Using topology and geometry to study the Henon attractor

The results from Section III suggest that more complex behavior is to be
expected for non-autonomous dynamical systems. Consequently, in this section we
turn our attention to a more complex attractor than a fixed point or periodic point.

Define T : R? — R? as Tiap)(z,y) = L+ y — az?, bz) where a = 1.4 and
b =.3. We prove that there is an open interval about the point (1.4,0.3) € R? such
that 7" has positive topological entropy. By [KATOK], in an open interval about
the point (1.4,.3), T|(a,b) has a transverse homoclinic point. We find a lower bound,
log(1.272), for the topological entropy of the Henon map. We also show that the
Henon attractor contains an infinite number of paths from each of four distinct path

classes.

SKETCH OF PROOF

First, we define the standard quadrilateral Q which acts as a trapping region of
the attractor. Then we characterize the set 7%(Q). We define four different classes
of paths lying in T7%(Q). These classes of paths are called [v],[6], [3], and [a]. We

show that these paths cover each other in the following sense: for any path o € [4],
82
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then T'o o € [a], and T o o € [§]. From the path covers, we create a four by four
matrix, called S.

Matrix powers, i.e. S¥, corresponds to function iteration T*(o). We use this
to show that the largest eigenvalue of S will be a lower bound on the growth rate
of the number of distinct subpaths of T%(c) lying in either [4],[é], [A], or [a]. This
allows us to show that there is a one dimensional disk D, such that the arc length
~ of T¥(D) grows at an exponential rate. In [YOMDIN], a relationship between the
gfowth rate of a disk under iteration of the map and the entropy is established;
they prove that the entropy of 7' is greater than or equal to this growth rate. This

implies that the entropy of 7' is greater than log(1.272).

DISCUSSION

DEFINITION 5.22. Set @ = (—1.33,.42), R = (-1.06,—.5), U = (1.245, —.14), and
W = (1.32,.133). Set Q = quadrilateral QRUW , and set % = T*(9).

What follows is a picture of Q:

Q
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What follows is a picture of 2:

REMARK 5.24. It is known that T(Q) C int(Q). (See [HENON].) Hence, Q is a

trapping region.

COROLLARY 5.6. 2 is an invariant set i.e. T*(2) C % for all k > 1.

Proof: Claim: T'(2) C 2.
By Remark 5.6, T'(Q) C int(Q), so % C T'(int(Q)) C T'(Q). Apply T to both sides;

we obtain 7'(2) C 2. Now we apply induction and use the fact that 7'(2%) C 2. W

Next we divide the set 2 into regions so that we can define classes of paths in

DEFINITION 5.23. Set Region A = {(z,y) € 4:z < —1.1}.
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Region A

The following may seem a bit strange, but a convenient way to define the classes
of paths is to define predicates, and then use these predicates to define particular

regions of 2.

DEFINITION 5.24. Define the predicate Pg : 4 — {True, False } as follows: Set
Pp(z,y) = True, if there is a path p : [0,1] — 2 satisfying conditions I through
II1.

Iop(t) = (pa(t), py(t)),

I1. p(0) = (z,y) and p(1) = (0.56,y0), where (0.56,y9) € ({0.56} x [—.05,—.15])

n o

II1. py(t) <0.56 for all t € [0,1].

Otherwise, set Pp(z,y) =False. Set Region B = {(z,y) € A : Pg(z,y) =True}.
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Region B

DEFINITION 5.25. Define the predicate Pc : %4 — {True, False } as follows: Set
Po(z,y) = True, if there is a path p : [0,1] — 2 satisfying conditions I through
II1.

Lop(t) = (p2(t), ny(1)),
I1. p(0) = (z,y), and pz(1) = —0.31,
II1. py(1) < —.30 and pg(t) < —0.31 for all t € [0,1].

Otherwise, set Pc(x,y) =False. Set Region C = {(z,y) € % : Pc(z,y) =True}.

Region C
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DEFINITION 5.26. Define the predicate Pp : 2% — {True, False } as follows: Set
Pp(z,y) = True, if there is a path p : [0,1] — A satisfying conditions I through
Iv.

