Notice that f has a fixed point at % If we deform f just slightly
to a new function g, then ¢ may not have the fixed point at exactly %», but it will

still have a fixed point.
24
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In this case, the fixed point z = % of f is stable under a small deformation of f. On *
the other hand, the fixed point of the function A shown in the following diagram is

not stable.
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By slightly deforming & to r, then a fixed point no longer exists, so the fixed point
is unstable under a small deformation of k. We.now introduce many definitions, -

and theorems that are develop;ad in [GOLUB].

DEFINITION 2.9. Let X,Y be smooth manifolds and f : X — Y be a smooth

mapping. Let W be a submanifold of Y and = a point in X. Then f intersects W
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transversely at (denoted by f MW at z) if either

(L) f(z) ¢ W or

(I1.) f(z) € W and Tj(p)Y = Ty)W + (df)o(T=X). If A is a subset of X,
“then f intersects W transversely on A (denoted by fOW on A if fAW at z for
all x € A.) Finally, f intersects W transversely (denoted by fOAW ) if fAW on
X.

Let X =R, Rx {0} = W, Y = R? and f(z) = (z,2%). Then fA W at all

nonzero z, but the intersection at = 0 is a non-transverse intersection.

It we set 9(z) = (z,2® — 1), then g W at all z.
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“ If we refer ba,ck to our original examples, we observe that f did not lose its
fixed point when we perturbed it to ¢ because the graph of f as a submanifold of
R? intersects the‘ line y = z transversely. On the other hand, when we deform the
function A to the function r, the fixed point of & vanished because the graph of A

does not transversely intersect the diagonal y = z in ]I?RZ.

DEFINITION 2.10. If W is a submanifold of Y, the codimension of W equals the

dimension of Y minus the dimension of W i.e. codim W = dimY — dim W.

The next proposition and theorem play a crucial role in showing that certain

types of periodic points are unstable in non-autonomous systems.

Yo

-

PROPOSITION 2.2. Let X and Y be smooth manifolds, and W C Y a submanifold.
Suppose dim W + dim X < dimY i.e. the dim X < codim W. Let f: X —Y be
smooth and suppose that fAW. Then f(X)NW = 0.

Proof: [GOLUB].
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THEOREM 2.2. Let X and Y be smooth manifolds, and W a submanifold of Y. Let
f:X — Y be smooth and assume that fHW. Then f7Y W) is a submanifold of
X. Also, codimf~Y(W) = codim W .

Proof: [GOLUB].

We next introduce the definition of a jet bundle as presented in [GOLUB].
We.; develop these definitions because given a smooth function f : R® —s R™ .we
want to study the jet map jOf : R® — R" x R", where for any p € R™ we have
7°f(p) = (p, f(p)). Notice that j°f is just the graph of f. For completeness the
definition below also develops higher order jets, but we do not use utilize them in

later proofs.

DEFINITION 2.11. Let X and Y be smooth manifolds and le't p be a point in X.
Suppose f,g: X — Y are smooth maps with f(p) =9(p) =q.

(1). f has first order contact with g at p if (df )p = (dg), as mappings of TyX — TyY.
(I). f has kth order contact with g at p if (df) : TX — TY has (k — 1)st order
contact with (dg) at every point in T,X. This is written as f';g at p. (k is a

positive integer.)

Yo

(III). Let J*(X, Y)p,q denote the set of equivalence classes under “r’: at p” of map-
pings f: X — Y where f(p) = q.
(IV). Let J*(X,Y) = U J¥X,Y)p, (Disjoint union). An element o in

(Pg)EX XY
J¥(X,Y) is called a k-jet of mappings from X to Y. -

(V). Let o be a k-jet, then there exist p in X and g in Y for which o is in J*(X, Y)p,e-
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The point p is called the source of . The mapping o : J¥(X,Y) — X given by

o — ( source of o) is the source map.

Given a smooth mapping f : X — Y there is a canonically defined mapping
7¥f: X — J¥(X,Y) called the k-jet of f defined by j* f(p) equals the equivalence
class of f in J¥(X, Y)p,1(p) for every p € X. In [GOLUB], they show that j*f(p)
1s a way, independent of the parameterization of the manifold, of representing the
Taylor expansion of f at p up to order k. In the simpler case where X = R, and
Y =R, and f : R — R, then j*f describes the Taylor expansion as follows. We
have j* f(p) = (p, f(p), f'(p), /P (p),. .., f®)(p)). For our purposes we only use j°f
which is the graph of f.

