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Logic Colloquium ’19, the annual European Summer Meeting of the Association of
Symbolic Logic, was organized by the Institute of Mathematics of the Czech Academy
of Sciences, the Faculty of Arts and Faculty of Mathematics and Physics of the Charles
University, and the Faculty of Information Technology of the Czech Technical University in
Prague.
The meeting took place from August 11 to August 16, 2019, at the Faculty of Architecture

of the Czech Technical University.
The Congress of Logic, Methodology and Philosophy of Science and Technology

(CLMPST 2019) was held in Prague in the week before the Logic Colloquium in the same
venue. Participants of both conferences were eligible to reduced registration fees.
Major funding for the conference was provided by the Association for Symbolic Logic

(ASL), the US National Science Foundation, the Faculty of Arts of the Charles University,
and the RSJ foundation.
The success of the meeting was largely due to the excellent work of the Local Organizing

Committee under the leadership of its co-chairs, David Chodounský and Jonathan Verner.
The other members were Petr Cintula, RadekHonzı́k, Jan Hubička, Pavel Pudlák, Jan Starý,
Šárka Stejskalová, and Neil Thapen.
The Program Committee consisted of Lev Beklemishev (Moscow), AndrewArana (Paris),

Agata Ciabattoni (Vienna), Russell Miller (New York), Martin Otto (Darmstadt), Pavel
Pudlák (Prague), Stevo Todorčević (Toronto), and Alex Wilkie (Oxford).
The main topics of the conference were as follows: Computability Theory, Foundations

of Geometry, Model Theory, Proof Theory and Proof Complexity, Reflection Principles and
Modal Logic, Set Theory. The program included a public evening lecture (a joint event with
CLMPST), two tutorial courses, eleven invited lectures, among which the retirement ASL
presidential address byUlrich Kohlenbach, twenty-five invited lectures in six special sessions,
and 115 contributed talks. There were 231 participants, and ASL travel grants were awarded
to 27 students and recent Ph.Ds.
Hannes Leitgeb (University of Munich) gave the public evening lectureRamsification and

semantic indeterminacy.
The following tutorial courses were given:
Michael Rathjen (University of Leeds),Well-ordering principles in proof theory and reverse

mathematics.
Dilip Raghavan (National University of Singapore), Higher cardinal invariants.

The following invited plenary lectures were presented:
Samson Abramsky (Oxford University), Relating Structure and Power: a junction between

categorical semantics, model theory and descriptive complexity.
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Zoé Chatzidakis (Ecole Normale Supérieure), Notions of difference closures of difference
fields.
Osvaldo Guzman (University of Toronto), The ultrafilter and almostdisjointness numbers.
Matthew Harrison-Trainor (Univeristy of Wellington), Describing countable structures.
Ulrich Kohlenbach (University of Darmstadt), Local proof-theoretic foundations, proof-

theoretic tameness and proof mining.
Jan Krajı́ček (Charles University),Model theory and proof complexity.
VincenzodeRisi (Université Paris-Diderot/CNRS),Drawing lines through rivers and cities.

The meaning of postulates from Euclid to Hilbert.
Gil Sagi (University of Haifa), Logic and natural language: commitments and constraints.
Thomas Scanlon (University of California, Berkeley),Over six decades of the model theory

of valued fields.
Rineke Verbrugge (Groningen University), Zero-one laws for provability logic and some of

its siblings.
Martin Ziegler (KAIST), Logic of computing with continuous data: Foundations of numer-

ical software engineering.
More informationabout themeeting canbe foundat the conferencewebsite,https://www.

lc2019.cz.
Abstracts of invited and contributed talks given in person or by title by members of the

Association follow.

For the Program Committee
Lev Beklemishev

Abstract of the Retiring Presidential Address

! ULRICH KOHLENBACH, Local proof-theoretic foundations, proof-theoretic tameness and
proof mining.
Technische Universität Darmstadt, Schlossgartenstraße 7, D-64298 Darmstadt, Germany.
E-mail: kohlenbach@mathematik.tu-darmstadt.de.
Recently, John Baldwin pointed to a ‘paradigm shift in model theory’ stressing that while

early 20th century logic focused on the formalization of all of mathematics, model theory
increasingly studied specific areas of mathematics (local formalizations) with an emphasis
on tame structures [1]. We will argue that also the successful use of proof-theoretic methods
in core mathematics (‘proof mining’, [2]) in recent decades was made possible by developing
logical metatheorems tailored for applications to particular classes of theorems and proofs in
specific areas of mathematics. In analysis, these classes of theorems (e.g., convergence state-
ments), however, do involve arithmetic (together with analytical and geometric structures)
and so are not tame in the model-theoretic sense but could in principle display Gödelian or
huge growth phenomena. It is an empirical fact, though, that with a few notable exceptions
(which still are primitive recursive in the sense of Gödel’s T ), proofs in existing ordinary
analysis are largely tame in the sense of allowing for the extraction of bounds of rather low
complexity. To determine the amount of ‘proof-theoretic tameness’ in a given proof requires a
proof-theoretic analysis in each case.We will discuss two recent applications of proof mining,
one of which displays a highly tame (polynomial) behavior [3], whereas the other one as it
stands uses primitive recursion of type-1 level [4].
[1] J. T. Baldwin,Model Theory and the Philosophy of Mathematical Practice. Formaliza-

tion without Foundationalism, Cambridge University Press, 2018.
[2]U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their use in Mathe-

matics, Springer Monographs in Mathematics, Springer Heidelberg-Berlin, 2008.
[3] , A polynomial rate of asymptotic regularity for compositions of projections in

Hilbert space,. Foundations of Computational Mathematics, vol. 19 (2019), pp. 83–99.
[4]U. Kohlenbach and A. Sipoş, The finitary content of sunny nonexpansive retractions,

arXiv:1812.04940, submitted.
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Abstracts of Invited Tutorials

! DILIP RAGHAVAN, Higher cardinal invariants.
National University of Singapore, Singapore.
E-mail: dilip.raghavan@protonmail.com.
There has been a recent resurgence of research into cardinal invariants at regular uncount-

able cardinals. This recent work has revealed many differences between cardinal invariants
at ! and their analogues at uncountable cardinals. One unexpected conclusion is that there
seem to more ZFC inequalities provable at uncountable cardinals than at !. The study of
cardinal invariants at uncountable cardinals has also led to the development of novel forcing
techniques, mostly notably the method of Boolean ultrapowers.
I will present a survey of some of this recent work, restricting my attention to certain

combinatorial cardinal characteristics at regular uncountable cardinals. Some ZFC results,
such as the ones in [1] and [2], as well as some consistency results, such as the ones in [3],
will be mentioned. Time permitting, I will expose the method of Boolean ultrapowers as
developed in [4] and sketch some of the consistency results at regular uncountable cardinals
that can be obtained using this method.
[1]D. Raghavan and S. Shelah, Two inequalities between cardinal invariants. Fundamenta

Mathematicae, vol. 237 (2017), no. 2, pp. 187–200.
[2] , Two results on cardinal invariants at uncountable cardinals, Proceedings of the

14th and 15th Asian Logic Conferences (Mumbai, India and Daejeon, South Korea) (B. Kim,
J. Brendle, G. Lee, F. Liu, R. Ramanujam, S. M. Srivastava, A. Tsuboi, and L. Yu, editors),
World Scientific Publishing, Hackensack, NJ, 2019, pp. 129–138.
[3] ,A small ultrafilter number at smaller cardinals.Archive forMathematical Logic,

to appear.
[4] , Boolean ultrapowers and iterated forcing, preprint.

! MICHAEL RATHJEN,Well-ordering principles in proof theory and reverse mathematics.
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK.
E-mail: M.Rathjen@leeds.ac.uk.
Several results about the equivalence of familiar theories of reverse mathematics with

certain well-ordering principles have been proved (Friedman, Marcone, Montalban et al.) by
recursion-theoretic and combinatorial methods and also by proof theory (Afshari, Girard,
R, Weiermann et al.), employing deduction search trees and cut elimination theorems in
infinitary logics with ordinal bounds.
One goal of the talks is to present a general methodology underlying these results which in

many cases allows one to establish an equivalence between two types of statements. The first
type is concerned with the existence of !-models of a theory whereas the second type asserts
that a certain (usually well-known) elementary operation on orderings preserves the property
of being well ordered. These operations are related to ordinal representation systems (ors)
that play a central role in proof theory. The question of naturality of ors has vexed logicians
for a long time. While ors have a low computational complexity, their “true” nature evades
characterization in those terms. One attempt has been to describe their structural properties
in category-theoretic terms (Aczel, Feferman, Girard et al.). Some of these ideas will be
discussed in the talks.
A second goal is to present rather recent developments (due to Arai, Freund, R), especially

work by Freund on higher order well-ordering principles and comprehension.

