Dynamical Equivalence: comparing different
non-autonomous systems

“

In the Introdﬁction, it is explained why the training process in neural net-
works can be modeled as a non-autonomous iterative dynamical system. (We de-
fine non-autonomous in the first definition.) In this section, we introduce a way
to compare two different non-autonomous dynamical‘ systems, and we recall and
define concepts such as non-wandering and periodic. ;I'he first introduced concept
is dynamical equivalence; dynamical equivalence is a way to compare whether two
different non-autonomous systems are qualitatively the same. The equivalence pre-
serves the notion of topological conjugacy when the non-autonomous sytems are

actually autonomous.

DEFINITION 1.1. Suppose X is a topological space. Suppose {f1, f2,...} is a se-
quence of continuous functions where f; : X — X for eachi. Then (X,{f1, f2,...})

is a non-autonomous dynamical system.

To provide an example, recall from differential equations that a non-autonomous

systems is of the form ‘—% = F(z,t). One can construct a discrete non-autonomous
12
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dynamical system from this differential equation. First choose a sequence of times
{to,t1,t2,t3,...}. Then choose an initial point and time (y,%o) for the differential
equation; this choice corresponds to choosing a point y € X. Suppose ¢4(y) rep-
resents the solution to ‘i—f = F(z,t) where the initial condition is (y,?). Define
fi(y) = é4,(y). Let = € X. To define fr(z), suppose ¢(z) represents the solu-
tion to % = F(z,t), where the initial condition is (,#1). Define fa(z) = ¢y, ().

To define f,, proceed with the previous methods inductively. Sometimes we write

(X, {fi}) to represent the discrete non-autonomous system (X, { f1, f2,...}).

“

A non-autonomous dynamical system starts with a point in X, say zg, (g is
the initial condition) and applies the sequence of functions to the point z¢ in the
same order that they are ordered as a sequence. This is analogous to choosing an
initial condition (zg, %) for % = F(z,t), and recording where this point flows to in

X at times {t1,%2,t3,...}. This is the notion of the orbit of zg.

DEFINITION 1.2. The orbit of the point xg with respect to the non-autonomous sys-
tem (X, {f1, f2,--.}) is {zo, fi(20), f2 0 fi(z0), f3 0 f2 0 fi(20), fa o f3 0 f2 0 fi(wo),
.y frko...0 fao fi(zo),...}.

The next definition qualitatively measures whether the two systems are equiva- -

lent. It is a natural extension of topological conjugacy, which qualitatively measures

equivalent behavior between two autonomous systems.

DEFINITION 1.3. Suppose X and Y are topological spaces. The non-autonomous



14

systems (X, {f1, f2,...}) and (Y,{g1,92,...}) are dynamically equivalent if there

exists a homemorphism h : X — Y such that h o f o Jici... oo fi=gqro

gk—1---920g10h for all k.

The function A is what we call the dynamical equivalence. Notice that when
Jt = f and g = g for all k, then the two dynamical systems are autonomous,
and the dynamical equivalence h becomes a topological conjugacy. Topological
conjugacy means that there is a homeomorphism & : X — Y that satisfies ho f =
goh. .

Suppose there is a sequence of times {t1,t2,t3,...} satisfying ¢; = to + i6 for
some 6 > 0. Suppose there is an integer n such that F(z,t) = F(z,t 4 né) for
all z and for all ¢. If we record the position of (z,#y) with respect to the differ-
ential equation % = F(z,t) at the times {t1,12,13,...} and define {f1, fo, f3,...}

the same way as above, then after a time elapse of né, the sequence of functions

{f1, f2, f3,...} repeats.

DEFINITION 1.4. Suppose X is a topological space. The non-autonomous system
(X, {f1, f2,...}) is periodic with period n if the sequence of functions is { f1, fa, ... fn,
Ji, fos oo fus f1, f2y .o fuy ...}, We say that it has fundamental period n if there is

no k smaller than n so that the sequence is {f1, fo,... fi, f1, f2,- - fky...}. When

the word fundamental is omitted the context will make it clear that we mean funda-

mental period.

We now develop some notation to enable us to refer to the function after k

iterates. Define [g, f]¥ : X — X as follows. Let z € X. The expression [g, f]*(z)
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means that we first apply f to z, and then apply g to f(z) so we have g(f(z)). Then
apply f so we now have f o go f(z). The object is to alternate between applying
f and then g, for k times; this is the value of [g, f]¥(z). In other words, apply
the sequence {f, g, f,9,...} k times to z. The expression [fp, fy—1,-- -, f2, f1]*(z)
“means that we first apply fi to z, and then apply fa to fi(z) to obtain f2 o fi(z).
Then apply f3. If £ > p, then after applying f,, start all over again and apply fi,

f2, and so on.

