
rl
t

NORTHWESTERN UNIVERSITY

Non-autonomous dynamical systems applicable to Neural
Computation

A DISSERTATION

SUBMITTED TO THB GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS t '

fbr the degree

DOCTOR OF PHILOSOPHY

Field of Mathematics

By

Michael Fiske

EVANSTON, ILLINOIS

December 1996

easychair: Running author head is undefined.

Copyright by Michael Fiske 1996

All Rights Reserved

Sent to GH. Section Key Generator Updating. Vernam. KH (1) KH (2) KH (3)

be e0 8c 04 ed b2 1e 7f ef 0a 25 12 d3 5a a1 8c 58 87 52 d4 e8 73 8e c4 91 a6 db c1 a9 85 26 12

2c dc 18 11 35 aa bb 7a 33 d3 7d d7 f6 e6 1c af 2e 5d b8 1a ce 93 17 78 22 8a 1d 47 1e b6 86 41

a1 c4 c1 9e 77 b0 76 ab de 41 f1 34 f3 60 d8 75 cd 21 7f cc 26 d6 e4 bb df cd ae cf f0 0e ac a8

e9 d3 76 be 9a e6 ee e5 81 dc 0f f5 40 c4 d5 18 c6 f3 a5 27 c9 3f 33 0f 9b d9 54 0d 08 96 b2 58

b2 b0 02 28 8f 6b 3b a0 d3 88 e7 a7 4b ee d8 c8 c1 bb 7f 10 a6 7e 60 a4 13 61 e8 4a 0b f7 d2 b9

ed 4c fe 7b 88 f5 8e a6 c5 bd 8e ad d9 ff 31 56 19 0d 3b 62 6a 32 5d c9 2a 8d b0 7d 31 92 ca da

1

ABSTRACT

Non-autonomous dynamical systems applicable to Neural
Computation

Michael Fiske

This thesis explores properties of classes of non-autonomous and autonomous

dynamical systems which are relevant to neural network computation. In the intro-
duction two examples are used to illustrate the critical role played by computation,
training, and generali zation in neural network compuQation. Using these examples,
we explain why dynamical systems effectively models basic notions that arise in neural
network computation.

In Chapter I, we introduce a way to compare two non-autonomous systems. It
is interesting that this.approach extends the notion of topological conjugacy for au-
tonomous systems. In Chapter II, we discuss stability in non-autonomous systems.
In Chapter III, some theorems are offered about non-autonomous systems in which
each function is a contraction. In Chapter IV, we prove theorems about topological .
entropy for non-autonorrlous systems. In Chapter V we compute a lower bound for
the entropy of a chaotic attractor and also characterize the geometry of the attractor.
In Chapter VI, we show how to use chaotic non-autonomous systems in optimization
algorithms as a method to find the global minima of the error function. [n particular,

this demonstrates the use of chaotic dynamics in a neural net training algorithm.

ul

TABTE OF CONTENTS

Introduction

Chapter 1

Chapter 2

;
Chapter 3

Chapter 4

Chapter 5

Chapter 6

BibliographY

1

L2

24

a

38

45

82

115

L34

fntroduction

Overview

This thesis explores properties of classes of non-autonomous and autonomous

dynamical systems which are relevant to neural network computation. In the intro-

duction two examples are used to illustrate the criticaf role played by computation,

training, and generalization in neural network computation. Using these examples,

we explain why dynamical systems efiectively models basic notions that arise in

neural network computation.

In Chapter I, we introduce a way to compare two non-autonomous systems.

It is interesting that this approach extends the notion of topological conjugacy

for autonomous systems. In Chapter II, we discuss stability in non-autonomous

systems. In Chapter III, some theorems a,re offered about non-autonomous systems .

in which each function is a cotrtraction. In Chapter IV, we prove theorems about

topological entropy for non-autonomous systems. In Chapter V we compute a lower

bound for the entropy of a chaotic attractor and also char acterize the geometry of

the attractor. In Chapter VI, we show how to use chaotic non-autonomous systems

in optimization algorithms as a method to find the global minima of the error
1

2

function. In particular, this demonstrates the use of chaotic dynamics in a neural

net training algorithm.

Neural Computation

Neural network computation has proven to be useful in many different applica-

tions. This is particularly true in areas such as vision, speech recognition, regulating

and controlling production lines in manufacturing environments, and predicting the

behavior of financial markets. The three main issues concerned with understanding

the behavior and efiectively using neural networks are computation, training and

generali zation. To explain what these issues mean and why they are important we

describe two different examples in neural network computation. Then these exam-

ples are used to illustrate why the study of dynamics is important in computation,

training and generalization.

EXAMPLE 1

COMPUTATION

Suppose the goal is to build a black box tha,t recognizes a photograph of a

particular person. We,discuss one way of reaching this goal. Consider a black

and white photograph, say of Michael Jones. To understand the computational

processes inside the black box, partition the photograph into a large, finite number

of tiny squares. Assign a computational input unit (input layer) to each square.

