THEOREM 4.17. Suppose (X,d) is a compact metric space. Suppose $f_1, f_2, \ldots, f_n: X \longrightarrow X$ are continuous functions. Then $h(f_n \circ f_{n-1} \circ \ldots f_2 \circ f_1) = h(f_k \circ f_{k-1} \ldots f_1 \circ f_n \circ f_{n-1} \ldots f_{k+1})$ for any k satisfying $1 \le k < n$.

Proof: Set $g = f_n \circ f_{n-1} \dots f_2$, and set $f = f_1$. Because of Corollary 4.5, we have $h(f_n \circ f_{n-1} \circ \dots f_2 \circ f_1) = h(f_1 \circ f_n \circ f_{n-1} \dots f_2)$. Now set $f = f_2$ and $g = f_1 \circ f_n \circ f_{n-1} \dots f_3$ and apply Corollary 4.5; this implies $h(f_1 \circ f_n \circ f_{n-1} \dots f_2) = h(f_2 \circ f_1 \circ f_n \circ f_{n-1} \dots f_3)$. By induction, we continue making this argument until we cycle all the way around. \blacksquare

Next we develop a few lemmas so that we can generalize $h(\{f,g\}) = \frac{1}{2}h(g \circ f)$ to $h(\{f_1, f_2, \dots, f_p\}) = \frac{1}{p}h(f_p \circ f_{p-1} \dots f_2 \circ f_1)$.

LEMMA 4.12. Suppose $(X, \{f_1, f_2, ..., f_p\})$ is a non-autonomous system with period p. For any $\epsilon > 0$ there exists $\delta > 0$, independent of n, satisfying the statment: If T is $a(0, n, \delta, f_p \circ f_{p-1} ... f_2 \circ f_1)$ spanning set for X, then T is $a(0, pn, \epsilon, \{f_1, f_2, ..., f_p\})$ spanning set for X.

Proof: Let $\epsilon > 0$. Then since f_p is uniformly continuous there exists $\delta_p > 0$ such that $d(z,w) < \delta_p$ implies $d(f_p(z),f_p(w)) < \epsilon$. Since f_{p-1} is uniformly continuous, there exists $\delta_{p-1} > 0$ such that for any $z,w \in X$, $d(z,w) < \delta_{p-1}$ implies $d(f_{p-1}(z),f_{p-1}(w)) < \delta_p$. Inductively, we can construct $\delta_{k-1} > 0$ such that $d(z,w) < \delta_{k-1}$ which implies that $d(f_{k-1}(z),f_{k-1}(w)) < \delta_k$. Set $\delta = \min\{\delta_1,\delta_2,\delta_3,\ldots,\delta_p,\epsilon\}$. Then $\delta > 0$. Suppose the set T is a $(0,n,\delta,f_p\circ f_{p-1},\ldots,f_2\circ f_1)$ spanning set for X Let $z \in X$. By the definition of T there exist $s \in T$ so that

$$(4.9) d([f_p \circ f_{p-1} \circ \dots f_2 \circ f_1]^k(s), [f_p \circ f_{p-1} \circ \dots f_2 \circ f_1]^k(z)) < \delta.$$

Let j be any integer satisfying $0 \le j < pn$. Then j = pk + r for some $0 \le r < p$. Recall that $[f_p, f_{p-1}, \dots, f_1]^{pk+r} = f_r \circ f_{r-1} \circ \dots f_2 \circ f_1 \circ (f_p \circ \dots \circ f_2 \circ f_1)^k$. Hence, $d([f_p, f_{p-1}, \dots, f_1]^j(s), [f_p, f_{p-1}, \dots, f_1]^j(x)) =$ $d(f_r \circ \dots f_2 \circ f_1 \circ (f_p \circ f_{p-1} \dots \circ f_1)^k(s), f_r \circ \dots f_2 \circ f_1 \circ (f_p \circ f_{p-1} \dots \circ f_1)^k(x)) < \epsilon,$ by 4.9 and the definition of δ .

REMARK 4.17. For any $\epsilon > 0$ there exists $\delta > 0$ independent of n so that $r_{span}(0, pn, \epsilon, \{f_1, f_2, \dots, f_p\}) \leq r_{span}(0, n, \delta, f_p \circ f_{p-1} \dots f_2 \circ f_1)$.