Abstracts of invited Plenary talks

! SAMSONABRAMSKY,Relating structure and power: a junction between categorical seman-
tics, model theory and descriptive complexity.
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road,
Oxford OX1 3QD, UK.
E-mail: samson.abramsky@cs.ox.ac.uk.
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There is a remarkable divide in the field of logic in Computer Science, between two
distinct strands: one focussing on semantics and compositionality (“Structure”), the other
on expressiveness and complexity (“Power”). It is remarkable because these two fundamental
aspects are studied using almost disjoint technical languages andmethods, by almost disjoint
research communities. We believe that bridging this divide is a major issue in Computer
Science, and may hold the key to fundamental advances in the field.
In this talk, we describe a novel approach to relating categorical semantics, which exem-

plifies the first strand, to finite model theory, which exemplifies the second. It is based on
[1, 2], and ongoing joint work with Nihil Shah, Tom Paine, and Anuj Dawar.
[1] S. Abramsky, A. Dawar, and P. Wang, The pebbling comonad in finite model theory,

Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE Symposium, IEEE, 2017,
pp. 1–12.
[2] S. Abramsky and N. Shah, Relating structure and power: Comonadic semantics for

computational resources, 27th EACSL Annual Conference on Computer Science Logic, CSL
2018, September 4–7, 2018, Birmingham, UK, 2018, pp. 2:1–2:17.

! ZOÉ CHATZIDAKIS, Notions of difference closures of difference fields.
DMA, Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France.
It is well known that a differential field K of characteristic 0 is contained in a differential

field which is differentially closed and has the property that itK-embeds in every differentially
closed field containing K . Such a field is called a differential closure ofK , and it is unique up
to K-isomorphism. In other words, prime models exist and are unique. The proof uses the
fact that the theory of differentially closed fields of characteristic 0 is totally transcendental.
One can ask the same question about difference fields: do they have a difference closure,

and is it unique? The immediate answer to both these questions is no, for trivial reasons:
in most cases, there are continuum many ways of extending an automorphism of a field
to its algebraic closure. Therefore, a natural requirement is to impose that the field K be
algebraically closed. Similarly, if the subfield ofK fixed by the automorphism is not pseudo-
finite, then there are continuum many ways of extending it to a pseudo-finite field, so one
needs to add the hypothesis that the fixed subfield of K is pseudo-finite.
In this talk, I will show by an example that even these two conditions do not suffice.
There are two (and more) natural strengthenings of the notion of difference closure, and

we show that in characteristic 0, these notions do admit unique prime models over any
algebraically closed difference fieldK , provided the subfield ofK fixed by the automorphism
is large enough.
In model-theoretic terms, this corresponds to the existence and uniqueness of a-prime or

κ-prime models.
In characteristic p > 0, no such result can hold.

! VINCENZO DE RISI, Drawing lines through rivers and cities. The meaning of postulates
from Euclid to Hilbert.
Laboratoire SPHère Université Paris-Diderot, CNRS Bâtiment Condorcet, France.
E-mail: vincenzo.derisi@gmail.com.
The talk sketches a history of the development of the meaning of mathematical principles

from Antiquity to the Modern Age. Euclid’s own conception of principles (definitions,
postulates, common notions) was widely different from ours, and it requires some exercise
to understand what did it mean for him to ground geometry on a set of principles. We
will explore how Euclid’s own views on the foundations of mathematics were interpreted
and misinterpreted in Late Antiquity, and how a new conception of principles arose in
medieval Scholasticism. Such interpretation of axioms and postulates, that stemmed in the
commentaries on Aristotle’s Analytics, was immensely influent in the early modern age, and
was endorsed, with various degrees of variance, by authors such as Clavius,Wallis, Leibniz or
Euler. In the 18th Century, on the other hand, a new conception of axioms began to arise in
the works of Lambert and Bolzano. This last development in the meaning of a mathematical
principle paved the way for the modern understanding of it, in the works of Frege, Hilbert,
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and others. The talk will also present a survey of the main axioms employed in the modern
age to ground elementary geometry, which greatly differed from Euclid’s original principles
and were later collected in the books of the foundations of geometry by Peano, Pasch, and
Hilbert.

! OSVALDO GUZMAN, The ultrafilter and almost disjointness numbers.
University of Toronto, Canada.
E-mail: oguzman@math.toronto.ca.
The cardinal invariants of the continuum are certain uncountable cardinals that are less

or equal to the cardinality of the real numbers. This relation and nonrelation between this
cardinals has been deeply studied by set theorists. In this talk, we will focus on the following
two invariants: The ultrafilter number u, which is defined as the smallest size of a base of an
ultrafilter, and the almost disjointness number a, which is the smallest size of a MAD family.
The consistency of the inequality a < u is well known and easy to prove. The consistency
of the inequality u < a is much harder to obtain. It was Shelah who proved that, under the
assumption that there is a measurable cardinal, there is model of !1 < u < a. In spite of the
beauty of the result, the following questions remained open:
(Shelah) Does CON(ZFC) implies CON(ZFC + u < a)?
(Brendle) Is it consistent that !1 = u < a?
Acknowledgments. In this talk, we are going to see how to provide a positive answer to

both questions. This is joint work with Damjan Kalajdzievski. No previous knowledge of
cardinal invariants of the continuum is needed for the talk.

! MATTHEW HARRISON-TRAINOR,Describing countable structures.
Victoria University of Wellington, New Zealand.
E-mail: matthew.harrisontrainor@vuw.ac.nz.
Given a countable structure, how do we measure its complexity? One way to do this is

by measuring the complexity of describing that structure. Dana Scott proved that for each
countable structure A, there is a sentence of infinitary logic that is true of A and not true
of any other countable structure. We can think of such a sentence as a description of the
structure, and call any such sentence a Scott sentence. The Scott complexity of a structure
is the complexity of the simplest Scott sentence for that structure. The Scott complexity
of a structure is tightly related to other notions of complexity, such as the complexity of
understanding automorphisms of the structure, or of finding isomorphisms between different
copies of the structure. This talk will begin with a general overview of the area followed by
a number of recent results on finitely generated structures and on structures of high Scott
rank.

! JAN KRAJÍČEK,Model theory and proof complexity.
Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague, Czech
Republic.
E-mail: krajicek@karlin.mff.cuni.cz.
Mathematical logic and computational complexity theory have many topics in common.

Inmost cases the links between the two fields are fostered by finite combinatorics, manifesting
either via proof theory or via finite model theory.
There are, however, also topics in complexity theory where infinitary methods of logic

shed a new light on old problems. I will discuss, in particular, how nonfinite model theory
relates to proof complexity. The relevant model theoretical problems involve constructions
of models of bounded arithmetic and of expanded extensions of pseudo-finite structures. I
will describe forcing with random variables aimed at tackling these problems, and give some
examples of results that can be obtained in this way.

! HANNES LEITGEB, Ramsification and semantic indeterminacy.
Ludwig Maximilian University of Munich, Germany.
E-mail: Hannes.Leitgeb@lmu.de.
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Since the publication of Ramsey’s (1929) Theories, the Ramsification of scientific theories
has become a major tool in theory interpretation and reconstruction. In this talk, I will argue
that the Ramsification of classical semantics can also help us overcome problems that result
from the vagueness of ordinary terms in natural language or from the theoreticity and open-
endedness of technical terms in mathematical and scientific language. The resulting “Ramsey
semantics” saves all of classical logic and almost all of classical semantics, while embracing
semantic indeterminacy without going down an epistemicist or supervaluationist road.

! GIL SAGI, Logic and natural language: commitments and constraints.
Department of Philosophy, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, Haifa,
Israel.
E-mail: gilisagi@gmail.com.
URL Address: http://gilisagi.wix.com/gil-sagi.
Most of the contemporary research in logic is carried out with respect to formal languages.