The following picture illustrates this abstract model for our photograph example:

' In this diagram, each unit is labeled as an oval. Units that send *"rrug",

to each other have a curve connecting the two ovals. (Not all paths are drawn to

avoid having a diagram that is overly complicated.) As for the actrial mechanics

of computation, each input unit sends as its message a real number in the unit

interval [0, U; this value represents the average inte4sity of light in that square.

Each message is sent to a subset of the hidden units. It is worth noting that the

messages two difierent hidden units receive from the same inirrt unit need not be

the same. This is because two different hidden units may be assigned to different

aspects of informatio! about the photograph; e.g. one might be sensitive to skin

color while the other might be sensitive to skin texture. The different wirings can

be intricate where the hidden units may send messages to other hidden units, or

in some models the hidden units may even send a message to some input units. .

But in the final analysis, all hidden units send J *"rrure to a final output unit.

After receiving all messages from the hidden units, the output unit returns a 1 if

the image is a photograph of Michael Jones, and 0 if the image is not a photograph

of Michael Jones face.

As one might expect from this description, there are a variety of mathematical

4

models of the actual mechanics of computation. Often, these computational units

perform a simple function such as taking a linear combination of the input variables

and then applying a sigmoidal function. For example, one choice often used is

F(rt,..., rn) : g(Dutixi), where SQ) : ,*;f i=. When lzl) b, then for most
'practical purposes, 9(z) € {0, 1}.

In other models, the computational units mathematically are variables xi, in

a set of differential equations: + - g(D u)&i). As explained above, to include

all of the models in our discussion, we refer to the simple computational entities
i '

as units, and we refer to the interactions that these units have with each other

as messages. The term messages is appropriate because, in all the models, the

computational units send each other information that is needed in ordl, to perform

a computational task.

TRAINING

A natural question is how do we specify the messages that the computational

units should send each other to obtain the desired outputs? Actually, it is beyond

current programming capabilities to directly construct these units and their mes-

sages so that the network (i.e. the units functioning as a collection) will recognize

if a particular photo is Michael Jones. Instead, the idea is to start the network in a .

state where the units are sending arbitrar, -"rmres to each other, and then train

the network on a number of different photographs.

To illustrate, suppose the training starts with a photograph of Micha,el Jones.

If the output unit returns 1, then the rule is to not change any of the messages;

otherwise, if the output returns 0, we adjust the messages the input layer sends to

)

the hidden layer, and we must adjust the messages the hidden layer sends to the
output. Clearly, the goal is to reduce the effect of any message coming from the
hidden layer that causes the output to be the wrong answer, 0. Similarly, the goal is
to increase the effect of any message coming from the hidden layer that causes the

-output to be the correct answer, 1. The training process makes similar adjustments
in the messages sent from the input layer to the hidden layer.

To illustrate these points with our example, suppose for the next training
stage the network performs computation on a photograph of David Letterman. If

j r

the output unit emits a 0, then do not change anything. If the output is 1, however,
we must adjust the messages the input units send to the hidden units; the messages
the hidden units send to other hidden unitsl and the messages the hidden units send
to the output unit.

The messages can be adjusted in the following wa!: If a unit in the input layer
sends a message to the hidden layer that influences the output unit to be 0, then
either decrease the strength of this message, or change the message that it sends
to the hidden layer. Likewise, if a unit in the hidden layer sends a message to the
output unit, that influences the output unit to be 0, then decrease the strength of
its message to the output unit. On the other hand, if a unit in the hidden layer
sends a message to the output unit that influences the output unit to be 1, then
increase the strength of its message. This adjustr4ent to the messages sent between '

units occurs after each training stage.

GENERALIZATION

Suppose the network has been trained on 1000 photographs of Michael Jones

6

and 1000 photographs of people other than Michael Jones. If the trained network

receives a photograph of Michael Jones that it has not been trained on, (maybe the

new photograph displays Jones as a bald skinhead, rather than the usual spiked

hairdo) the correct computation of the network is to return 1 at the output unit.
-If the network is given a photograph of someone who looks like Michael Jones, but

who is not, then we want the network's output unit to return 0. This is what we

mean by generalizationl it is what the output unit of the network returns when

confronted with new examples.
i -

This abstract process can be compared with the training of students. For

example, consider a typical freshman calculus course where students are taught,

and assigned homework problems. On the exams, we test their ability to gener alize

by creating new problems they have not worked before. An "easy" problem is one

similar to those explained in classl these type of problf*, do not demand as much

generali zation as the harder problems. How well students perform on these new

problems indicates the level of generalization they have achieved. Ideally, that is

how we assign grades for the class.

EXAMPLE 2

A now classical problem IWIDIJ involves backing an eighteen wheel truck to

a loading dock. In the picture below, the goal is to back up the truck so that the

dot at the back of the truck is next to the dot on this loading dock an& so that the

truck is in line with the dock.