Proof: This follows immediately from Lemma 4.12 and the fact that $r_{span} =$ the number of elements in a minimal spanning set.

LEMMA 4.13. For any $\epsilon > 0$ there exists $\delta > 0$ so that $h(\epsilon, \{f_1, f_2, \dots, f_p\}) \leq \frac{1}{p}h(\delta, f_p \circ f_{p-1} \dots f_2 \circ f_1)$.

Proof: Let $\epsilon > 0$. From Remark 4.17

$$\frac{\log r_{span}(0, pn, \epsilon, \{f_1, f_2, \dots, f_p\})}{pn} \le \frac{\log r_{span}(0, n, \delta, f_p \circ f_{p-1} \dots f_2 \circ f_1)}{pn}$$

The inequality implies that

$$h(\epsilon, \{f_1, f_2, \dots, f_p\}) \le \limsup_{n \to \infty} \frac{\log r_{span}(0, pn, \epsilon, \{f_1, f_2, \dots, f_p\})}{pn}$$

The right hand expression is less than or equal to:

$$\frac{1}{p} \limsup_{n \to \infty} \frac{\log r_{span}(0, n, \epsilon, \{f_p \circ f_{p-1} \cdots \circ f_1\})}{n} = \frac{1}{p} h(\delta, \{f_p \circ f_{p-1} \cdots \circ f_1\}).$$

LEMMA 4.14. The first inequality is $h(\{f_1, f_2, \dots, f_p\}) \leq \frac{1}{p} h(\delta, \{f_p \circ f_{p-1} \dots \circ f_1\})$.

Proof: For any ϵ_1, ϵ_2 satisfying $0 < \epsilon_1 < \epsilon_2, h(\epsilon_1, \{g_i\}) \ge h(\epsilon_2, \{g_i\})$. Hence, Lemma 4.13 yields the result.

Now we work toward the inequality in the opposite direction; i.e. $h(\{f_1,\ldots,f_p\})$ $\geq \frac{1}{p}h(f_p\circ f_{p-1}\ldots f_2\circ f_1).$

REMARK 4.18. Suppose T is $(0, n, \epsilon, f_p \circ \dots f_2 \circ f_1)$ separated, then T is a $(0, pn, \epsilon, \{f_1, f_2, \dots f_p\})$ separated set.

Proof: Let $x, y \in T$. By definition, there is a k so that $d((f_p \circ \dots f_2 \circ f_1)^k(x), (f_p \circ \dots f_2 \circ f_1)^k(y)) > \epsilon, \text{ then } d([f_p, \dots f_2 \circ f_1]^{pk}(x), [f_p, \dots f_2 \circ f_1]^{pk}(y)) > \epsilon \text{ and } 0 \leq pk < pn. \blacksquare$

REMARK 4.19. An intermediate inequality is $r_{sep}(0, pn, \epsilon, \{f_1, f_2, \dots f_p\}) \ge r_{sep}(0, n, \epsilon, f_p \circ \dots f_2 \circ f_1)$.

Proof: This is immediate from Remark 4.18. ■

LEMMA 4.15. For any
$$\epsilon > 0$$
, $h(\epsilon, \{f_1, \dots, f_p\}) \ge \frac{1}{p} h(\epsilon, f_p \circ f_{p-1} \circ \dots f_2 \circ f_1)$.

Proof: By Remark 4.19, for all n,

$$\frac{\log r_{sep}(0, pn, \epsilon, \{f_1, f_2, \dots, f_p\})}{pn} \ge \frac{\log r_{sep}(0, n, \epsilon, f_p \circ f_{p-1} \dots f_2 \circ f_1)}{pn}.$$