Logic, however, is said to be concerned with correct reasoning, and it is natural language
that we usually reason in. Thus, in order to assess the validity of arguments in natural
language, it is useful to formalize them: to provide matching arguments in a formal language
where logical properties become perspicuous. It has been recognized in the literature that
formalization is far from a trivial process. One must discern the logical from the nonlogical
in the sentence, a process that requires theorizing that goes beyond the mere understanding
of the sentence formalized [1]. Moreover, according to some, “logical forms are not to be
discovered but rather established and ascribed to expressions within processes of the reflective
equilibrium” [2]. I concur. I argue that logical forms are imposed, and that furthermore, they
carry a normative force in the form of commitments on behalf of the theorizer.
In previous work [3], I proposed a model-theoretic framework of “semantic constraints”,

where there is no strict distinction between logical and nonlogical vocabulary. The form of
sentences in a formal language is determined rather by a set of constraints on models. In the
present article, I show how this framework can also be used in the process of formalization,
where the semantic constraints are conceived of as commitments made with respect to the
language.
[1]G. Brun, Reconstructing arguments: Formalization and reflective equilibrium. Logical

Analysis and History of Philosophy, vol. 17 (2014), pp. 94–129.
[2] J. Peregrin and V. Svoboda, Reflective Equilibrium and the Principles of Logical Anal-

ysis: Understanding the Laws of Logic, Routledge Studies in Contemporary Philosophy,
Routledge, 2017.
[3]G. Sagi, Formality in logic: From logical terms to semantic constraints. Logique et

Analyse, vol. 227 (2014), pp. 259–276.

! THOMAS SCANLON, Over six decades of the model theory of valuedfields.
University of California at Berkeley, USA.
E-mail: scanlon@math.berkeley.edu.
Inspired by AngusMacintyre’s lecture “Twenty years of p-adic model theory” at the Logic

Colloquium ’84 inManchester, I widen the scope exploring the role that the theory of valued
fields has played (and continues to play) in the internal development of model theory and in
the applications of model theory to other parts of mathematics.

! RINEKE VERBRUGGE, Zero-one laws for provability logic and some of its siblings.
Department of Artificial Intelligence, Bernoulli Institute, University of Groningen, P.O. Box
407, 9700 AK, Groningen, The Netherlands.
E-mail: L.C.Verbrugge@rug.nl.
Glebskii and colleagues proved in the late 1960s that each formula of first-order logic

without constants and function symbols obeys a zero-one law. That is, every such formula
is either almost surely valid or almost surely not valid: As the number of elements of finite
models increases, each formula holds either in almost all or in almost no models of that size.
As a consequence, many properties of models, such as having an even number of elements,
cannot be expressed in the language of first-order logic without constants and function
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symbols. In a 1994 article, Halpern and Kapron proved similar zero-one laws for classes of
models corresponding to the modal logics K, T, S4, and S5.
In this presentation, we discuss zero-one laws for somemodal logics that impose structural

restrictions on their models; all three logics that we are interested in are sound and complete
with respect to finite partial orders, with different extra restrictions per logic. We prove zero-
one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk
logic, with respect to model validity. Moreover, for all three logics, we axiomatize validity
in almost all relevant finite models, leading to three different axiom systems. In the proofs,
we use a combinatorial result by Kleitman and Rothschild about the structure of almost
all finite partial orders. We also discuss the question whether for the three sibling logics,
validity in almost all relevant finite frames can be axiomatized as well. Finally, we consider
the complexity of deciding whether a given formula is almost surely valid in the relevant finite
models.

! MARTIN ZIEGLER, Logic of Computing with Continuous Data: Foundations of Numerical
Software Engineering.
KAIST, School of Computing, South Korea.
E-mail: ziegler@kaist.ac.kr.
Over 30 years after introducing the IEEE 754 standard, Numerics still gyrates around

floating point numbers: from specification (e.g., of e04bbc in the NAG library) via analy-
sis (unit-cost/realRAM/Blum–Shub–Smale model) and implementation to verification. Yet
their violation of Distributive Law, of Intermediate-Value Theorem, and of Quantifier Elim-
ination hampers rigorous approaches to Numerical Software Engineering: Modern Calculus
builds on real (rather than rational) numbers for a reason!
We reconcile the convenient algebraic perspective on real computation (Bürgisser) with

Computable Analysis (Grzegorczyk, Pour-El, Weihrauch) by developing Turing-complete
semantics for operating on continuous structures (Poizat, Zucker). This imperative counter-
part to realPCF (Escardo) extends the powerful formal tools of Software Engineering from
the discrete to the continuous realm with benefits to numerical practice.

Abstracts of invited talks in the Special Session on
Computability

! LAURENT BIENVENU, BARBARA F. CSIMA, AND MATTHEW HARRISON-
TRAINOR, Some questions of uniformity in algorithmic randomness.
LaBRI, CNRS&Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France.
E-mail: laurent.bienvenu@u-bordeaux.fr.
Department ofMathematics, University ofWaterloo, 200University AvenueWest,Waterloo,
ON, N2L 3G1, Canada.
E-mail: csima@uwaterloo.ca.
School of Mathematics and Statistics, Victoria University of Wellington, P.O. Box 600,
Wellington 6140, New Zealand.
E-mail: matthew.harrisontrainor@vuw.ac.nz.
The Ω numbers—the halting probabilities of universal prefix-free machines—are known

to be exactly the Martin-Löf random left-c.e. reals [3, 4, 5]. It was previously open however
whether this equivalence was uniform, that is, whether one can uniformly produce, from a
Martin-Löf random left-c.e. real α, a universal machineU whose halting probability is α (see
e.g., [1]). We answer this question in the negative. We also answer a question of Barmpalias
and Lewis-Pye [2] by showing that given a left-c.e. real α, one cannot uniformly produce a
left-c.e. real $ such that α − $ is neither left-c.e. nor right-c.e.
[1]G. Barmpalias, Aspects of Chaitin’s Omega, Algorithmic Randomness: Progress and

Prospects (J. Franklin and C. Porter, editors), Springer, 2018, pp. 623–632.
[2]G. Barmpalias and A. Lewis-Pye, A note on the differences of computably enumer-

able reals, Computability and Complexity, Lecture Notes in Computer Science, vol. 10010,
Springer, 2017, pp. 623–632.

�%%"$���((( 31�2#9475 !#7�3!#5�%5#�$ ��%%"$���4!9 !#7��� �����2$� ���
 
�
�!( �!1454�6#!���%%"$���((( 31�2#9475 !#7�3!#5 �.0�144#5$$���� �� 
� �����! ����/1#������1%��������	��$C2:53%�%!�%�5�,1�2#9475�,!#5�%5#�$�!6�C$5��1D19�12�5�1%

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.56
https://www.cambridge.org/core


488 LOGIC COLLOQUIUM ’19

[3] C. S. Calude, P. H. Hertling, B. Khoussainov, andY.Wang,Recursively enumerable
reals and ChaitinΩ numbers.Theoretical Computer Science, vol. 255 (2001), no. 1–2, pp. 125–
149.
[4]G. J. Chaitin, A theory of program size formally identical to information theory. Journal

of the ACM, vol. 22 (1975), pp. 329–340.
[5] A. Kučera and T. Slaman, Randomness and recursive enumerability. SIAM Journal on

Computing, vol. 31 (2001), pp. 199–211.