' Ideallg the goal is to train the driver so that she backs the truck to the loading

dock independent of thb initial position of the truck with respect to the loading

dock. Further, when parking the truck, the driver wants to minim ize the forward

and backward (truck transmission in reverse) motion. Clearly, it is difficult to

construct a function r

o : [0 ,6] x X - X xY

satisfying the following:

X is the space of configurations of the truck,

[0, 6] represents time,

ilI. Y represents the parameters of how much"the driver is pushing on the gas

pedal, and brake, and aiso the position of the steering wheel,

ry. and o(6, c) corresponds to the truck being parked against the loading dock.

V. If we measure the path length in IR2, defined by the truck while backing up to

the loading dock, w€ want this length to be minimal.

I .

II.

8

Suppose rs is the initial configuration of the truck in the plane and we want to

know what state the truck is in at t ime t. We see that a(t,xs) - (x(t,xo),U(t,og))

where a(trxs) is the instantaneous configuration of the truck on its way toward the

loading dock and y(t, os) is the instantaneous position of the steering wheel, the gas
-pedal and brake at time f .

Similar to the photography example, the problem is to design a network of

simple computational units to compute o. Since o is not explicitly known, the

tnfck starts from different initial configurations. Then the network drives the trrr"k.

Depending on how close the network matches the dot on the loading dock to the

dot at the back of the truck, we make adjustments to these computational units

after each test drive. This is an example of training the network to compute the

function o.

SUMMARY

The two examples illustrate the notion of a neural network that is designed to

calculate a function .F. We call "computation" the actual calculation of the function

.F. We call "training" the design of the messages that the units of the network send

to each other, in order to calculate the function F. We call 'generalization" the

ability of the network to perform on untrained examples.

WHY DYNAMICS IS IMPORTANT

Our first assumption, stated above, is that the network of computational units

collectively compute a function F. The input group of computational units deter-

I

mine the domain of F, and the output group of computational units determine the

range of F. The input group and output group of units may overlap, or they may

be disjoint; the particular case depends on the wiring of the network

To illustrate this assumption with our examples, the input units in the pho-

tograph example receive information about the light intensity in one of the small

squares of the photograph. The hidden units collectively process the information

coming from the input units, and send their messages to a single output unit. By

aggregating the messages coming simultaneously from the intermediate units, the i

,ingf" output unit goes to 1 (Yes, it believes this is a photograph of Michael Jones)

or 0 (No, it is not Michael Jone's face.)

Here the domain of the computed function .F is the finite Cartesian product

ft X where X represents all possible light intensities, and n is the number of input
d=l t

units. The range of F is the two discrete points {0, 1}. Dynamics plays a critical role

in the calculation of the function F. (A few of the many references using dynamics

in the study of the computation of F are [HOP82], [HOP84], [HOP85], [HOP86],

lHrRe3l.)

Another area where dynamics plays a critical role is during the training. As

mentioned, training involves adjusting the messages sent by the units to each other

so that the trained network will compute a function (^F in Example 1, and a in .

Example 2) that effectively peiforms the desired task. (i.". recognizing a picture,

or driving an 18 wheeler.) Since we can not explicitly determine in advance the

appropriate F or o, typically a teacher tells the network how well it has performed

on a particular example. The teacher's evaluation is used by the netwmk to adjust

the messages that each unit passes to the other units. This adjustment is the

10

dynamics.

To see the connection with dynamical systems, think about the training in

the following way. A unit of time corresponds to the adjustments made to the

network during the training on one example. The process of adjustment involves

ih" upplication of a training function to the network. (Notice that the training

function is conceptually a different function from the computation functions ^F' or

o.) The image of this training function is the new messages that the units send to

each other. By training the network on ten examples, we are applying a sequence
a ' -

of ten training functions. After each example, one training function is applied to

the network in order to alter the messages that the units send to each.other.

Suppose we train the network on ten different examples. An important question

is: Are the training functions applied after each example the same function or

different functions? Answers arise by examining ExAmple 2. Suppose we have

trained the network to adequately back the truck up to the dock for easy initial

positions of the truck such as:

E
Dock I

Suppose after the network is trained

truck even close to the loading dock.

on the following example, it fails *o park the

1 1

Clearlg we do not want to make a large adjustment which could prohibit the network

from being able to back up the truck for the easy initial positions. Therefore, we

make a much smaller adjustment.
' In summary, we see that the amount of training the driver has had, determines

the size of the adjustments even though the initial position of the truck for say the

5th training example may be the same as the 700th example. Cons'equently, the

trainings function applied to alter the messages that the units send to each other

are, in general, difierent. These functions depend on {he time, i.". they depend on

the training stage of the network.

We also see that the dynamics of the adjustment proc"r, irrflrrences the quality

of the generalization. We do not want to make adjustments that enable the network

to generalize for harder examples, but cause the network to fail on the easier exam-

ples. In summary the adjustment process on the same example, performed at two

different times is different, so this can be modeled by a non-autonomous dynamical

system.