Take the $\limsup_{m\to\infty}$ of both sides of this inequality:

$$h(\epsilon, \{f_1, f_2, \dots, f_p\}) = \limsup_{m \to \infty} \frac{\log r_{sep}(0, m, \epsilon, \{f_1, f_2, \dots, f_p\})}{m}$$

$$\geq \limsup_{n \to \infty} \frac{\log r_{sep}(0, pn, \epsilon, \{f_1, f_2, \dots, f_p\})}{pn}$$

$$\geq \frac{1}{p} \limsup_{n \to \infty} \frac{\log r_{sep}(0, n, \epsilon, f_p \circ f_{p-1} \dots f_2 \circ f_1)}{n}$$

$$\geq \frac{1}{p} h(\epsilon, f_p \circ f_{p-1} \dots f_2 \circ f_1). \blacksquare$$

THEOREM 4.18. If $f_1, f_2, \ldots, f_p : X \longrightarrow X$ are continuous functions, then the following relationship holds between the entropy of the non-autonomous system $(X, \{f_1, f_2, \ldots, f_p\})$ with period p, and the entropy of the autonomous system $(X, f_p \circ f_{p-1} \circ \ldots f_2 \circ f_1)$

$$h(\{f_1,\ldots,f_p\}) = \frac{1}{p}h(f_p \circ f_{p-1}\ldots f_2 \circ f_1).$$

Proof: From Lemma 4.15, $h(\epsilon, \{f_1, \ldots, f_p\}) \geq \frac{1}{p} h(f_p \circ f_{p-1} \ldots f_2 \circ f_1)$. Take the $\lim_{\epsilon \to 0}$ of both sides to obtain $h(\{f_1, \ldots, f_p\}) \geq \frac{1}{p} h(f_p \circ f_{p-1} \ldots f_2 \circ f_1)$. The result is immediate by applying Lemma 4.14. \blacksquare

The next idea involves reducing topological entropy of a non-autonomous system to computing the topological entropy of an autonomous system. Consider the period 2 non-autonomous system $(X, \{f, g, f, g, \ldots\})$. The idea is to find the square root of $g \circ f$ with respect to function composition i.e. find a continuous function S so that $S \circ S = g \circ f$.

Theorem 4.19. Suppose $f, g, S : X \longrightarrow X$ where X is a compact metric space. f, g, S are continuous, and $S \circ S = g \circ f$. Then the topological entropy of S equals the topological entropy of S in our notation S is a compact metric space.

Proof: The idea here is to use the uniform continuity of f, S, (X is compact), and then utilize the spanning set definition of topological entropy.

Let $\gamma > 0$. Since f is uniformly continuous, there exists $\delta_f(\gamma) > 0$ satisfying $\delta_f(\gamma) \leq \gamma$ and $d(x,y) < \delta_f(\gamma)$ implies that $d(f(x),f(y)) < \gamma$ for any $x,y \in X$. Similarly, since S is uniformly continuous, there exists $\delta_S(\gamma) > 0$ and $\delta_S(\gamma) \leq \gamma$ so that $d(x,y) < \delta_S(\gamma)$ implies that $d(S(x),S(y)) < \gamma$ for any $x,y \in X$.

Now we develop four Remarks so that we can finish the proof.

Remark 4.20. If the set T $(j, n, \delta_f(\gamma), S)$ spans X, then T also $(j, n, \gamma, \{f, g\})$ spans X, whenever $\delta_f(\gamma) \leq \gamma$.

Proof: Let $y \in X$. Then there is an $x \in T$ so that $d(x,y) < \delta_f(\gamma)$ and $d(S^i(x), S^i(y)) < \delta_f(\gamma)$ for $j \leq i < n$. When i is even, i = 2k and $0 \leq i < n$, then $d([g, f]^i(x), [g, f]^i(y)) = d(S^i(x), S^i(y)) < \delta_f(\gamma) \leq \gamma$ When i is odd, i = 2k + 1 and $0 \leq i < n$, then $d([g, f]^i(x), [g, f]^i(y)) = d(f \circ S^k(x), f \circ S^k(y)) < \gamma$ because $d(S^k(x), S^k(y)) < \delta_f(\gamma)$.

REMARK 4.21. If the set T $(j, n, \delta_S(\gamma), \{f, g\})$ spans X, then T (j, n, γ, S) spans X, whenever $\delta_S(\gamma) \leq \gamma$.

