Contractive non-autonomous systems

* In the previous section, we found in the most general case that fixed points are
unstable. For many neural net models, the goal is to train the network to converge
toward an optimal point i.e. a fixed point. In order to guarantee this situation, we
impose additional conditions on the training functions. For this reason, this section
explores non-autonomous systems where all orbits converge to a fixed point or a

periodic point.

To motivate the following theorem, suppose the training functions have the
same fixed point of weights. The problem is to ensure that the iterates of the

training process convérge to this desired state.

THEOREM 3.9. Suppose f; : R — R is a sequence of differentiable functions. Fur-

ther, assume that p is a fized point of each f;, i.e. fi(p) = p for every i. Suppose .

there exists a § > 0 and an € > 0 so that for any x € (p — 6,p] we have that
0< f: (z) < (1 —¢) for all i. Then for any xo € (p — 6, p], the orbit of x¢ converges

to p, i.e. lim frofyi0...f20 fi(zo) =p

Proof: Set ap = zo. Set a; = fi(zo). Set ag = fao fi(zo) ,...,ax = fro---0
38
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fi(zo).

We first need to show that fz o fy_jo...0 fa0 fi(zo) lies in (p — 8, p| for all k.
We do this by induction. The base case ag = z¢ is in (p — 8, p] because that is the
assumption in the theorem. For the inductive step, suppose fx_j0...0fy0 fi(z0) lies
in (p — 6,p]. The derivative f;'(z) > 0 on (p — 6, p], which implies a; = fr(ag—1) >
ar—1 > p — 6. Suppose a > p. The Mean Value Theorem implies there a point b

in [ag, p] with f'(b) < 0. This contradicts the hypothesis, so a; < p.

. The next part involves showing that a; — p.
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The diagram shows the fixed point line y = z, and the line with slope 1 — ¢ that
passes thru the point (p,p). Also, shown is the point (ag,ax), where ay is the result
of k iterations from the initial point zg. The curve represents the graph of the

function fr4;. This curve must lie above the line with slope 1 — € because if not
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then the Mean Value Theorem tells us that there must be a point a € (p — 6] where
fre1'(a) <1—e

This fact allows us to find a positive lower bound for ar4+1 — ag. To do this, we
define a few variables using the geometry of the picture. Consider the vertical line
‘segment that starts at the point (a,a;) and ends where the vertical line intersects
the line through (p,p) with slope 1 — e. Call the length of this line segment, 7.

Set Az = p — a, and set Ay = p — ap —; , as shown in the picture. We see that

%’é:l—e.

Substitute the expressions for Ay and Az into the equation, %% = 1—e¢. Hence,
Y = (p—ax) — (p—ax)(1 —€) = (p — ax)e. Since the graph of the function fr41
lies above the line with slope 1 — €, we see that a1 - 2= (p & a)e.

This proves that klir&ak = p. To see why, let v > 0. If |p — ax| > ~ for all
natural numbers k, then agy; — ap > 7e for each k. 'This is a contradiction since
sup{ai,az,...} < p and both € and 7 are positive. Hence there is an m so that

|[p— am| < 7. Since {a}} is increasing, then |p — ax| < 7 for any k > m. W

Notice that ag41—ar > (p— ap)e allows us to estimate the rate of convergence
of zg to p. The following is similar to the previous theorem, but not quite a general-
ization because there are no derivative hypotheses for metric spaces. The theorem
is relevant because it helps determine when a training algorithm will converge to a

unique training function.

THEOREM 3.10. Suppose (X,d) is a complete metric space. Suppose f; : X — X

is a sequence of contraction mappings such that there exists \; with 0 < \; < 1 so
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that d( fi(z), fi(y)) < Xid(z,y) for all i and for all z,y € X. Suppose that ﬁ =0
=1

By the Contraction Mapping Lemma [SPIVAK], each f; has a unique fized point p;.

Suppose that all the fived points are the same point i.e. there exists p so that p = p;

for every i. Then klim feofe—1...fao fi(z)=p forany z € X.
—00

PROOF: Let « € X. The hypotheses imply that d(f1(z), p) = d(f1(z), fi(p)) <
A1d(z, p). Again, apply the hypotheses in the same way,
d(fz 0 fi(z),p) = d(f2 0 fi(), fa(p)) < A2d(f1(z),p) < A2 had(z,p).
Suppose by induction that d(fi_1 0 fiz. .. f1(2),p) < ('fljllx,-)d(x, p).
SRS ot file). -
Then d(fi o fi-r . fi(2),p) = d(fe(u), u(p) < Medv,p) < ([T N)d(a ), by the

o0
induction hypothesis. The hypothesis [] A; = 0 proves that klim Eoh-1.-- o
s—1 =00

fi(z) =p. W

EXAMPLE:
We discuss two different examples. In the first one ﬁ Ai # 0; in the second one
’ =1

ﬁ Ai = 0. Consider the sequence of functions f, : R — R where f,(z) = s,z + t,.
=]

By example 1.1, we have lim fyo fy_1... fi(z) = ( ﬁ si)T + § ( ﬁ 8i)tp-1.
k—o0 g=1 k=2 1=k
In our first example, we set s, = (1 —27")z and set ¢, = 27™. As in example