! WESLEY CALVERT, DOUGLAS CENZER, AND VALENTINA HARIZANOV, Ap-
proximately computable equivalence structures.
Department of Mathematics, Southern Illinois University, Carbondale, IL, 62901, USA.
Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA.
Department ofMathematics, GeorgeWashingtonUniversity, Washington, DC, 20052, USA.
E-mail: harizanv@gwu.edu.
In the past, we investigated computable, computably enumerable, and co-computably

enumerable equivalence structures and their isomorphisms [2, 3]. In recent years, various
authors investigated approximate computability for sets and reducibilities. We introduce
and study the notions of generic and coarse computability for equivalence structures and
their isomorphisms [1]. A binary relation R on ! is generically computable if there is a
partial computable function ϕ : !2 → {0, 1} such that on its domain, ϕ coincides with
the characteristic function of R and, furthermore, ϕ is defined on A × A for a computably
enumerable set A of asymptotic density 1. A set B ⊆ ! is called R-faithful if, whenever
aRb, then a ∈ B iff b ∈ B . We say that a generically computable R is faithfully generically
computable if the corresponding setA isR-faithful. We show that every equivalence structure
has a generically computable copy. We also show that an equivalence structure E has a
faithfully generically computable copy if and only if E has an infinite faithful substructure
with a computable copy.
An equivalence structure E = (!, E) is coarsely computable if there is a computable

equivalence relation C such that E and C agree on a set A ⊆ ! of asymptotic density
1. The structure E is faithfully coarsely computable if A is both C -faithful and E-faithful.
Every equivalence structure has a coarsely computable copy. Not every faithfully coarsely
computable equivalence structure has a faithfully generically computable copy, and not
every equivalence structure has a faithfully coarsely computable copy. We also investigate
generically and coarsely computable isomorphisms and how their categoricity differs from
computable categoricity.
[1]W. Calvert, D. Cenzer, and V. Harizanov, Generically computable equivalence struc-

tures and isomorphisms, https://arxiv.org/abs/1808.02782.
[2]W. Calvert, D. Cenzer, V. Harizanov, and A. Morozov, Effective categoricity of

equivalence structures. Annals of Pure and Applied Logic, vol. 141 (2006), pp. 61–78.
[3]D. Cenzer, V. Harizanov, and J. B. Remmel, Σ01 andΠ

0
1 equivalence structures.Annals

of Pure and Applied Logic, vol. 162 (2011), pp. 490–503.

! DENIS HIRSCHFELDT, Computability theory, reverse mathematics, and Hindman’s Theo-
rem.
Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL
60637, USA.
E-mail: drh@math.uchicago.edu.
I will discuss results and open problems concerning the computability-theoretic and

reverse-mathematical strength of versions of Hindman’s Theorem, which states that for any
coloring of the natural numbers with finitely many colors, there is an infinite set S such that
all nonempty sums of distinct elements of S have the same color.

! NOAH SCHWEBER,More effective cardinal characteristics.
University of Wisconsin–Madison, USA.
E-mail: schweber@berkeley.edu.
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A *cardinal characteristic of the continuum* is a measure of the difficulty of finding a
“sufficiently large” set of reals for a given task—for example, the smallest cardinality of a set
of functions from naturals to naturals such that every function is dominated by one in the set,
or the smallest cardinality of a nonmeasurable set.While these are purely set-theoretic objects,
they often have computability-theoretic analogues—degree notions which similarly measure
the difficulty of creating sufficient sets, but this time from a computational perspective.
In this talk, I’ll present work, joint with Ivan Ongay-Valverde, on a new class of effective

cardinal characteristics. They form the effective analogue of problems such as “How large
does a set of 2-branching subtrees of 3<! have to be in order for every element of 3! to be a
path through one of the trees?”We will show that on the effective side we get multiple distinct
hierarchies, and discuss their interactions with classical computability-theoretic notions such
as computable traceability.
Time permitting, I’ll also say a bit about another less-studied appearance of cardinal

characteristics in computability theory—this time, in computable structure theory (this part
joint with Uri Andrews, Joe Miller, and Mariya Soskova).

Abstracts of invited talks in the Special Session on
Foundations of Geometry

! MICHAEL BEESON, On the notion of equal figures in Euclid.
Mathematics, San José State University, San José, CA, USA.
E-mail: profbeeson@gmail.com.
URL Address: www.michaelbeeson.com/research.
Euclid uses an undefined notion of “equal figures”, to which he applies the common

notions about equals added to equals or subtracted from equals. When we formalized Euclid
Book I for computer proof-checking, we had to add fifteen axioms about undefined relations
“equal triangles” and “equal quadrilaterals” to replace Euclid’s use of the common notions.
In this article, we offer definitions of “equal triangles” and “equal quadrilaterals, that Euclid
could have given, and prove that they have the required properties, by proofs Euclid could
have given. This removes the need for adding new axioms.

! PIERRE BOUTRY, Towards an independent version of Tarski’s system of geometry.
University of Strasbourg, France.
E-mail: boutry@unistra.fr.
In 1926–1927, Tarski designed a set of axioms for Euclidean geometry which reached its

final form in a manuscript by Schwabhäuser, Szmielew and Tarski in 1983. The differences
amount to simplifications obtained by Tarski and Gupta. Gupta presented an independent
version of Tarski’s system of geometry, thus establishing that his version could not be further
simplified without modifying the axioms. To obtain the independence of one of his axioms,
namely Pasch’s axiom, he proved the independence of one of its consequence: the previously
eliminated symmetry of betweenness. However, an independence model for the nondegener-
ate part of Pasch’s axiom was provided by Szczerba for another version of Tarski’s system of
geometry in which the symmetry of betweenness holds. This independence proof cannot be
directly used for Gupta’s version as the statements of the parallel postulate differ.
In this talk, we present our progress towards obtaining an independent version of a variant

of Gupta’s system. Compared to Gupta’s version, we split Pasch’s axiom into this previously
eliminated axiom and its nondegenerate part and change the statement of the parallel postu-
late. To select this statement, our previous article, Parallel postulates and continuity axioms:
a mechanized study in intuitionistic logicusing Coq, proved to be useful so we detail some of
these results.

! JOHNMUMMA, Diagrams and parallelism.
Philosophy Department, California State University of San Bernardino, 5500 University
Parkway, San Bernardino, CA 92407, USA.
E-mail: john.mumma@gmail.com.
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The topic ofmy talk is how the relation of parallelism is represented in diagrammatic proofs
of plane elementary geometry. I will discuss how the boundedness of diagrams motivates a
constructive conception of the relation, and consider how the formal system presented in [1]
can be modified in accord with this conception.
[1] J. Avigad, E. Dean, and J. Mumma, A formal system for Euclid’s elements. The Review

of Symbolic Logic, vol. 2 (2009), no. 4, pp. 700–768.

! GIANLUCA PAOLINI, First-order model theory of free projective planes.
University of Torino, Department of Mathematics “Giuseppe Peano,” Italy.
E-mail: gianluca.paolini@unito.it.
We prove that the theory of open projective planes is complete and strictly stable, and

infer from this that Marshall Hall’s free projective planes (&n : 4 ≤ n ≤ !) are all elementary
equivalent and that their common theory is strictly stable and decidable, being in fact the
theory of open projective planes.We further characterize the elementary substructure relation
in the class of open projective planes, and show that (&n : 4 ≤ n ≤ !) is an elementary chain.
We then prove that for every infinite cardinality κ there are 2κ nonisomorphic open projective
planes of power κ, improving known results on the number of open projective planes. Finally,
we characterize the forking independence relation in models of the theory and prove that &!

is strongly type-homogeneous.
[1]G. Paolini and T. Hyttinen, First-order model theory of free projective planes: Part I,

submitted.

Abstracts of invited talks in the Special Session on
Model Theory

! AYŞE BERKMAN, Sharp actions of groups in the finite Morley rank context.
Department of Mathematics, Mimar Sinan Fine Arts University, Şişli, Istanbul, Turkey.
E-mail: ayse.berkman@msgsu.edu.tr, ayseberkman@gmail.com.
URL Address: http://mat.msgsu.edu.tr/∼ayse/.
After introducing basics on permutation groups of finite Morley rank, I plan to focus on

sharply 2-transitive and generically sharply n-transitive group actions in the finite Morley
rank setting.
Let G be a group acting on a set X and fix a positive integer n. If for any two n-tuples

(x1, . . . , xn) and (y1, . . . , yn) consisting of distinct elements of X , there exists a (unique)
g ∈ G such that gxi = yi for all i = 1, . . . , n, then we say G acts (sharply) n-transitively on
X .
For any field (or more generally, for any near-field) K , the action of the group of affine

K-linear transformations on K viewed as an affine line, that is K∗ ! K+ " K , is sharply
2-transitive. We call such actions standard sharply 2-transitive actions. Sharply 2-transitive
finite groups were classified by Zassenhaus in 1936. For a long time, it had been an open
question whether every infinite sharply 2-transitive group is standard or not. Finally in 2017,
Rips, Segev, and Tent, in 2016, Tent and Ziegler; constructed examples of sharply 2-transitive
groups which are not standard. However, their examples are not of finiteMorley rank. Hence
the problem remains open in the finite Morley rank context.
In my talk, first I shall talk about the following partial solution to the problem.

