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THEOREM 4.17. Suppose (X,d) is a compact metric space. Suppose fi, fa,..., fn:
X — X are continuous functions. Then h(faofa-10... fa0f1) = h(frofr_1 ... fio

Jno fa—1... fr41) for any k satisfying 1 < k < n.

Proof: Set g = fn 0 fu—1...f2, and set f = f1. Because of Corollary 4.5,
we have h(fn 0 fa—10...fa0 fi) = h(f10 fa 0 fn—1...f2). Now set f = f, and
9 = fiofaofa-1...f3) and apply Corollary 4.5; this implies A(f10 fro fa—1... f2) =
h(fz0 fi0 fn o fu—i...f3). By induction, we continue making this argument until

we cycle all the way around. W

Next we develop a few lemmas so that we can generalize h({f, 9}) = 3h(go f)

to h({f1, f2,- -, fp}) = 2h(fp 0 fpm1... f 0 fu).

LEMMA 4.12. Suppose (X, {f1, fa,-.., fp}) is a non-autonomous system with period
p. For any e > 0 there exists § > 0, independent of n, satisfying the statment: If T is
a(0,n,6, fyofp—1... f20f1) spanning set for X, then T is a (0,pn, 6, {f1, f2,. .., fp})

spanning set for X. -

Proof: Let ¢ > 0. Then since f, is uniformly continuous there exists op >
0 such that d(z,w) < &, implies d(f,(2), fo(w)) < €. Since fp—1 is uniformly .
continuous, there exists §,—1 > 0 such that for any z,w € X , d(z,w) < 6p—1
implies d(fp—1(2), fp—1(w)) < 8,. Inductively, we can construct dk—1 > 0 such that
d(z,w) < 8)_1 which implies that d(fr-1(2), fr—1(w)) < 6. Set § = min{éy, &2, 83,
..+, 0p,€}. Then & > 0. Suppose the set T'is a (0, n, §, fpofp-1,..., f20f1) spanning
set fof X Let z € X. By the definition of T there exist s € T so that
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(4.9) d([fpo fp-10...f20 fil*(s), [fp 0 fp-10... f20 filk(2)) < 6.

Let j be any integer satisfying 0 < j < pn. Then j = pk + r for some 0 < r < p.
Recall that [fp, fp—1,-.., filP¥*" = frofrm10...fao fio(fpo---0 fao f1)~.
Hence, d([fpy fy-1s- - f1l3(5)s s Fymts- - fili(2)) =

d(fro... f20f10(fp0 fpo1 e+ f1)5(8), fro.. a0 fro(fy o fp1-- 0 fi)¥(z)) <&,
by 4.9 and the definition of 6. B

REMARK 4.17. For any € > 0 there exists 6 > 0 independent of n so that

rspan(()’pn)e) {fl,fZ, cee ’fp}) < Tspan(oa naé,fp 0 fp—l ...f20 fl)

Proof: This follows immediately from Lemma 4.12 and the fact that rgpe, =

the number of elements in a minimal spanning set.’

IA

LEMMA 4.13. For any € > 0 there exists 6 > 0 so that h(e,{f1, f2,..., fp})
3h(6, fpo fo-1... f20 f1).

Proof: Let € > 0. From Remark 4.17

log rspan (0, pn, €, { f1, f2, .= ., fp}) = log rspan(0,7, 6, fp 0 fp—1... f20 f1)
pn o pn

The inequality implies that

h(e, {f1, f2,..., fp}) < lim suplog rspan (0, P10, € {1, f2, . .- ,fp}).

n—00 pn
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The right hand expression is less than or equal to:

llimsuplogrwan(oa & {fpo fp-1---0 fi}) i lh(g, {fpo fo-1--0 f1}).
P n—oo n p
-

LEMMA 4.14. The first inequality is h({f1, fa, . .. fp}) < Lns, {fpo fo—1-+-0 f1}).

Proof: For any e1, €3 satisfying 0 < ¢; < e, h(e1,{g9i}) > h(e2,{gi}). Hence,

Lemma 4.13 yields the result. W

Now we work toward the inequality in the opposite direction; i.e. h({ ;S TR 4 )
> Sh(fpo fo-1... f20 f1).

REMARK 4.18. Suppose T is (0,n, ¢, fpo...fao f1) separated, then T is a

(0,pn,€,{f1, f2,... fp}) separated set.

Proof: Let z,y € T. By definition, there is a k so that

d(fpo--f20 1) (@), (fyo-.- f20 1) @) > & then d([fy,. .. fro fuP* (@), [yn. . fuo
f1]P%(y)) > € and 0 < pk < pn. A

REMARK 4.19. An intermediate inequality is rsep(0,pn, €6, { f1, fa, ... fp}) >
Tsep(0,m,€, fpo... f20 f1).