L. u(t) = (pa(t), my(t)),

. II. p(0) = (z,y) and p(1) = (0.4,0.17),

I11. For all t € [0,1], if ps(t) < 0.4, then py(t) < —0.1,

IV. For all t € [0,1], if ps(t) > 0.4, then py(t) < 0.195.

Otherwise, Pp(z,y) =False. Set Region D = {(z,y) € % : Pp(z,y) =True}.

Region D

DEFINITION 5.27. Define the predicate Pp : 24 — { True, False } as follows: Set
Pg(z,y) = True, if there is a path p : [0,1] — A satisfying condition I through
V.

Iop(t) = (pe(t), uy(t)),

I1. u(0) = (z,y) and p(1) = (1.26,—0.02),
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II1. For all t € [0,1], pz(t) > 0.9 and py(t) > —0.02

Otherwise, set Pp(x,y) =False. Set Region E = {(z,y) € % : Pg(z,y) =True}.

Region E

3

DEFINITION 5.28. Define the prédicate Prp : 4 — {True, False } as follows: Set

Prp(z,y) = True, if there is a path p : [0,1] — A satisfying condition I thru I11.
Lo p(t) = (pa(t), 1y(2))-

I1. p(0) = (z,y) and p(1) = (0.0,0.25).

III. For all t € [0,1], we have —0.5 < pg(t) < 0.5 and py(t) > 0.1.

Otherwise, set Pr(z,y) =False. Set Region F = {(z,y) € % : Pg(z,y) =True}.
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Region F

Now, we define the four path classes, and show pictures of a typical path. The

pictures enable us to see the geometry and topology in the proof.

DEFINITION 5.29. Define [y] = {p: [a,0) — A 0<a < b <1 and p is a C™ path

and there exists s,t € [a,b] such that u(s) € Region A and pu(t) € Region B}

Region A
3

Region B
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DEFINITION 5.30. Define [a] = {p: [a,b] — %/ 0 <a <b< 1 and pu is a C*® path

and there exists s,t € [a,b] such that u(s) € Region E and u(t) € Region C'}

Region E

[o]

s

Region C

DEFINITION 5.31. Define [6] = {p: [a,b] — A 0 <a <b< 1 and p is a C™ path
and there exists s,t € [a,b] such that u(s) € Region E N[1.22,1.28] x {—0.02} and
p(t) € Region D}

Region D
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DEFINITION 5.32. Define [f] = {p: [a,b] — %] 0<a<b<1 and p is a C* path

and there exists s,t € [a,b] such that u(s) € Region A and p(t) € Region E}

Region A

‘M Region E

In this next section, we define what it means for one path class to T' cover the
other path class. We rely on this notion to construct a lower bound on the length
of the path, T’“(a) as we iterate T'. First, we require technical Lemmas 5.16, 5.17,

??, 5.18, 5.19, 5.20, and 5.21 to prove that certain path classes cover other path

classes.

LEMMA 5.16. T[(z = —1.1) N Region A] C Region C.

Proof: See the appendix.

LEMMA 5.17. T[(z = .56) N Region B] C Region D.

Proof: See the appendix.
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LEMMA 5.18. T'([1.22,1.28] x {—0.02} N Region E) C Region A.

Proof: See the appendix.

. LEMMA 5.19. T((z = —.31) N Region C') C Region B.

Proof: See the appendix.

LEMMA 5.20. T'((z = 0.9) N Region E) C Region F.

Proof: See the appendix.

LEMMA 5.21. T((z = 0.40) N Region D) C Region E.

Proof: See the appendix.

DEFINITION 5.33. Suppose [u] and [v] are one of the four path classes defined above.

We say [u] T path covers [v] if for any 0 € [u], then T 0 8 € [v].