Theorem 1 (Altınel, B., Wagner, 2019). Let G be an infinite sharply 2-transitive group of
finite Morley rank, and of characteristic p. Then the following holds.
(a) If p = 3, then G is standard.
(b) If p = 2, then G splits.
(c) If p ̸= 2 and G splits, then G is standard.
In a sharply 2-transitive group, if the stabilizer of an element has no involutions, then

we say that the characteristic of the group is 2. Otherwise, all strongly real elements (i.e.,
products of two distinct involutions) are conjugate, and their orders are equal to some prime
p ! 3, or they are of infinite order. In this case, we say the characteristic of the group is p or
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0, respectively. If G = N # stab(x) for some x ∈ X and normal subgroup N ✂ G , then we
say G splits.
The second part of my talk will be devoted to the study of generically sharply n-transitive

groups. More precisely, I shall talk about the following theorem.

Theorem 2 (B., Borovik, 2018). LetG be a group of finite Morley rank, and V a connected
abelian group ofMorley rank n with no involutions. Assume thatG acts definably and generically
sharply n-transitively on V , then there is an algebraically closed field F of characteristic not 2,
such that G " V is equivalent to GLn(F )" F n.

If G is sharply transitive on a generic subset of X , then we say G acts generically sharply
transitively onX . Similarly, if the induced action of G onXn is generically sharply transitive,
then we say G acts generically sharply n-transitively on X .

! PHILIP DITTMANN,Models of the common theory of algebraic extensions of the rational
numbers.
KU Leuven, Department of Mathematics, B-3001 Leuven, Belgium.
E-mail: philip.dittmann@kuleuven.be.
Although the theory of algebraic extensions of Q has many properties normally seen as

undesirable(for instance, it is not computably enumerable and has many completions with
bad stability properties), it still makes sense to investigate its nonstandard models. Using the
model theory of local fields, as well as some algebraic ingredients interesting in their own
right, one can show that every such “nonstandard algebraic” field is dense in all its real and p-
adic closures. Along the way, we will encounter the classical notion of the Pythagoras number
from field theory, as well as a new p-adic version of the same, inspired by axiomatisations of
the universal theory of local fields. As a consequence of the denseness, we obtain a result on
definability of the valuation ring in henselian fields whose residue field is a number field.
Acknowledgment. This is joint work with Sylvy Anscombe and Arno Fehm.

! ANGUS MACINTYRE,Model theory of adeles. Arithmetic equivalence.
Queen Mary University of London, UK.
E-mail: a.macintyre@qmul.ac.uk.
Let AK be the ring of adeles of a number field K . Only after Ax had given his analyses of

uniform definability and decidability for the completions of K at the its standard absolute
values (fifty years ago) could one give informative analyses of the definability and decid-
ability for the individual AK . This was first done, early on, by Weisspfenning. Much later,
Derakhshan and I have given amore algebraic treatment purely in the language of rings. Still,
many questions remain unanswered, notably that of definability and decidability uniformly in
K. This is related to basic issues of unbounded ramification (going back to Herbrand’s work
in algebraic number theory). Some of these issues will be sketched, but the main emphasis
will be on a question posed in other terms by number theorists more than eighty years ago.
The question asks to what extent AK determines K . It has been known for a long time that
AK does not determineK (up to isomorphism) in general, and much fine structure has been
discovered (involving Galois theory, zeta functions, class numbers, etc). In the talk I will give
a thorough analysis of elementary equivalence for adele rings, and show that it coincides with
isomorphism. I also reformulate some work of the number theorists to show that for any K
there are at most finitely many L so that AK and AL are isomorphic.
Acknowledgment. This work is joint with J. Derakhshan (Oxford).

! FRANCESCO PARENTE,Model-theoretic properties of ultrafilters and universality of forc-
ing extensions.
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
E-mail: f.parente@leeds.ac.uk.
In this talk, I will discuss some recent results at the interface between model theory and

set theory. The first part will be concerned with model-theoretic properties of ultrafilters in
the context of Keisler’s order. I will use the framework of ‘separation of variables’, recently
developed by Malliaris and Shelah, to provide a new characterization of Keisler’s order in
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terms of saturation of Boolean ultrapowers. Furthermore, I will show that good ultrafilters
on complete Boolean algebras are precisely the ones which capture the maximum class in
Keisler’s order, answering a question posed by Benda in 1974.
In the second part of the talk, I will report on joint work with Matteo Viale in which we

apply the above results to the study of models of set theory. In particular, our work aims
at understanding the universality properties of forcing extensions. To this end, we analyse
Boolean ultrapowers of H!1 in the presence of large cardinals and give a new interpretation
of Woodin’s absoluteness results in this context.

Abstracts of invited talks in the Special Session on
Proof Theory and Proof Complexity

! BAHAREH AFSHARI, An infinitary treatment of fixed point modal logic.
ILLC, University of Amsterdam, The Netherlands.
Department of Computer Science and Engineering, University of Gothenburg, Sweden.
E-mail: bahareh.afshari@cse.gu.se.
Fixed point modal logic deals with the concepts of induction and recursion in a most

fundamental way. The term refers to any logic built on the foundation of modal logic that
features inductively and/or co-inductively defined operators. Examples range from simple
temporal logics (e.g., tense logic and linear time logic) to the highly expressive modal '-
calculus and its extensions.
We explore the proof theory of fixedpointmodal logicwith conversemodalities, commonly

known as ‘full'-calculus’. Building on nested sequent calculi for tense logics [2] and infinitary
proof theory of fixed point logics [1], a cut-free sound and complete proof system for full
'-calculus is proposed. As a result of the framework, we obtain a direct proof of the regular
model property for the logic (originally proved in [4]): every satisfiable formula has a tree
model with finitely many distinct subtrees (up to isomorphism). Many of the results appeal
to the basic theory of well-quasi-orders in the spirit of Kozen’s proof of the finite model
property for '-calculus [3].
This talk is based on joint work with Gerhard Jäger (University of Bern) and Graham

E. Leigh (University of Gothenburg).
[1]G. Jäger, M. Kretz, and T. Studer, Canonical completeness of infinitary mu. The

Journal of Logic and Algebraic Programming, vol. 76.2 (2008), pp. 270–292.
[2] R. Kashima, Cut-free sequent calculi for some tense logics. Studia Logica, vol. 53.1

(1994), pp. 119–135.
[3]D. Kozen,Cut-free sequent calculi for some tense logics. Theoretical Computer Science,

vol. 27 (1983), pp. 333–354.
[4]M. Vardi, Reasoning about the past with two-way automata, Automata, Languages and

Programming (K.G.Larsen, S. Skyum, andG.Winskel, editors), Springer, BerlinHeidelberg,
Warsaw, Poland, 1998, pp. 628–641.

! OLAF BEYERSDORFF, Proof complexity of quantified Boolean formulas.
Institute of Computer Science, University of Jena, Germany.
E-mail: olaf.beyersdorff@uni-jena.de.
Proof complexity of quantified Boolean formulas (QBF) studies different formal calculi

for proving QBFs and compares themwith respect to the size of proofs. There exists a number
of conceptually quite different QBF resolution calculi, modelling QBF solving approaches,
as well as QBF cutting planes, algebraic systems, Frege systems, and sequent calculi. We give
an overview of the relative proof complexity landscape of these systems.
From a complexity perspective it is particularly interesting to understand which lower

bound techniques are applicable in QBF proof complexity. While some propositional tech-
niques, such as feasible interpolation [3] and game-theoretic approaches [4], can be lifted to
QBF, QBF proof complexity also offers completely different approaches that do not have
analogues in the propositional domain. These build on strategy extraction, whereby from a
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refutation of a false QBF a countermodel can be efficiently constructed. Extracting strategies
in restricted computational models (such as bounded-depth circuits) and exhibiting false
QBFs where countermodels are hard to compute in the same computational model leads to
lower bounds for the size of proofs in QBF calculi.
We explain this paradigm for prominent QBFs [2, 1]. For QBFFrege systems this approach

even characterisesQBFFrege lower bounds by circuit lower bounds [5]. This provides a strong
link between circuit complexity and QBF proof complexity, unparalleled in propositional
proof complexity.
This line of research also intrinsically connects toQBF solving as different QBF resolution

calculi form the basis for different approaches in QBF solving such as QCDCL [7] and QBF
expansion [6]. Thus QBF proof complexity provides the main theoretical tool towards an
understanding of the relative power and limitations of these powerful algorithms.
[1] O. Beyersdorff, J. Blinkhorn, and L. Hinde, Size, cost, and capacity: A semantic

technique for hard random QBFs, Proceedings of the Conference on Innovations in Theoretical
Computer Science (ITCS), 2018, pp. 9:1–9:18.
[2] O. Beyersdorff, I. Bonacina, andL. Chew,Lower bounds: From circuits to QBF proof

systems, Proceedings of the ACMConference on Innovations in Theoretical Computer Science
(ITCS), ACM, 2016, pp. 249–260.
[3] O. Beyersdorff, L. Chew, M. Mahajan, and A. Shukla, Feasible interpolation for