Proof: This is immediate from Remark 4.18. W
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LEMMA 4.15. For any € > 0, h(e,{f1,...,fp}) > :—)h(e,f,J o fp—10...f20 f1).

Proof: By Remark 4.19, for all n,
log rsep(0, pn, €, {f1, f2,- - -, fp}) > log rsep(0,m, €, fp 0 fp—1...f20 f1)

m pn

Take the lim sup of both sides of this inequality:

m—00

he, {fis for- s £}) = lim sup 2Erep@me{fi fo.-.Sp))
m—00

m
lOg T.gep(O,Pnyfv{flxf?d---:fp})
pn
log rsep(0,n,€,fpofy_1.--f20f1)
n

> lim sup
n—oo

> Limsup
iy n—o00

2 lh(e, fp (e] fp—l i .f2 (o] fl) 4]

THEOREM 4.18. If f1, f2,..., fp : X — X are continuous functions, then the fol-
lowing relationship holds between the entropy of the non-autonomous system (X, { f1,

fay. ..y fp}) with period p, and the entropy of the autonomous system (X, fpo fp—10

f2 Ofl)
St kD= }Dh(fp A TS

Proof: From Lemma 4.15, h(e, {f1,...,fp}) > ;—,h(fp 0 fo—1...f20 f1). Take
the lina of both sides to obtain h({f1,..., fp}) > %h(fp 0 fp—1-.. f20 f1). The result
€—

is immediate by applying Lemma 4.14. W

The next idea involves reducing topological entropy of a non-autonomous sys-
tem to computing the topological entropy of an autonomous system. Consider the
period 2 non-autonomous system (X, {f,g, f,9,...}. The idea is to find the square

root of g o f with respect to function composition i.e. find a continuous function S

so that So S =go f.
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THEOREM 4.19. Suppose f,9,S : X — X where X is a compact metric space.
f,9,S are continuous, and So S = go f. Then the topological entropy of S equals

the topological entropy of {f,g, f,g,...}. In our notation h(S) = h({f,g}).

Proof: The idea here is to use the uniform continuity of f, S, (X is compact),
and then utilize the spanning set definition of topological entropy.

Let v > 0. Since f is uniformly continuous, there exists 6¢(v) > 0 satisfying
6¢(7) < v and d(z,y) < 6¢(7) implies that d(f(z), f(y)) < v for any z,y € X
Similarly, since S is uniformly continuous, there exists 6s(7) > 0 and é5(y) < 7 so

that d(z,y) < 85(7) implies that d(S(z), S(y)) < 7 for any z,y € X.

Now we develop four Remarks so that we can finish the proof.

REMARK 4.20. If the set T (j,n,64(7),S) spans X, then T also (7,77, {f,9})

spans X, whenever 65(y) < 4.

Proof: Let y € X. Then there is an ¢ € T so that d(z,y) < é¢(v) and
d(S*(x),S(y)) < 6¢(7) for j < i < n. When i is even, i = 2k and 0 < i < n,
then d([g, f]'(2), [g, f]'(y)) = d(S(x), S'(y)) < 6¢(7) < ¥ When i is odd, i = 2k +1
and 0 < i <, then d(lg, f'(2), 19, 1(¥)) = d(f 0 S¥(x), f 0 5*(y)) < 7 because
d(5*(z), S%(y)) < 65(7). ®

REMARK 4.21. If the set T (j,n,85(v),{f,9}) spans X, then T (4,177, S) spans

X, whenever é5(y) < 7.
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Proof: Let y € X. Then there is an = € T so that d([g, f]'(z), [9, f]'(¥)) <
65(y) for j <1 < n. When kis even, k = 2m and j < k < n, then d(S*(z), S*(y)) =
d((go f)™),(go f)™(y)) < 8s(7) <~. When kisodd, k =2m+1and j < k < n,
then d(S*(z), S*(y)) = d(S o [g, f]*™ (), S o [g, f]*™(y)) < 7 by the definition of
és(v). =

REMARK 4.22. For any v > 0, rspan(J, 7,7, {f,9}) < rspan(dsn,6¢(7), S) whenever

6r() <.

Proof: This Remark immediately follows from Remark 4.20. B

REMARK 4.23. For any vy > 0, Tspan(7,7,7,S) < Tspan(jsn,85(7),{f,9}) whenever

6s(y) <.