- L

* Notice that an autonomous dynamical system is a non-autonomous system
with period 1. The next issue is to determine when a dynamical equivalence exists
between two non;a,utonomous systems. To start we use a weaker notion of compari-
son between two non-autonomous systems. In the case when both non-autonomous

dynamical systems are periodic, the weaker notion implies dynamical equivalence.

LEMMA 1.1. Suppose (X,{f1,...,fn}) and (Y,{g1,... ,9n}) are non-autonomous
systems with period n. Then {f1, fay.. ., fas f1,f25-+- s fuy 1, f2,...} is dynami-
cally equivalent to {g1,92,- .. yGn, 91,925+ y9n, 91,92, - } if and only if there exists
a homeomorphism h : X — Y so that the following holds:

For each r satisfying1 <r <n

-

(1.1) ho(frofr-10...0f1)=(gro...g2091)0h

Proof: The “only if” part follows immediately from the definition of dynami-

cally equivalent. For the “if” section, it suffices to show that for any natural number
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m, we have ho(fn 0 frn—10...0f1) = (gmo...g20g1)oh. This is done by induction
on m. The base case holds by setting m = 1.

Using the inductive hypothesis, suppose for all k¥ < m we have % o (fko fr—10
.0 f1)=(grko...g20g1)0h. Then m = gn + r where 0 < r < n, and
'ho(fm+1ofmo...of1)=ho(fm+10...ofqn+1ofqno...ofl)=ho(fj_Ho...o
flofqno...ofl)zgj_Ho...oglo(hofqno...ofl) by setting 7 = r + 1 in the
hypothesis. By the induction hypothesis,
gj+lo...oglo(hofqno...ofl)=gj+1o...oglogqno...ogloh=(gm+1o...og1)~oh

by.the definition of the g; sequence. W

Now we turﬁ our attention to a stronger condition than dynamical equivalence.
Suppose there exists a homeomorphism 4 : X — ¥ so that A o fi = gi o h for all
¢ satisfying 1 < ¢ < n. This implies that equation 1.1 above holds for any r. As
an example, consider ko f; = g; o h by setting r = 1. Then h o (fr410...0 f1) =
gr+10ho(fro...0f1). Setting ¢ = r+1, and applying the indl.lctive hypothesis, we
obtain gry10ho(fro...0f1) =(gr410...091)0h. However, equation 1.1 holding
for all r between 0 and n does not necessarily imply that there is one topological
conjugacy h so that h o f; = g o h for every ;. This condition is stronger than

dynamical equivalence.

-

ProrosiTION 1.1. Supj)ose there exists a homeomorphism h : X — Y so that
ho fi = gioh for all i. Then h is a dynamical equivalence between the non-

autonomous system { f1, f2, f3,...} and the system {g1, g2, g3, . .. }.

Proof: By hypothesis, we have the base case h o f; = g1 0 h. Using the
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inductive hypothesis, suppose that ho (fro...0 fi) = (9, 0...0g1) 0o h. Then
ho fry10(fro...0f1) =gry10ho(fro...0 f1) because ho f; = g; o h for all . The
inductive hypothesis allows us to substitute (¢, 0...0g1) o h for ho (fro...0 f1),

sohofryio(fro...ofi)=gr410(9r0...0g91)0h. B

If, however, we do not require h to be the same for every i, the results change
drastically. If f; is topologically conjugate to g; for every i, are f; and g; necessarily
dynamically equivalent? The answer is no. Define f;, ¢i : R — R as fi(z) = %x —i—%—
forsevery 7, and gi(z) = %x + 3. Set ga(z) = S+ %. Inductively, set g,(z) =
(I1-2"")z 427" Note that f; is topologically conjugate to g; for every i.

We show that there can not be a dynamical equivalence by eontradiction.
Suppose there exists a dynamical equivalence h between (R, {f;}), and (R, {g;}).
First, notice that klin;ofk o faur-. . i(.5) = kligolofk(:ﬁ) = 1. Since ho fi(1) =
g1 o h(1), this implies (1) = .9h(1) + .1. Thus, A(1) = 1.

The orbit of A(.5) converges to
LM gk © g—1-.-910h(.5) = limho fi... f1(.5) = h(lim fro fi-1... f(.5)) = L.
Since h is a homeomorphism, a = A(.5) # 1. From Example 1.1 (below) we see that
klir{.logk O gk_1-- .gl(aj # 1 since a # 1. Thus,

lim g, 0 gn—10...92 091 0 h(.5) # nlLrgoh 0 fnofa—10...f20 f1(.5). Thisis a

n—0oo

contradiction, so a dynamical equivalence h can not exist.