QBF resolution calculi. Logical Methods in Computer Science, vol. 13 (2017).
[4] O. Beyersdorff, L. Chew, andK. Sreenivasaiah, A game characterisation of tree-like

Q-resolution size. Journal of Computer and System Sciences, (2017), in press.
[5] O. Beyersdorff and J. Pich, Understanding Gentzen and Frege systems for QBF,

Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS), 2016.
[6]M. Janota and J. Marques-Silva, Expansion-based QBF solving versus Q-resolution.

Theoretical Computer Science, vol. 577 (2015), pp. 25–42.
[7] L. Zhang and S. Malik, Conflict driven learning in a quantified boolean satisfiability

solver, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2002,
pp. 442–449.

! SARA NEGRI, Syntax for semantics.
Department of Philosophy, University of Helsinki, Finland.
E-mail: sara.negri@helsinki.fi.
A general method is presented for converting semantics into well-behaved proof systems.

Previous work has shown that the method works in full generality for Kripke semantics. A
number of extensions thereof, covering preferential and neighbourhood semantics, will be
surveyed to highlight its uniform features.

! PEDRO PINTO, Proof mining with the bounded functional interpretation.
Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, 1749-016
Lisboa, Portugal.
E-mail: pedrosantospinto@hotmail.com.
In the context of the proof mining research program [5, 6], the standard tool guiding the

extraction of new information from noneffective mathematical proofs is Ulrich Kohlenbach’s
monotone functional interpretation. In 2005, a different interpretation was introduced by
Fernando Ferreira and Paulo Oliva, the bounded functional interpretation [4]. We will look
at some of the first applications of this functional interpretation to the proof mining of
concrete results. In [3], we explained how certain sequential weak compactness arguments
can be eliminated from proof mining and used this ideia to obtain a quantitative version of
Bauschke’s theorem from [1]. Bounds on the metastability (in the sense of Terence Tao) for
variants of the proximal point algorithm were obtained in [7, 8, 2].
Acknowledgment. This is partly joint work with Bruno Dinis, Fernando Ferreira, and

Laurenţiu Leuştean.
[1]H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive

mappings inHilbert space. Journal ofMathematical Analysis and Applications, vol. 202 (1996),
no. 1, pp. 150–159.
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[2] B. Dinis and P. Pinto, Metastability of the proximal point algorithm with multi-
parameters, in preparation.
[3] F. Ferreira, L. Leuştean, and P. Pinto,On the removal of weak compactness arguments

in proof mining, submitted, preprint, arXiv:1810.01508.
[4] F.Ferreira andP.Oliva,Bounded functional interpretation.Annals of Pure andApplied

Logic, vol. 135 (2005), no. 1–3, pp. 73–112.
[5]U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their use in Mathe-

matics, Springer Monographs in Mathematics, Springer-Verlag, 2008.
[6] , Proof-theoretic methods in nonlinear analysis, Proceedings of the International

Congress ofMathematicians 2018, vol. 2 (B. Sirakov, P. Ney de Souza, andM.Viana, editors),
World Scientific, Rio de Janeiro, Brazil, 2019, pp. 61–82.
[7] L. Leuştean and P. Pinto, Quantitative results on Halpern type proximal point algo-

rithms, in preparation.
[8] P. Pinto, Quantitative version of a theorem by H-K. Xu, in preparation.

! THOMAS POWELL,A new application of proof mining in the fixed point theory of uniformly
convex Banach spaces.
Technische Universität Darmstadt, Schlossgartenstraße 7, D-64298 Darmstadt, Germany.
E-mail: powell@mathematik.tu-darmstadt.de.
Proof mining is a branch of mathematical logic which makes use of proof theoretic tech-

niques to extract quantitative information from seemingly nonconstructive proofs. In this
talk, I present a new application of proof mining in functional analysis, which focuses on the
convergence of the Picard iterates (Tnx)n∈N for a class of mappings T on uniformly convex
Banach spaces whose fixpoint sets have nonempty interior.

! NEIL THAPEN, Induction, search problems and approximate counting.
Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech
Republic.
E-mail: thapen@math.cas.cz.
An important open problem in bounded arithmetic is to show that (in the presence of

an oracle predicate) theories with more induction are strictly stronger when it comes to
proving sentences of some fixed complexity. In classical fragments of Peano arithmetic,
the Π1 consequences of theories can be separated by consistency statements, and the Π2
consequences by the growth-rate of definable functions. In bounded arithmetic, neither of
these seems to be possible.
I will discuss this problem, and describe some recent progress on it. A particular instance

of the problem is to find a ∀Σb1 sentence which is provable in full bounded arithmetic but
not in T 22 (i.e., with induction restricted to Σ

b
2 formulas). In [1] we study the theory APC2,

which allows approximate counting of Σb1 sets, and appears to have a broadly similar level of
strength to T 22 . We find such a ∀Σb1 sentence separating APC2 from full bounded arithmetic,
using a probabilistic oracle construction based on a simplified switching lemma.
[1] L. A. Ko!lodziejczyk andN. Thapen, Approximate counting and NP search problems,

preprint, arXiv:1812.10771.

Abstracts of invited talks in the Special Session on
Reflection Principles and Modal Logic

! ALI ENAYAT, Some recent news about truth theories.
University of Gothenburg, Sweden.
E-mail: ali.enayat@gu.se.
For a fragment B of PA (Peano arithmetic), CT−[B] (compositional truth over B) is the

theory formulated in the language of arithmetic augmented with a fresh predicate T(x) to
express: “x is the Gödel number of a true arithmetical sentence”. The axioms of CT−[B]
consist of the axioms ofB plus finitely many sentences that stipulate thatT(x) is well behaved
on atomic sentences, and obeys Tarski’s familiar compositional clauses guiding the behaviour
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of the truth predicate. We have known, since the pioneering work of Krajewski, Kotlarski,
and Lachlan (1981), that CT−[PA] is conservative over PA. In this talk, we will discuss the
following recent developments:

• Recent joint work [1] of Pakhomov and the author on the equivalence of CT−[I∆0 +
Exp] +DCwith CT0[PA],whereDC is the axiom stating “a disjunction of finitely many
sentences is true iff one of the disjuncts is true”; and CT0[PA] is the result of adding
the induction scheme for ∆0-formulae that mention the truth predicate to CT−[PA].
This result refines earlier work by Kotlarski (1986) and Cieśliński (2010) and shows
that CT−[PA] + DC is not conservative over PA, since as demonstrated by Wcisło and
Łełyk [3], CT0[PA] proves Con(PA) (and much more).

• Recent joint work [2] of Łełyk, Wcisło, and the author on the feasible reducibility
of CT−[PA], and certain other canonical untyped truth theories to PA. In particu-
lar, this shows that CT−[PA] does not exhibit superpolynomial speed-up over PA,
in sharp contrast to the superexponential speed-up of CT−[B] over B for finitely
axiomatizable B.

[1] A. Enayat and F. Pakhomov, Truth, disjunction, and induction. Archive for Mathemat-
ical Logic, 2019, https://doi.org/10.1007/s00153-018-0657-9.
[2] A. Enayat, M. Łe!lyk, and B. Wcis!lo, Truth and feasible reducibility. The Journal of

Symbolic Logic, to appear, 2019, arXiv:1902.00392.
[3] B. Wcis!lo and M. Łe!lyk, Notes on bounded induction for the compositional truth

predicate. The Review of Symbolic Logic, vol. 10 (2017), pp. 455–480.