DEFINITION 5.34. Let p : [a,b] — A be a path. A path v is a subpath of p if

v:|g,s] — % and a < ¢ < s < b, where u(t) = v(t) for all t € [q, s].
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DEFINITION 5.35. v1,v2 : [a,b] — 2 are distinct subpaths of p if there exist
q,71,72,8, where ¢ < r; < ry < s, satisfying either vi(t) = Hlig,ry) and va(t) =

.u'l[rz,s] OR wn(t)= :ul[q,rl] and v1(t) = :”'|['r2,s]'

Define the following subpath matrix:

v a 6 p

|y 01 10
S_a1000
6 0 0 01

g 01 00

REMARK 5.25. We refer to entries of the matriz S as follows: For ezample, [S]yy =
0, and [S)go = 1. When we multiply S times itself k times, we use [S¥]g, to denote

the Ba entry of the matriz S*.

Suppose v is a path in the path class [A]. This next Lemma states that the A\@
entry of the matrix, S, records whether the path 7'(v) has a subpath that lies in
the path class [6].

LEMMA 5.22. Suppose \,0 € {v,,8,8}. Suppose v : [a,b] — A is a path such
that v € [A]. If [S]xg = 1, then T ov € [0].

Proof: (By brute force.)
Case (I.) Suppose v € [y]. Notice that [S]ya = 1, and [S],s = 1. By the
definition of [y], there are s; # so (W.L.O.G. assume s; < s3) and v(s1) € Region

A and v(s2) € Region B. By the definition of Region A and Region B and the fact
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that v is a path, there exist real numbers t;,t2 satisfying so < #; < t5 < s9 so that

v(t1) € Region AN (z = —1.1) and v(t2) € Region BN (z = .56).

By Lemma 5.16, T ov(t1) € Region C, and by Lemma 5.17, T o v(t2) € Region
D. Since Tou|[t1,t2] is a path between Regions C' and D and because of the topology
of 2, there exists s € [t1, 2] such that 7 o v(s) € [1.22,1.28] x {—0.02} N Region

E. Hence, T o V|[¢1,3] € [a]and T o Vl[s,tz] € [6].

Case (II.) Suppose v € [a]. Thus, [S]ay = 1. By the definition of [a] (using
similar reasoning as for [y]) there exists t3 # t4 (W.L.O.G. assume t3 < t4) such
that v(t3) € Region EN(y = —0.02) and v(t4) € Region C' N (z = —0.31). Because
of Lemma 5.18 and the fact that Region £ N (y = —0.02) C [1.22,1.28] x {—0.02},
(see appendix), T o v(t3) € Region A; and because of Lemma 5.19, T o v(t4) €

Region B. Hence, T'o v|j4, 1,1 € [7]-

Case (III.) Suppose v € [8]. Thus, [S]sp = 1. By the definition, of [é], there
exists t5 # tg (W.L.O.G. assume t5 < tg) such that v(t5) € Region EN[1.22,1.28] x
{—=0.02} and v(ts) € Region DN (z = .4). By Lemma 5.18, T'o v(t5) € Region A.
By Lemma 5.21, T' o v(t) € Region E. Hence, T' o v|p; ;.1 € [B].

Case (IV.) Suppose v € [3]. Now, [S]ga = 1. By the definition, of [3], there
exists t7 # tg (W.L.O.G. assume t7 < tg) such that v(t7) € Region AN (z = —1.1)
and v(tg) € Region EN(z = .9). By Lemma 5.16, T'ov(t7) € Region C. By Lemma
5.20, Tov(ts) € Region F'. Since T ov/|f, 4.1 is a path between Region C' and Region
F and because of the topology of 2, there exists s € [t7,ts] such that T" o v(s) €

Region E. Hence, T 0—1/|[,7’3] €la]. A
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We now define a particular path g in 2 so that the length of the path T*(u)

grows exponentially as we increase k.

DEFINITION 5.36. Define p : [0,1] — 2 so that u is C*° and p has at least 4

distinct subpaths so that one subpath lies in [y], one subpath lies in [a], one subpath

~ lies in [6], and one subpath lies in [f3].

n n
DEFINITION 5.37. Suppose M = (mij;) is an n X n matriz. Set ||M|| = Y ¥ m;j.
J=11=1
This next lemma proves that the sum of all entries in the matrix S¥ counts the

number of distinct subpaths of 7%(yx) that lie in one of the path classes, [v], [a], [¢],
or [B].