Proof: Let $y \in X$. Then there is an $x \in T$ so that $d([g, f]^i(x), [g, f]^i(y)) < \delta_S(\gamma)$ for $j \leq i < n$. When k is even, k = 2m and $j \leq k < n$, then $d(S^k(x), S^k(y)) = d((g \circ f)^m(x), (g \circ f)^m(y)) < \delta_S(\gamma) \leq \gamma$. When k is odd, k = 2m + 1 and $j \leq k < n$, then $d(S^k(x), S^k(y)) = d(S \circ [g, f]^{2m}(x), S \circ [g, f]^{2m}(y)) < \gamma$ by the definition of $\delta_S(\gamma)$.

REMARK 4.22. For any $\gamma > 0$, $r_{span}(j, n, \gamma, \{f, g\}) \leq r_{span}(j, n, \delta_f(\gamma), S)$ whenever $\delta_f(\gamma) \leq \gamma$.

Proof: This Remark immediately follows from Remark 4.20. ■

REMARK 4.23. For any $\gamma > 0$, $r_{span}(j, n, \gamma, S) \leq r_{span}(j, n, \delta_S(\gamma), \{f, g\})$ whenever $\delta_S(\gamma) \leq \gamma$.

Proof: This Remark immediately follows from Remark 4.20. ■

Now that we have established the four Remarks, we finish the proof. Fix $\epsilon > 0$. Then by the above we were able to choose $\delta_f(\epsilon) \le \epsilon$. Hence, $h(\epsilon, \{f, g\}) \le h(\delta_f(\epsilon), S)$ by Remark 4.22. Since $\epsilon > 0$ was arbitrary and we were able to find an $\eta = \delta_f(\epsilon)$ so that $h(\epsilon, \{f, g\}) \le h(\eta, S)$ we see that $h(\{f, g\}) \le h(S)$.

Similarly, fix $\epsilon > 0$. By the previous we were able to choose $\delta_S(\epsilon) \leq \epsilon$. Hence, $h(\epsilon, S) \leq h(\delta_f(\epsilon), \{f, g\})$ by Remark 4.23. Since $\epsilon > 0$ was arbitrary and we were able to find an $\eta = \delta_S(\epsilon)$ so that $h(\epsilon, S) \leq h(\eta, \{f, g\})$ we see that $h(S) \leq h(\{f, g\})$.

This idea can be extended to the *n*th root i.e. the existence of an S so that $S^n = g_n \circ \ldots g_2 \circ g_1$. We now show the uniqueness of square roots of period 2 functions modulo topological entropy.

Theorem 4.20. Suppose $f, g: X \longrightarrow X$ where (X, d) is a compact metric space. Suppose there exists continuous functions $S, R: X \longrightarrow X$ where $S \circ S = g \circ f$ and $R \circ R = f \circ g$. Then we have h(S) = h(R).

Proof: By theorem 4.19, $h(S) = h(\{f, g\})$ and $h(R) = h(\{g, f\})$. By theorem 4.15, $h(\{f, g\}) = h(\{g, f\})$. Hence, h(S) = h(R).

This next section explores a few examples that offer insight on the theorems just proven. A natural question is what is the relationship between $h(\{f,g,\ldots\})$ and h(f) and h(g). The following example shows that we can choose f and g so that h(f) = h(g) = 0, but $h(\{f,g,\ldots\}) > 0$. In fact, using the technique in this example we can make $h(\{f,g,\ldots\})$ arbitrarily large, yet h(f) = h(g) = 0.

Set X = [-1, 1] and define $f, g : X \to X$ where

$$f(x) = \begin{cases} 0 & \text{if } -1 \le x \le 0, \\ -2x & \text{if } 0 < x \le \frac{1}{2}, \\ 2x - 2 & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

$$g(x) = \begin{cases} 2x + 2 & \text{if } -1 \le x \le -\frac{1}{2}, \\ -2x & \text{if } -\frac{1}{2} \le x \le 0, \\ 0 & \text{if } 0 \le x \le 1, \end{cases}$$

$$g \circ f(x) = \begin{cases} 0 & \text{if } -1 \le x \le 0, \\ 4x & \text{if } 0 \le x \le \frac{1}{4}, \\ 2 - 4x & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ 4x - 2 & \text{if } \frac{1}{2} \le x \le \frac{3}{4}, \\ -4x + 4 & \text{if } \frac{3}{4} \le x \le 1. \end{cases}$$

First, we note that f([0,1]) = [-1,0]. Hence, $f^2([0,1]) = \{0\}$, and $f([-1,0]) = \{0\}$. Hence, $k \geq 2$ implies that f^k is the constant 0 function, so h(f) = 0. We make a similar argument for g. Hence, g([-1,0]) = [0,1], so $g^k = 0$ whenever $k \geq 2$. Consequently, h(g) = 0.