-

EXAMPLE 1.1. We construct a sequence of real-valued functions {g1,g2,...} so that
each g; considered as its own autonomous systems has a stable fized point at x = 1.

However, the fized point x = 1 is not stable with respect to the non-autonomous

system {g1, g2, ...} in the following sense: klim 9kO0gk—1-..91(z) < 1 forany z < 1,
—00
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~and nllr&gk 0gk—1---91(z) > 1 for any z > 1.

We first require a definition of infinite products and a theorem about infinite

products [APOSTOL].

o0 m
DEFINITION 1.5. Given an infinite product [] un, let pm = [[ un. If no factor u,
n=1 n=1
is zero, we say the product converges if there exists a number p # 0 such that the
sequence {pm} converges to p. In this case, p is called the value of the product and

o0
we write p = [] un. If {pm} converges to zero, we say the product diverges to zero.
n=1

THEOREM 1.1. Assume that a, > 0. Then the product ]o'[o (1 —ay) converges if and

n=1

o0
only if the series Y. a, converges.
n=1

Proof: [APOSTOL].

We observe that g,(z) = spz + tp, where s, = (1 —27")z and ¢, = 27 ™. We
proceed with the first few iterates, g3 0 g1(z) = sa(s12 + t1) + t2, and
930920 g1(x) = s3[s2(s1x + t1) + to] + t3 = s3s9s12 + s3s2ty + s3ta + t3.

By induction,
k k k
9k © gk—1---g1(z) = (I si)z + ((,HZSi)tl ‘3 (,ﬂgsz')tz +...8 1+ 1.
g = i

=1 ¢

X a ] o0 [o's)
Henoe, Bt g o ga-1/-miz) (T m)e + ([ s)h + (Ll aidta+ - =
= 1= =

(I si)z+ 5 (
s=] k=2

= =

o0
[1 si)tk—1. Notice gn(1) =1 for any n, and |g'(1)| = sn < 1,501 is
=k

a stable fixed point for each i. Thus, for any k, we obtain klirn gk O gk—1...91(1) =
—00 -

o0 3 o0 o0 ’ o0 o0 o0
(ITsi) + X (IIsi)tk—1 = 1. Hence, if z < 1, then ([[si)z + 3 (IIsi)tr—1 <
=i k=2 =K s=1 =2tk
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(ﬁ si) + § ( ﬁ 8i)tk—1 = 1. This inequality is strict because (ﬁ si) > 0 follows
1=1 k=2 =k =1

from Theorem 1.1. When z < 1, we obtain nli'rgog,, 0 gn—1-..91(z) < 1. Since the

functions g; are symmetrical about the diagonal g(z) = z, when = > 1, we have

nlir&gn Ogn-1...91(z)>1. A

Now we turn our attention to definitions about the behavior of the orbit of
a point with respect to a fixed non-autonomous system. We show that dynamical
equivalence preserves certain properties of an orbit. This means that dynamical

eqliivalence is a useful way of judging when two dynamical systems are qualitatively

the same.

DEFINITION 1.6. A point p € X is a periodic point of the non-autonomous system
{

(X,{fi}) with period k if for allm € N, fpg 0 frmk—10...f20 fi(p) = p.

Notice that this notion of periodic point has to do with the orbit of a point
in X, while the notion of periodic for a non-autonomous system has to do with
the periodicity of the functions applied. We now show that dynamical equivalences

preserve periodic orbits.

-

REMARK 1.1. Suppose the non-autonomous systems (X, { f1, f2,...}) and (Y, {g1, g2
.. }) are dynamically equivalent. Let h: X — Y be a dynamical equivalence.

If p has period k with respect to (X, {f1, f2,...}), then h(p) has period k- with respect

to (Y, {g1,92,--.})-
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Proof: For each natural number n, we have h(p) = ho fur 0 fak—10...f20

J1(P)gnk © gnk—10...92 0 g1(h(p)). M

This next definition captures the intuitive notion that even though an orbit
-may not be periodic, it still may return arbitrarily close to its initial starting point
an infinite number of times. The definition reduces to the standard definition of

non-wandering point for autonomous dynamical systems.

DEFINITION 1.7. A point x € X is a non-wandering point of the non-autonomous
system (X, {fi}) if for each neighborhood U of x there exists k > 0, (k is dependent
onz andU) and a q € U so that fro fr_q...f20 fi(q) € U. Let Q({f;}) denote the

set of all non-wandering points with respect to the non-autonomous system {f;}.