LEMMA 5.23. We can find a set of distinct subpaths of T* o pu so that each subpath
lies in either [y], [@], [8], or [B]. Further, the number of elements in this set (the

number of distinct subpaths) is > ||S¥||.

Proof: Consider T* o . We use induction on k.
Base Case: k = 1.

By the hypothesis, there exists 4 intervals: [t1,t2], [t3,%4], [t5,t6], [t7,1s] that
are pairwise disjoint or pairwise intersect in exactly one point, and “'[tﬁzl € [v],
Klts,tq) € o, #lies,tq) € [6], and g, 1) € [B]. By Lemma 5.22, there are distinct
subpaths 7' o |, 5,1 € [@], T 0 l[sy,15) € [6], and s1 < s2 OR T o pl, 5,7 € [6],

T o pil[sy,t5] € o], and 81 < s9. Since Sqy = 1, Ssp = 1, Sgo = 1, by Lemma 5.22,
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T o plitg,14) € V), T 0 plieg,tq) € (Bl and T o plfyy 4] € [@]. Further, all 5 of these

subpaths of 7' o y are distinct. The proof for the Base Case is complete.

The induction hypothesis is long, so we break it into two parts, (I.) and (IL.).
For each ¢,0, A € {v,¢,6, 3},

(I.) Suppose that T* o u has [S¥], distinct subpaths which are elements of
_ [A], and all of these subpaths are of the form T* o #t][s,4) Where #|[t,~,t,~+1] € (€] and

i€{1,3,5,7},and t; < s <t < tiy1.

(II.)  Suppose any /\,)\’ € {v,a,6, 3}, where A # /\’, satisfy the following: if
T* o i[5, € [A] is one of these [S*].x paths and if T% o #[u,0] is one of these [Sk]&\r
paths then either ¢ < u or v < s ie. [s,t] N [u,v] = 0 or [s,¢] N [u,v] = a single
point.
Notice that the base case trivially satisfies parts (I.) and (II.). Further, each distinct

subpath, T% o #l[s,1)> lying in the set of all [S¥]cx paths in [A], satisfies the following:
if Syg = 1, then by Lemma 5.22, T o T* o tl[s,9) € [0]-

REMARK 5.26. We need to be sure that for any two distinct subpaths

Tk o,u|[u1’,,l],Tk o ,u|[u2’,,2] € [N, where t; < u3 < v1 < up < vy < tiy1, then
ToT*e ,u|[u1’vl] and T o T* o pl[u2’v2] are distinct subpaths of T**' o . This is
trivial because vi < vy so this implies T*+1 o ,u|[u1,,,1], el g /‘I[uz,vzl are distinct

subpaths of T*+1 o p.

! !
(IIL.)  Further, if 7% o Hl[uy 0] € [A] and T* o tl[ug,vy) € [A] and A # X', then by

(IL.) [u1,v1] N [uz,v2] = O or [u1,v1] N [uz,v2] = a single point. Thus, for any two
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paths, where one path is a subpath of 7%+ o u|[u1’vl] and the other is a subpath of

/ Sak il £l [ug,vy)» are distinct.

By (L), (IL), and (IIL), there are [S¥]e4[S]10 + [S*]calSlat + [S*]es[Slso +
[S*]cs[S]ge distinct subpaths of T*+1 o y € []. This sum equals [S*+1],9 by the
definition of matrix multiplication. We also see by Remark 5.26 and (III.) that the

. distinct paths of T%+1 0 i corresponding to [S*11] satisfy the induction hypotheses.
=

REMARK 5.27. The spectral radius, o(S) of the path matriz, S, is greater than 1.
Hence, logo(S) > log(1.272).

Proof: We calculate the characteristic polynomial p(\) of S,

-1 1 0

1 =21 0
A=y o _x1

0 1 0 -=A
Expanding along the first column we obtain:

-2 0 0
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Thus, p(2) =16 —4 —1 > 0 and p(1.272) < 0, so p(A) has a root greater than
1.272. 1

REMARK 5.28. Suppose d(z,y) is the Euclidean metric in R%. If Q and P are
subsets of R?, set p(Q, P) = inf{d(q,p) : ¢ € Q and p € P}. Set r = min{p( Region
. A, Region B), p( Region E, Region C), p( Region A, Region E), p( Region E, Region
D)} Then r > 0 because all the regions are compact and pairwise disjoint. Thus,
we see that for any path v € [y] U [a] U [8] U [B] implies that the length of the path

v>r.