! EMIL JEŘÁBEK, Reflection principles in weak and strong arithmetics.
Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech
Republic.
E-mail: jerabek@math.cas.cz.
URL Address: http://math.cas.cz/∼jerabek.
Reflection principles are established as an important tool in the study of first-order theories

of arithmetic. In the realm of strong fragments of arithmetic (say, above I∆0 + EXP), this
means first-order reflection principles expressing the soundness of subsystems of arithmetic
itself with respect to formulas of bounded complexity. First-order reflection schemata come
in various shapes depending on their purpose (uniform reflection principles, local reflection
principles, reflection rules), and since they operate inside with the same language as outside,
they can be iterated.
This approach is of no use for weak theories of arithmetic such as fragments of bounded

arithmetic I∆0 + Ω1, since these theories cannot even prove the consistency of the base the-
oryQ. However, fragments of bounded arithmetic can be analyzed using reflection principles
for propositional proof systems, expressing that tautologies of bounded complexity provable in
the system are true under Boolean assignments. Using translation of bounded formulas into
propositional language, these reflection principles can be themselves expressed by sequences
of propositional tautologies.
In this talk, I will reviewbasic properties of reflectionprinciples in both setups, highlighting

what makes them similar and what makes them different.

! FEDOR PAKHOMOV, A weak set theory that proves its own consistency.
Steklov Mathematical Institute, Moscow.
E-mail: pakhfn@mi-ras.ru.
We introduce a weak set theoryH<! . A formalization of arithmetic on finite vonNeumann

ordinals gives an embedding of arithmetical language into this theory. We show that H<!
proves a natural arithmetization of its own Hilbert-style consistency. Unlike the previous
examples (due to Willard [2]) of theories proving their own consistency, H<! appears to be
sufficiently natural.
The theoryH<! is infinitely axiomatizable andproves existence of all individual hereditarily

finite sets, but at the same time all its finite subtheories have finite models. Therefore, our
example avoids the strong version of Gödel’s second incompleteness theorem (due to Pudlák)
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that asserts that no consistent theory interpreting Robinson’s arithmetic Q proves its own
consistency [1]. To show that H<! proves its own consistency we establish a conservation
result connecting Kalmar elementary arithmetic EA and H<!.
The theory H<! is a first-order theory in the signature with equality =, membership

predicate ∈, and unary function V. Axioms of H<! :
1. x = y ↔ ∀z(z ∈ x ↔ z ∈ y) (Extensionality);
2. ∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z)) (Separation);
3. y ∈ V(x)↔ (∃z ∈ x)(y ⊆ V(z)) (Defining axiom for V);
4. ∃x Natn(x), for all n ∈ N (all individual natural numbers exist).

Here, the formulas Natn(x) expressing the fact that x is the ordinal n are defined in the usual
manner: Nat0(x) is ∀y y /∈ x andNatn+1(x) is ∀y (Natn(y)→ ∀z(z ∈ x ↔ z = y∨ z ∈ y)).
The intended interpretation of the function V is V : x -−→ Vα , where α is least ordinal such
that x ⊆ Vα .
[1] P. Pudlák, Provability algebras and proof-theoretic ordinals. The Journal of Symbolic

Logic, vol. 50 (1985), no. 2, pp. 423–441.
[2]D. E. Willard, A generalization of the second incompleteness theorem and some excep-

tions to it. Annals of Pure and Applied Logic, vol. 141 (2006), no. 3, pp. 472–496.

! ALBERT VISSER, Löb’s logic and the Lewis arrow.
Philosophy, Faculty of Humanities, Janskerkhof 13, 3512 BL Utrecht, Utrecht University,
The Netherlands.
E-mail: a.visser@uu.nl.
My talk reports on research in collaboration with Tadeusz Litak.
In the constructive context, the Lewis arrow does not reduce to the modal box. Moreover,

a slight generalization of the Lewis arrow, has contraposed interpretability as a special case.
I will discuss versions of Löb’s logic with the Lewis arrow. I will address:

• the definition of various systems,
• Kripke semantics,
• explicit fixed points,
• uniform interpolation (which is at present only known for two special systems),
• arithmetical interpretations.

At the end of the talk, I will briefly present some questions for further research.

Abstracts of invited talks in the Special Session on
Set Theory

! YAIR HAYUT, Stationary Reflection at the successor of a singular cardinal.
Kurt Gödel Research Center, Universität Wien, Währinger Straße 25, 1090 Wien, Austria.
E-mail: yair.hayut@univie.ac.at.
In the article [2], the consistency of stationary reflection at all stationary subset of ℵ!+1

which concentrate on ordinals of uncountable cofinality, was obtained from the existence of
a cardinal κ which is κ+-supercompact. Using a similar method, Zeman showed in [5] that
¬"ℵ! is consistent relative to the weaker assumption—a measurable subcompact cardinal.
In both cases, Prikry forcing is used in order to singularize a measurable cardinal that will
become the new ℵ! . When trying to improve those results in order to obtain full stationary
reflection atℵ!+1 one needs to dealwith the nonreflecting stationary setswhich are introduced
by the Prikry forcing.
In this talk, I will describe the main ideas behind the method which is used in a joint work

with Spencer Unger, [4]. In this work we obtain full stationary reflection at ℵ!+1, starting
from a large cardinal axiom weaker than the one from [2]. This method uses the ideas of [1]
and [3], and enables us to analyse the properties of a Prikry type generic extensions by using
internal analysis of some iterated ultrapowers, as well as construct a specialized Prikry type
forcing notion with a controlled behaviour for our problem.
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[1] L. Bukovský, Iterated ultrapower and Prikry’s forcing. Commentationes Mathematicae
Universitatis Carolinae, vol. 18 (1977), no. 1, pp.77–85.
[2] J. Cummings,M. Foreman, andM.Magidor, Squares, scales and stationary reflection.

Journal of Mathematical Logic, vol. 1 (2001), no. 1, pp.35–98.
[3] P. Dehornoy, Iterated ultrapowers and Prikry forcing. Annals of Mathematical Logic,

vol. 15 (1978), no. 2, pp.109–160.
[4] Y. Hayut and S. Unger, Stationary Reflection, preprint, 2018, arXiv:1804.11329.
[5]M. Zeman, Two upper bounds on consistency strength of ¬"ℵ! and stationary set

reflection at two successive ℵn. Notre Dame Journal of Formal Logic, vol. 58 (2017), no. 3,
pp. 409–432.

! HEIKE MILDENBERGER AND SAHARON SHELAH, Generalised Miller forcing may
collapse cardinals.
Albert-Ludwigs-Universtät Freiburg, Germany.
E-mail: heike.mildenberger@math.uni-freiburg.de.
The Hebrew University in Jerusalem, Israel.
E-mail: shelah@math.huji.ac.il.
We show that it is independent whether club-κ-Miller forcing preserves κ++. With club

guessing and other prediction principles we show that under κ<κ > κ, club-κ-Miller forcing
collapses κ<κ to κ. We investigate variants of κ-Miller forcing and draw connections to the
forcing ([κ]κ,⊆).

! DANIEL T. SOUKUP, Through the lense of uniformization.
Kurt Gödel Research Center for Mathematical Logic, Faculty of Mathematics, University
of Vienna, Austria.
E-mail: daniel.soukup@univie.ac.at.
URL Address: http://www.logic.univie.ac.at/∼soukupd73/.
The main goal of this talk is to review recent applications of the uniformization property

of ladder systems on !1. This notion played a critical role in S. Shelah’s solution of the
Whitehead problem; in the understanding of forcing axioms which can be consistent with
CH [2]; and in J. Moore’s work on minimal uncountable linear orders [1]. We shall focus on
more recent results concerning edge colourings of graphswith uncountable chromatic number
(joint work with M. Dzamonja, T. Inamdar, and J. Steprans) and questions about minimal
uncountable linear orders [5, 6]. The latter topic leads to the analysis of uniformizations on
Aronszajn trees [3, 4] which we shall touch on briefly.
[1] J.Moore,!1 and−!1 may be the only minimal uncountable linear orders.TheMichigan

Mathematical Journal, vol. 55 (2007), no. 2, pp. 437–457.
[2] S. Shelah, Proper Forcing, Springer, Berlin, Heidelberg, 1982.
[3]D. T. Soukup, Ladder system uniformization on trees I :Colouring ladders. Fundamenta

Mathematicae, submitted, https://arxiv.org/abs/1806.03867.
[4] , Ladder system uniformization on trees II : Growing trees. Fundamenta Mathe-

maticae, submitted, https://arxiv.org/abs/1806.03867.
[5] ,Amodel with Suslin trees but nominimal uncountable linear orders other than!1

and −!1. Israel Journal of Mathematics, to appear, https://arxiv.org/abs/1803.03583.
[6] , Uncountable strongly surjective linear orders. Order, vol. 36 (2019), no. 1,

pp. 43–64.