REMARK 1.2. Any periodic point is a non-wandering point.

LEMMA 1.2. A dynamical equivalence maps non-wandering points to non-wandering
points. Formally, if h is a dynamical equivalence between (X,{fi}), and (Y,{gi}),
then p is a non-wandering point of (X, {fi}) if and only if h(p) is a non-wandering

point of (Y,{gi}).

Proof: Let p be a non-wandering point of f;. Consider h(p) € Y. Let U
be a neighborhood of k(p). Then there exists k > 0, and a ¢ € A~YU) so that

fe o fe—1... fi(g) € R~Y(U). But this implies that o fy o fr_1...fi(¢) € U. In
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turn, because A is a dynamical equivalence, we have that 9kOgk—1---910h(q) € U.
Also, h(q) € U, so h(p) is a non-wandering point for g;. Since h is a homeomorphism
the reverse argument holds. From this, we conclude that A maps the non-wandering

points of f; homeomorphically onto the non-wandering points of g;. W

This Lemma is important because in Section IV, we show that the topological
entropy of a non-autonomous system on X equals the topological entropy restricted
to the non-wandering points. The next Remark originates from standard results

about non-wandering points in autonomous systems [BOWEN]. .

REMARK 1.3. The set of non-wandering points of any non-autonomous dynamical

system (X, {f1, f2, f3,...}) is a closed set in X.

Proof: Suppose {z,} is a sequence of non-wande;ing points and z,, — p. (We
argue by contradiction.) Suppose p is not a non-wandering point. Then there
exists an open neighborhood U of p such that U N :L_jlfn 0 fac10...f20 fi(U) =
0. Since z, — p, there is a large enough m such that z,, € U. Since U is
open, there exists an open set W satisfying z,, € W C U. This means that
Wﬂnglfnofn_l o...fa0 fi(W) CUﬂnoglfnofn_lo...fgofl(U) = (. Since W

is an open set containing ,, this contradicts that ,, is a non-wandering point. W

v

-

Again, following the standard results about non-wandering points for autonomous

systems [BOWEN], we have the definition of an invariant set.

DEFINITION 1.8. Let V' be a subset of X. Let (X,{f;}) be a non-autonomous sys-
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tem. The set V is {fi} invariant if for all k we have that fro fr_j0 fao fi(V)CV

REMARK 1.4. The set of non-wandering points is not {f;} invariant. The set is not

even f; invariant for a period 2 non-autonomous system i.e. {f,q,f,9,f,9,...}

The following example verifies Remark 1.4. Define f,¢g : [0,1] — [0,1] as
follows. Set f(z) = z* when 3 < z <1 and 4z* when 0 < z < 3. Set g(z) = VT |,

The function sequence is {f, g, f,9,f,9,.-.}.

f(x)

g2(x)

Claim: All points in the open interval (0, %) are wandering points.
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Let p € (0, %) Then f(p) =p* < ;. Ife < %—p, then go f(p+€) =2(p+¢)* =
2p® + €(4p+€). Because 2p? = (2p)p < p, we may choose € > 0 small enough so that
€(4p+€) < p— 2p*. Thus, 2(p +¢)* < p. Set 6 = min{(p — p?), (p — 2(p + €)*)}.
Define the open interval U = (p — é,p + €). From the previous calculations, we see

‘that f(U) = ((p—6)*,(p+¢)*) and (p+¢)* <2(p+¢)* <p—6.

Thus, f(U) N U = 0. Further, go f(U) C [0,2(p+ €)’] C [0,p — 6] because
2(p + €)* < p—§6. Hence, go f(U)NU = 0. Now for any z < 1, we have go f(z) < z
and f(z) < . Thus, for any z € (g o f)(U), we have (go f)¥(z) < p—6 for all
k € N, and we have fo(g 0 f)¥(z) < p— & for all k € N. Thus, (g0 f)*(U)NU =4,
and fo(go f)*(U)NU =0 for all k € N. M.

Notice that f(0) = 0, so {0} is a non-wandering point. If p > %, then f(p) = p?
and g o f(p) = \/p* = p. Hence, the set of non-wandering points of the non-
autonomous system {f,g, f,g,...} is the set [%, 1] U {0}.

Now the goal is to find a non-wandering point c satisfying f (¢) = p such that
p lies in (0, ). Set ¢ = /2. Thus, ¢ > /2 = 1,50 go f(c) = g(c?) = c. Hence, c is
a non-wandering point. Further, p = f(c) = % Thus, p is a wandering point. We

conclude that the non-wandering points are not f; invariant, even for a period two

non-autonomous system. H.