Proof: This Remark immediately follows from Remark 4.20. H

Now that we have established the four Remarks, we finish the proof. Fix
¢ > 0. Then by the above we were able to choose §5(¢) < €. Hence, h(e,{f,g}) <
h(é¢(¢€), S) by Remark 4.22. Since € > 0 was arbitrary and we were able to find an .
n = 85(e) so that h(e, {f,g}) < h(n,S) we see that h({f,g}) < h(S).

Similarly, fix € > 0. By the previous we were able to choose §5(¢) < e. Hence,
h(e,S) < h(é¢(€),{f,9}) by Remark 4.23. Since ¢ > 0 was arbitrary and we were
able to find an = §g(€) so that h(e, S) < h(n, {f,g}) we see that h(S)-< h({f,g}).
-
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This idea can be extended to the nth root i.e. the existence of an S so that S™ =
gn ©...g20¢g1. We now show the uniqueness of square roots of period 2 functions

modulo topological entropy.

THEOREM 4.20. Suppose f,g : X — X where (X,d) is a compact metric space.
Suppose there exists continuous functions S,R: X — X where SoS =go f and
Ro R= fog. Then we have h(S) = h(R).

-

Proof: By theofern 4.19, h(S) = h({f,9}) and A(R) = h({g, f}). By theorem
4.15, h({f,9}) = h({g, /}). Hence, h(S) = h(R). m

This next section explores a few examples that offer insight on the theorems
just proven. A natural question is what is the relatibnship between h({f,g,...})
and h(f) and h(g). The following example shows that we can choose f and g so
that A(f) = h(g) = 0, but A({f,g,...}) > 0. In fact, using the technique in this

example we can make h({f,g,...}) arbitrarily large, yet h(f) = h(g) = 0.

Set X = [—1,1] and define f,g: X — X where

(0 if —-1<z<0,
f(:v)={—2w if 0<:1:§%,
20 -2 if 1<a<l,
20 +2 if —1<z< -4, .
g(x):-{—Zr if -%SwSO,
0 i 0€e<1,
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f(x)
g(x)
0 if —-1<z2<0,
4z if OSLES%,
gofle)=¢{ 242 il %stg,
—4z+4 if $<z<1.

First, we note that f([0,1]) = [—1,0]. Hence, f2([0,1]) = {0}, and f([-1,0]) = .
{0}. Hence, k > 2 implies that-f* is the constant 0 function, so A(f) = 0. We make
a similar argument for g. Hence, g([—1,0]) = [0,1], so ¢¥* = 0 whenever & > 2.
Consequently, h(g) = 0.

Thus, (g0 f)|jo,1) = T o T where T is the tent map. Hence, h(T%) = 2h(T) =
20092, 50 h({f,g,-..}) = bh(gof) > Lh(T?) = log2. Hence, we see that h({f,g}) >
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max{h(f), h(g)} = 0. In fact, by making 2" tents in the same region that we made
tents in the definition of f and g, we see that we can make h({f,g}) arbitrarily

large, yet h(f) = h(g) = 0.

Suppose T, [, o are continuous functions. The following example illustrates that
h(lo a) = h(c o l) does not imply that h(roloa) = h(roao 1). In other words,
h(f) = h(g) does not imply that h(r o f) = h(r o g). Define a, 1,7 : [0,1] — [0,1]

where

T 1

= 2 Zf OS:BSi,

o(e) {a: if <wgl,
Az if ogxgi,

l(z) = 2—4z if %<x§§,
0 if og'xs%,

r(z)=4 4 -2 if %<$§Z’
4—4z if $<z<1.

Note that h(roloa) = 0, but h(r o aol) = log4. Set o1 = [0,%], o2 = 1.3,

3

o3 = [%, %], oy = [§,1]. We can define a simplicial matrix for each map o [ and

r. Let M(a) = (mij) be a four by four matrix, where m;; = 1 if 05 C a(oi), and

mj; = 0, otherwise. Define M(l) and M(r) in a similar way.

-

Now consider the simplicial matrices for a,l, and 7.

M(a) =

oo O

[ W e Bl = i

o= OO
-_o o O
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h(gofofog):h(gogofof) = h(fo fogog) by Lemma 4.5. However, the

word ffgg is not the same as fgfg as the following example illustrates:

Define f,g : [0,1] — [0,1] where

0 if 0<a<$,
f(x)={4z—2 if l<x§§,
4 —4z if §<w§1,
20+1 if 0<z<l
g(:z:)={—%—2x if 4l<:c§‘%,

Then g o g is a constant map, so h(fo fogog)=0. However, h(fogofog)=

2h(f 0 g) = 2log4 = 4log 2 because f o ¢ has a graph with two tents.