1.1, we obtain the following. When z < 1, we have nll‘&fn 0 fa-1...fi(z) <1, and

when z > 1. we have nlLr&fn ofa-1...f1(z)>1. &

In the second example, set gn(z) = spx +t, where s, = 1 — nlﬁ and t, = n+-1

As we calculated for {f1, f2,...,}, we see that nlim InOgn-1---91(z) = ( ﬁ si)T +
s s=1
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ooks,')tk_l e § ( f'Io 8i)tg—1 because by Theorem 1.1, (ﬁ ;) = 0. Since gyp(1) =
- i=1

o0

5

K2 ¢

1 for all n, the orbit of the point 1 converges to 1 i.e. nlLrgogn Ogn-1-.-41(1) = 1.
o0 o0

This implies that Y- ( IT s;)tx—1 = 1. Thus, nlinologn 0gn—1-..91(z) =1 for any real
k=2 i=k T

number z. H

Although these two examples appear to be similar, the difference is that the
rate at which the slopes of the line approach 1, i.e. non-hyperbolicity, is different.
This is why ﬁ Ai # 0 for {f1, f2,...}, while ﬁ Ai =0 for {g1,92,...}-

- i=1 s=i

The next theorem is similar to the previous theorem; however, ‘in Theorem
3.11, the fixed points p; of each f; no longer have to be the same. We only require
that these fixed points p; converge to a single point p. The theorem is relevant
to training because it tells us that the training algorith{m will converge to a unique
point, p, iﬁ the weight space, as long as the fixed points, p;, of the training functions

fi in the limit converge to p.

THEOREM 3.11. Suppése (X,d) is a complete metric space. Suppose f; : X — X
is a sequence of contraction mappings such that there exists A\j with 0 < Aj <1 so
that d(fi(z), fi(y)) < Mid(z,y) for all i and for all z,y € X. By the Contraction
Mapping Lemma, each f; has a unique fized point p, Suppose that igrgopg = p and

that sup{)\; : 1> 1} = A < 1. Then klim fro fici...fao fi(z) = p for any xz € X.
—00

Proof: Fix z € X. Suppose sup{\; :7 > 1} =X < 1. Let € > 0.
Sgt oy o min{ilg—’\l} < £. By hypothesis, there exists N so that d(pn,pm) <7

and d(p,,p) < 7 whenever n,m > N. Set y = fy o fy_10...f20 fi(z). Set
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L = d(pn+1,y). The case L = 0 is a simple modification of the steps for the proof
of L > 0. If L > 0, there exists Q so that \F < 37 Whenever k > Q. Choose M =
N+Q. When n > M we have d(fn 0 fa—10... fi(z),p) = d(fn4jo -0 fn4+1(¥),p),
for some 7 > @). Hence,
d(fntj0--0 fns1(y),p) Sd(fntjo--- 0 fny1(y), PN+j) + d(PN+;5P)
N+j N+2

<( II M)dy,pn+1)+( II Ai)d(pn+1,PN42) + ...

1i=N+1 i=N+1

FAN4j—1AN+;A(PN+j—-2, PN+j—-1) + AN4jd(DN+j-1,PN+;) + §

N+j N+j .
< IT A)d(y,prv+1) + YAN+ + ANt AN+ + (I M)+ §
a=N+1 1=N+2

SNL+95]+5<e W

In the next theorem, we assume the non-autonomous system, (X, { N
fi, fay .. fn,...}) has period n. This theorem is different from the previous the-
orems because if we know that our non-autonomous'system is periodic, then we
do not have to make any assumptions about where the fixed points of each of the

training functions f; are.

THEOREM 3.12. Let (X,d) be a complete metric space. Suppose fi : X — X

where 1 < i < n are continuous functions. Suppose there exists A1,...,Aq > 0

with ﬁ Ai < 1, so that for any z,y € X, we have d(fi(z), fi(y)) < Aid(z,y) where
=

< <n.

There exists ¢ € X so that for anyz € X klim [fa© fa—10---0fi]¥(z) = q. Further,

the sequence of functions {g1,92,...} approaches the following orbit of period n,
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{g, f1(9), f20 fi(q), fs 0 f20 f1(g),- -, fa-10 fa—20... f20 fi(q)}. More precisely,
for any € > 0 and for any x € X there exists N so that m > N where m = kn +r

and 0 <r<n implies that d(fy o fr—10...f20 fi(z)o[fan o fam10---0 fl]k(:v),
frofr—1...f20 fi(q)) < €. Notice that the case of r = 0 is already covered above.

Proof: Set h = fp 0 fa—1...f2 0 fi. First, we show that h is a contraction
mapping. This assertion follows from the following inequality. The inequality is

d(h(2), h(3)) < Ind(fa10- - F20f1(2),d(fam10-. - f20fi(y) < AAnct - Aodrd(z, D).
Now, apply the Contraction Mapping Lemma to deduce that h has a unique fixed .

point q. The Contraction Mapping Lemma implies that for any z € X
lim (a0 facs 00 filk(z) = ¢
This equation and the continuity of f; implies that
kli’rgloﬁ o [fuo fam10---0 fi]f(z) = fi(q).
Use the same argument on fa:
Jim f2o fio[fao fa-10---0 Al* (@) = fao fi(q)-
By induction we see that
Jim fr...fr0 frolfao facro-+0 fil(@) = fr-.. f20 (0),

where 0 < r < n. Judl