Thus, $(g \circ f)|_{[0,1]} = T \circ T$ where T is the tent map. Hence, $h(T^2) = 2h(T) = 2\log 2$, so $h(\{f,g,\dots\}) \ge \frac{1}{2}h(g \circ f) \ge \frac{1}{2}h(T^2) = \log 2$. Hence, we see that $h(\{f,g\}) > 1$

 $\max\{h(f), h(g)\} = 0$. In fact, by making 2^n tents in the same region that we made tents in the definition of f and g, we see that we can make $h(\{f,g\})$ arbitrarily large, yet h(f) = h(g) = 0.

Suppose r, l, α are continuous functions. The following example illustrates that $h(l \circ \alpha) = h(\alpha \circ l)$ does not imply that $h(r \circ l \circ \alpha) = h(r \circ \alpha \circ l)$. In other words, h(f) = h(g) does not imply that $h(r \circ f) = h(r \circ g)$. Define $\alpha, l, r : [0, 1] \longrightarrow [0, 1]$ where

$$\alpha(x) = \begin{cases} \frac{1}{2} & if \quad 0 \le x \le \frac{1}{2}, \\ x & if \quad \frac{1}{2} < x \le 1, \end{cases}$$

$$l(x) = \begin{cases} 4x & if \quad 0 \le x \le \frac{1}{4}, \\ 2 - 4x & if \quad \frac{1}{4} < x \le \frac{1}{2}, \\ 0 & if \quad \frac{1}{2} < x \le 1, \end{cases}$$

$$r(x) = \begin{cases} 0 & if \quad 0 \le x \le \frac{1}{2}, \\ 4x - 2 & if \quad \frac{1}{2} < x \le \frac{3}{4}, \\ 4 - 4x & if \quad \frac{3}{4} < x \le 1. \end{cases}$$

Note that $h(r \circ l \circ \alpha) = 0$, but $h(r \circ \alpha \circ l) = \log 4$. Set $\sigma_1 = [0, \frac{1}{4}]$, $\sigma_2 = [\frac{1}{4}, \frac{1}{2}]$, $\sigma_3 = [\frac{1}{2}, \frac{3}{4}]$, $\sigma_4 = [\frac{3}{4}, 1]$. We can define a simplicial matrix for each map αl and r. Let $M(\alpha) = (m_{ij})$ be a four by four matrix, where $m_{ij} = 1$ if $\sigma_j \subset \alpha(\sigma_i)$, and $m_{ij} = 0$, otherwise. Define M(l) and M(r) in a similar way.

Now consider the simplicial matrices for α, l , and r.

 $h(g \circ f \circ f \circ g) = h(g \circ g \circ f \circ f) = h(f \circ f \circ g \circ g)$ by Lemma 4.5. However, the word ffgg is not the same as fgfg as the following example illustrates:

Define $f, g: [0,1] \longrightarrow [0,1]$ where

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2}, \\ 4x - 2 & \text{if } \frac{1}{2} < x \le \frac{3}{4}, \\ 4 - 4x & \text{if } \frac{3}{4} < x \le 1, \end{cases}$$

$$g(x) = \begin{cases} 2x + \frac{1}{2} & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{3}{2} - 2x & \text{if } \frac{1}{4} < x \le \frac{1}{2}, \\ \frac{1}{2} & \text{if } x \ge \frac{1}{2}. \end{cases}$$

Then $g \circ g$ is a constant map, so $h(f \circ f \circ g \circ g) = 0$. However, $h(f \circ g \circ f \circ g) = 2h(f \circ g) = 2\log 4 = 4\log 2$ because $f \circ g$ has a graph with two tents.