In general, J*¥(X,Y) is a smooth manifold. We only consider JO(R™,R™).
Furthermore, J'(R",R™) = R" x R™. If f : R® — R™ is smooth, then PRl £

R™ x R™. Now we present the C'™ Whitney topology ‘following [GOLUB].

DEFINITION 2.12. Let X and Y be smooth manifolds. Denote by C*®°(X,Y), the
set of smooth mappings from X to Y. Choose a metric d on Jk(X, Y) compatible
with its topology. This is possible since all manifolds are metrizable. We now define
a basis for the topology. For each smooth function f : X — Y, define Bs(f) =
{9 € C®(X,Y): forall z € X,d(jkf(:c),jkg(x))f 6(z)} where §: X — Rt is a
continuous map. If we let thesé Bs(f) range over all natural numbers k, all smooth
functions f, and all continuous functions &, then {Bs(f)} is a basis for C*°(X,Y),
[GOLUBJ. This is called the C* Whitney topology on the set C*®(X,Y).

A helpful way to think about a particular basis element {Bs(f)} is that it is
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the set of all smooth mappings of X — Y, all of whose partial derivatives up to
order k are é-close to f’s corresponding partial derivatives.

We require the next definition and proposition from [GOLUB]| because we will
soon use a theorem that says a particular subset of C*°(X,Y’) is residual. What we

“want to know is that this residual set is dense in the space C*°(X,Y).

DEFINITION 2.13. Let F' be a topological space. Then a
(I.! A subset G of F is residual if it is the countable intersection of open dense *
subsets of F'.

(I1.) F is a Baire space if every residual set is dense in F.

PROPOSITION 2.3. Let X and Y be smooth manifolds. Then C*®(X,Y) is a Baire

space in the Whitney C'* topology.
Proof: [GOLUB].

We also need this next proposition from [GOLUB].

PROPOSITION 2.4. Let X, Y and Z be smooth manifolds. Then C®(X,Y)xC*®(X, Z)
is homeomorphic (in the Whitney C™ topology) Wwith C*°(X,Y X Z) by using the

standard identification (f,g) — f X g where (f x g)(z) = (f(z), g9(z)).

We now define multi-jets and state the Multijet Transversality Theorem from

[GOLUB]. Multi-jets are essentially the “cartesian product” of jets. -
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DEFINITION 2.14. Let X andY be smooth manifolds. Define X* = X x X x---x X
(s-times) and X(©) = {(z1,22,...,25) € X* : for some i and J» Ti # z;}. Recall
from definition 2.11 the source map a : J¥(X,Y) — X. Define a® : X, Y)s —_
X° as a*(01,02,...,05) = (a(01),0(02),...,a(05)). Then we call JF(X,Y) =
‘as—l(X(’)) the s-fold k-jet bundle. X is a manifold since it is an open subset of
A%y Thes, Jsk(X, Y') is an open subset of J¥(X,Y) and is also a smooth manifold.
Now let f: X — Y be smooth. Then we define the multi-jet map of f as js* f
X6 — LHX,Y) where ¥ f(21,23,...,25) = (7 f(21), 5% F(22), ..., 5* f ()

-

For our purposes, we use the following type of multijets. Suppose f,g,r
are smooth maps and f,g,r : R® — R". Further, suppose v :‘IR" — R",
where ¢(z) = (f(z),9(z),r(z)). Then for any z,u,v € R", we have j3°(z,u,v) =
(7°%(2), %% (u), %%(v)) = (2, f(2), 9(2), 7(2), u, f(u), g(u), 7(w), v, f(v), 9(v), (v)).

THEOREM 2.3. (Multijet Transversality Theorem). Let X and Y be smooth mani-
folds with W a submanifold of JR(X, Y). Let Tw = {f € C®°(X,Y) : j,*fAW}.
Then Tw is a residual subset of C*°(X,Y).

Proof: [GOLUB].

Yo

Now that we have presented the definitions and theorems from [GOLUB], we

consider the non-autonomous system {f,g,9, f, f, 9,9, f, f, 9,9, f, ... }. The follow-
ing theorem says that any point of period 2 with respect to {f, g, 9, f, f, 9,9, f. f. 9, 9,

f5--.} is unstable. However, it is possible for a periodic orbit of peried 4m to be

stable with respect to {f,9,9, f, f,9,9, f, f,9,9, f...}. As in the autonomous case,