LEMMA 5.24. The length of the path T* o p > ||S*||r.

Proof: (Notation: if o is a path, we write £(c) to represent the arclength of
0.) Set N = ||S¥|. Since S is a matrix of 0’s and 1’s, N is a natural number.
By Lemma 5.23, we see that 7% o u has N distinct subpaths each of which is in
[y] U [e] U [6] U [B]. Hence, we have intervals [s1,t1],...,[sn,tn] that are pairwise
disjoint or intersect pairwise in a single point, and T o pls;e0 € U [e] U []U[B].

Now for any path 0 : [a,b] — 2 and any s,u,v,t wherea < s <u < v <t <b,
then the paths satisfy the inequality: £(0|s ) > £(0|[s,u)) + £€(0|[v,g)- This implies
that £(T% o p) > ‘évjl 2(T* o fls;) = l%lr = ||S*||r. B
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LEMMA 5.25. The lower bound is log(c(S)), where o(S) is the spectral radius of S,

k
i sup 281

> logo(S5).
k—o0 k

Proof:

Since r > 0 and r is independent of &,

1 k 1 k k
tim sup BISE ] _ o o Jlog Sl +logr - log|ISH]

‘ k
Also, we have lim suplo—gl;cs—ll > lim sup% log( trace S¥). We finish the proof by

k—o0 k—oo

showing that limsupilog( trace S¥) = logo(S). In [MISIUR], they prove that
k g

—00

1
lim sup(trace(S¥)]¥ = o(S). Since the logarithm function is continuous and increas-
k—o0

[

1
ing, loglimsup[trace(S¥)]¥ = limsuplog [trace(S*)|*F = limsupt log[trace(S¥)].

k—o0 k—o0 —00

Hence, log o(S) = lim supg log[trace(S*)]. W
k—o0

THEOREM 5.21. The entropy of the Henon map with parametersa = 1.4 and b = .3,

is bounded below by log(1.272), h(T) > log(1.272).
Proof: Let ||T*opu| denote the arc length of the curve T*opu. From [YOMDIN],
h(T) > lim sup% log ||T% o |
k—o0
k

k—o0 k

by Lemma 5.24. The previous expression is

> logo(S)
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by Lemma 5.25. The previous expression is

> log(1.272)

by Lemma 5.27. B

THEOREM 5.22. If f is a C1**, (a > 0), diffeomorphism of a compact two-dimensional
manifold h(f) > 0, then f has a hyperbolic periodic point with a transversal homo-

clinic point.

Proof: [KATOK].

COROLLARY 5.7. For some open neighborhood about the point (1.4,0.3), the Henon

map T(qp)(z,y) = (1+y — az?,bz) has a transverse homoclinic point.

Proof: Since T(,3) is a € diffeomorphism, and h(T") > 0, Theorem 5.22

implies that 7|y 4.3), has a transverse homoclinic point. W

COROLLARY 5.8. The Henon attractor (A = 1.4, B = 0.3) has the following geom-

etry. Consider the following four path classes defined earlier:
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Region A

Region E

[o]

/

Region C

Region D
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Region A

The Henon attractor, k?]lek(Q), contains an infinite number of copies of each

path class v, 9, 3, and a.

Proof: In the proof of Lemma 5.23, we show that for any path o € [y] U [6] U
[3]U]a], and for any large m € N that we can find a large enough k such that 7%(o)
contains more than m subpaths in [y], more than m subpaths in [é], more than m
subpaths in [3], and more than m subpaths in [a]. Since m is arbitrary and 72(9)
contains all four classes of paths, then the Henon attractor, ’EITI; (Q) contains an

infinite number of paths of each class: [v],[é], [3], and [a]. H

APPENDIX

The goal here is to characterize the geometry of 7%(Q). As a reminder, 9 is

the quadrilateral Q RUW, which is a trapping region:



