
Contractive non-autonomous systems

t In the previous section, we found in the most general case that fixed points ate

unstable. For many neural net models, the goal is to train the network to converge

toward an optimal point i.e. a fixed point. In order to guarantee this situation, we

impose additional conditions on the training functions. For this reason, this section

explores non-autonomous systems where all orbits converge to a fixed point or a
I

periodic point.

To motivate the following theorem, suppose the training functions have the

same fixed point of weights. The problem is to ensure that the iterates of the

training process converge to this desired state.

TunoREM 3.9. Suppose "f; : IR -+ IR is a sequence of differentiable functions. Fur-

ther, a,Elurne that p is a fired point of each f;, i.".. f;(p) - p for eaery i. Suppose

the reeds t sa6>
,

0 S fl (r) < (1 - e) for all i. Then for any o0 € (p - 6,p1, the orbit of xg conaerges

to p, i.e. , l im f* o fx-r o . .. fz o ft(*o) - p
&*oo

Proof: Set oo - l ,s. Set or :  fr( to). Set a2 : fzo /r(co) , . . .)oi -  f* o'" o
38
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/r( 'o).

We first need to show that fxo fx-1 o.. .o fzofr(so) lies in (p- 6,p] for ail e.

We do this by induction. The base case ao : cs is io (p - 6,p] because that is the

assumption in the theorem. For the inductive step, suppose fx-ro... ofzofi(cs) lies

io (p - 6,p1. The derivative fp'(x) > 0 on (p - 6,p1, which implies ak: /r(or-r) >

ak-r > p - 6. Suppose a* ) p. The Mean Value Theorem implies there a point 6

in [a1, p] with f*'(b) < 0. This contradicts the hypothesis, so ak < p.

. The next part involves showing that ak + p.

Y=x

slope
1-e

The diagram shows the fixed point line y : ot and the line with slope 1- e that

passes thru the point (prp). Also, shown is the point (o*rox), where a1 is the result

of. k iterations from the initial point xo. The curve represents the graph of the

function fx+t This curve must lie above the line with slope 1 - e because if not

T
Ay

I
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then the Mean Value Theorem tells us that there must be a point o e (p- d] where

f *+ r ' ( o )  (  1 -  e .

This fact allows us to find a positive lower bound for a1.,.1 - a'r. To do this, we

define a few variables using the geometry of the picture. Consider the vertical line
'segment that starts at the point (o*rox) and ends where the vertical line intersects

the line through (p,p) with slope 1 - e. Call the length of this line segment,,yk.

Set Ac - p - 43, and set Ay - p - o,k - ?k r ffi shown in the picture. We see that

#t:r-e.

Substitute the expressions for Ay and As into the equation, #t - 1- e . Hence,

'lx -- (p - a'k) - (p - aexl - e) : (p - ax)e. Since the graph of the function ft +t

lies above the line with slope I - e, we see that ak+t - ap ) 7t, : (p - ak)e.

This proves that 
ol$o* 

- p. To see why, let 1 > 0. If lp - alrl > r for all

natural numbers fr, then o&+r - a,k ) le for each &. tThis is a contradiction since

sup{41 ,a2r. . . }  a p and both e and 1arc posi t ive.  Hencethere is an m so that

lp-a* l<- l .Since {or}  is increasing, then lp -ad < f  for any k) m. I

Notice that ak+t.- ak > (p- a*)e allows us to estimate the rate of convergence

of rs to p. The following is similar to the previous theorem, but not quite a general-

ization because there are no derivative hypotheses for metric spaces. The theorem

is relevant because it helps determine when a training algorithm will converge to a .

unique training function . 
'

TnnonEM 3.10. Suppose (X,d,) is a complete metric space. Suppose fi X -', X

is a sequence of contraction mappings such that there erists \; with 0 < ); ( 1 so
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that d(f;(*), f;@)) < \;d,(x,y) for all i and, for all x,y e X. Suppose that fr rr - 0.
r : l

By the Contraction Mapping Lemma [SPIVAKJ, each f; has a unique fired point p;.

Suppose that all the fired points are the sarne point i.e. there eaists p so that p : pi

for eaery i. Then 
ul*/o 

o f*-t. ..fz o /r(r) - p for any o e X.

PROOF: Let x e X. The hypotheses implythat d(ft(r),p) - d(ft(*), ft(p)) <

)qd(x,p). Again, apply the hypotheses in the same way,

d(f,  o f{x),p) :  d(f,  o h@), fz(p)) < )zd(ft(r),p) I  \)1d(a,p).
i  & - 1

Suppose by induction that d(fxqo f*-z.. . f t(*),p) < ( | |  ) ;)d(a,p).
d:l

Set  y  :  f x - t  o  f * -2 .  .  .h@).

Then d(fx o fx-r . . .fr(*),p) - d(f*(y), f*(p))

induction hypothesis. The hypothesis fr l, -
d:l

h@) -  p.r

EXAMPLE:

We discuss two difierent examples. In the first one fr fr * O;in the second one
oo 

i=l

.[-,\i 
- 0. Consider the sequence of functions /, : R -> IR where f"(*) : sno * tn.

d=l

By example 1.1, we have 
ol5"/u 

o,fr-r ...fr(r) - (-fr r,)" * 
_it,[s;)tr-r.

In our first example, w€ set so - (1 - z-n)c 
1nd 

set t,, : 2-n. As in example

1.1, we obtain the follo*i,rg. When s ( 1, w€ have 
"Eg/, 

o fnt...ft(r) < 1, and

when x ) L we have 
"lgg/, 

o fo-t . . . fr(r) > 1. I

In the second example, set g"(r): snn*tn where sz : 1- #T an{ fo - 1,.

As we calculatedfor  {h, f2, . . . , } ,  we see that  o$o'  ogn-r . . .gr(" )  -  ( - f f is ; ) r+
d=1

< \rd(y , p) <

0 proves that
I
t

&
( II );)d(r, p),
d: l

.lim fx o f*-r
fr+oo

by the

" ' f z  o
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i  f  frs;)f1-1 - i  f  frr ;) t*-r becausebyTheoreml. l ,  ( f f i t i )  -  0. Since go(I):
k=Z' i -k &:Z' i - -k d: l

1 for all n, the orbit of the point I converges to 1 i.e. ,r$f" 
o gn-r .. .gr(1) : 1.

This implies that .i( fr,ri)t*-r - 1. Thus, ,r$0,, o 1n-t...9t(t) - 1 for any real
k:2 i=k

number r. I

Although these two examples appear to

rate at which the slopes of the line approach
oo

This is  why l l , l i  l0  for  {h, f2, . . . } ,  whi le
.' d:l

be similar, the difierence is that the

1, i.e. non-hyperbolicity, is different.

f l  ) i  -  0 for { f i ,92,.  .  . } .
d:l

The next theorem is similar to the previous theorem; however, in Theorem

3.11, the fixed points p; of. each "fi oo longer have to be the same. We only require

that these fixed points pr converge to a single point p. The theorem is relevant

to training because it tells us that the training algorithln will converge to a unique

point, prin the weight space, as long as the fixed points, pi, of the training functions

/i io the limit converge to p.

TnBOnEM 3.11. Suppose (X,d,) is a complete metric space. Suppose f;, X -', X

is a sequence of contraction mappings such that there erists \; with 0 < )i ( L so

that d(f;(*), f;(y)) < \;d(x,v) for all i and for all x,y e X. By the Contraction

Mapping Lemma, each f;.has apnique fiaed pointi;. Suppose that 
Jlgrt 

- p and

thatsup{); :  i  21} : , \  < 1 . Thenolg./n o "f t-r . . .  fzo /r(r) -  p for anv t e X'

Proof: Fix c e X. Suppose sup{.\' z i 2 1} : ) < 1. Let e ) 0.

Set 7 - min{<lP} S f . By hypothesis, there exists N so that d(pn,p^) 1^f

and d(pn,p) <
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L - d(pn+t,y). The case L - 0 is a simple modification of the steps for the proof

of. L > 0. If.L> 0, thereexists Q ro that.\k < f, whenever k>Q. Choose M -

N+Q.  When n )  M wehave d( f "o  fn to . .  .  h@),p)  -  d( fu+ io .  .  .  o" f iv+r  @),p) ,

for some j > Q. Hence,

d(fx+t o .  .  .  o " f iv+r @),p) < d(fx+1 o .  . .  o " f iv+r (y),px+r) + d(py+t,p)
n+i N+2

<(  I I  \ ; )d (y ,pN+i  +(  n  \ ; )d (pu+r ,p f f * r ) * . . .
d-/V*l d:/V*l

*)ru+r-Jn+id(pn+i-z,pN*i-r) * )r+ f i(pu+i-rtpN*r) + ;
u+i tt+i

S (  I I  , \ i )d(y ,pn+)  +r [ r r+ ,* ) ,v+ j ) ,v+ j - r+" '+(  I ]  ] i ) l  + f
,i=/V*l 

- 
r=N *2

<^iL+?[* ]  + i  1e.  I

In the next theorem, we a"ssume the non-autonomous system, (Xr{fi, fzr. . . fn,

h,f2,...fn,...)) has period n. This theorem is dif ierent from the previous the-

orems because if we know that our non-autonomousl system is periodic, then we

do not have to make any assumptions about where the fixed points of each of the

training functions fi are.

Tunonnna 3.12. Let (X,d) be a complete metric space. Suppose f; : X X

wherel S i  < n are continuous functions. Sufposethere esists )r, . . . ,) ,  >
n

with [I ,Ii ( 1, so that for any x,y e X, we haue d(f;(r),f;(y)) < \;d(r,y) where
d=1

IS i3n .

There eristsqe X sothatfor anyx e X 
*t11gtf i  

ofnto...of i le(") - q. Further,

the sequence of functions {fi,g2,...} approaches the following orbit of period n,



{q , f r (q ) , fzo  / r (q ) '  feo  fz  o  / r (q ) ,  . . . , fo - ro  fn -z  o . . .  f zo  f i (q ) } .  Mow p lc ise ly ,

fo rany  e  )0  andforonyoeX therc  es is ts  N so  tha tm2N where tn , :kn* r

and0 (  r  (  n impi ies thatd( f ro f t - ro. . .  fzo f r ( t )o l foo fn-re.r .  of i l t ( r ) ,

f, o fr-f ... fz o fr(q)) < .. Notice that the case of r :0 is olrcody coaered'abooe.

Proof: Set h : fo o fn-t... fz o fi. First, we show that h is a contraction

mapping. This assertion follows from the following inequality. The inequality is

d(h(a) ,n@D < \ "d( f " -1o.  . . fzofr ( r ) ,d( f " -1o.  . . fzofr (y)  S lo)o-r  . . . \z \d(r ,V) .

Noy, apply the Contraction Mapping Lemma to deduce that h has a unique firrpd a

point g. The Contraction Mapping Lemma implies that for any a e X

-tggl foo fn-re.r .  of i le(r ) :  g.  .

This equation and the continuity of fi implies that

&tggn 
o [/, o fn-re .. . o fi][(r) + /r(q).

Use the sarne argument on f2: .

*S"/, 
o.fi o If*o fn-rQ ' ' ' o fiJe(t): fzo /r(q).

By induction we see tlat

. l im f r . . . fzo  ho l f ro  fn- ro  " 'o  f i Je(o) :  f r . . . fz  o  / r (q) ,t

r+@

where0<r  1 .n .  I