! ANDY ZUCKER, Bernoulli disjointness.
Université Paris Diderot, France.
E-mail: andrew.zucker@imj-prg.fr.
We consider the concept of disjointness for topological dynamical systems, introduced

by Furstenberg. We show that for every discrete group, every minimal flow is disjoint from
the Bernoulli shift. We apply this to give a negative answer to the Ellis problem for all such
groups. For countable groups, we show in addition that there exists a continuum-sized family
of mutually disjoint free minimal systems. Using this, we can identify the underlying space of
the universal minimal flow of every countable group, generalizing results of Balcar–Błaszczyk
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and Turek. In the course of the proof, we also show that every countable ICC group admits
a free minimal proximal flow, answering a question of Frisch, Tamuz, and Vahidi Ferdowsi.
Acknowledgment.This is joint workwith Eli Glasner, Todor Tsankov, and BenjaminWeiss.

Abstracts of contributed talks

! RYOTA AKIYOSHI AND ANDREW ARANA, On Gaisi Takeuti’s philosophy of mathe-
matics.
Waseda Institute for Advanced Study, Tokyo, Nishi Waseda 1-6-1, Japan.
Keio University, Tokyo, Mita 2-15-45, Japan.
E-mail: georg.logic@gmail.com.
Department of Philosophy, Université Paris 1 Panthéon-Sorbonne, and IHPST, France.
E-mail: andrew.arana@univ-paris1.fr.
Gaisi Takeuti (1926–2017) is one of the most distinguished logician in proof theory af-

ter Hilbert and Gentzen. He furthered the realization of Hilbert’s program by formulating
Gentzen’s sequent calculus for higher-oder logics, conjecturing the cut-elimination theorem
holds for it (Takeuti’s conjecture), and obtaining several stunning results in the 1950–60’s
towards the solution of his conjecture. Though he has been chiefly known as a great math-
ematician, he wrote many articles in English and Japanese [2, 3, 4] where he expressed his
philosophical thoughts.
In this talk, we aim to describe a general outline of our project to investigate Takeuti’s

philosophy of mathematics. In particular, we point out that there is a crucial difference
between Takeuti’s program and Hilbert’s program, which is based on the fact that Takeuti’s
philosophical thinking goes back to Nishida’s philosophy in Japan.
[1] R. Akiyoshi and A. Arana, Takeuti’s proof theory in the context of the Kyoto School,

Jahrbuch für Philosophie das Tetsugaku-Ronso, Kyoto University, to appear.
[2] , Keishikisyugi No Tachiba Kara II (From the point of view of formalism II).

Kagakukisoron Kenkyu (Annals of the Japan Association for Philosophy of Science), vol. 2
(1956), no. 3, pp. 295–299.
[3] , Suugaku Ni Tsuite (About mathematics). Kagakukisoron Kenkyu (Annals of

the Japan Association for Philosophy of Science), (1972) no. 4, pp. 170–174.
[4] , Proof-Theory, second ed., North-Holland, Amsterdam, 1987.

! SENIKALVRTSYAN,SERGEYDAVIDOV,ANDDAVIT SHAHNAZARYAN, Invertible
binary algebras principally isotopic to a group.
Mathematics and mechanics, Yerevan State University, Alex Manoogian 1, Yerevan 0025,
Armenia.
E-mail: davidov@ysu.am.
E-mail: seno.alvrtsyan@gmail.com.
E-mail: shahnazaryan94@gmail.com.
A binary groupoid Q(A) is a nonempty set Q together with a binary operation A. Binary

groupoidQ(A) is called quasigroup if for all ordered pairs (a, b) ∈ Q2 exists unique solutions
x, y ∈ Q of the equations A(a, x) = b and A(y, a) = b. The solutions of these equations
will be denoted by x = A−1(a, b) and y = −1A(b, a), respectively. A binary algebra (Q;Σ)
is called invertible algebra or system of quasigroups if each operation in Σ is a quasigroup
operation.
We obtained characterizations of invertible algebras isotopic to a group or an abelian

group by the second-order formula.

Definition 1. We say that a binary algebra (Q;Σ) is isotopic to the groupoid Q(·), if each
operation in Σ is isotopic to the groupoid Q(·), that is, for every operation A ∈ Σ there exists
permutations αA, $A, (A of Q, that:

(AA(x, y) = αAx · $Ay, s
for every x, y ∈ Q. Isopoty is called principal if (A = epsilon(ϵ - unit permutation) for every
A ∈ Σ.
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Theorem 2. The invertible algebra (Q;Σ) is a principally isotopic to the abelian group, if
and only if the following second-order formula

A(−1A(B(x, B−1(y, z)), u), v) = B(x, B−1(y,A(−1A(z, u), v))),

is valid in the algebra (Q;Σ ∪ Σ−1 ∪−1 Σ) for all A,B ∈ Σ.
Corollary 3. [1]The class of quasigroups isotopic to groups is characterized by the following

identity:

x(y\((z/u)v)) = ((x(y\z))/u)v.

Theorem 4. The invertible algebra (Q;Σ) is a principally isotopic to a group if and only if
the following second-order formula:

A(−1A(B(x, z), y), A−1(u, B(w,y))) =

= A(−1A(B(w, z), y), A−1(u, B(x, y))),

is valid in the algebra (Q;Σ ∪ Σ−1 ∪−1 Σ) for all A,B ∈ Σ.
Corollary 5. The class of quasigroups isotopic to abelian groups is characterized by the

following identity:

((xz)/y)(u\(wy)) = ((wz)/y)(u\(xy)).

[1] V. D. Belousov, Globaly associative systems of quasigroups.Matematicheskii Sbornik,
vol. 55 (1961), nos. 2, 97, pp. 221–236.

! MAHFUZ RAHMAN ANSARI AND A. V. RAVISHANKAR SARMA, Constraints on
selection function: A critique of Lewis-Stalnaker’s semantics for counterfactuals.
Department of Humanities and Social Sciences, Indian Institute of Technology Kanpur,
India.
E-mail: mahfooz@iitk.ac.in.
E-mail: avrs@iitk.ac.in.
Counterfactual conditionals are the special kind of conditional sentences P✷ → Q, in

which the antecedent is always false. Counterfactual conditionals are statements, asserting
that something happens under certain conditions, which are presupposed not to be satisfied
in reality. The semantics of counterfactuals has been a challenging task for philosophers,
since antiquity. The most celebrated and poplar approach in this direction is the Stalnaker
(1968)-Lewis (1973) possible-worlds semantics. According to Lewis-Stalnaker’ semantics,
a counterfactual P✷ → Q holds when in the nearest possible world with respect to the
antecedent, the consequent is also true. This approach is based on the comparative similarity
of possibleworlds.Despite itsmathematical elegance, this approach is not free fromproblems.
There is a gap between intuitive notion of similarity of possible worlds and the criteria
provided by Lewis. In this article, we restrict ourselves to the counterfactual conditionals
in which the antecedents are treated as action deliberations. We emphasize on additional
constraints that are to be imposed on the selection function that picks the nearest possible
world. The present study aims to explore the constraints on selection function and tries to
reduce the gap between intuitive understanding of counterfactuals and formal analysis of
counterfactuals, based on similarity of possible worlds.
[1]M.L.Ginsberg,Counterfactuals.Artificial Intelligence, vol. 30 (1986), no. 1, pp. 35–79.
[2]D. Lewis, Counterfactuals, Harvard University Press, Cambridge, MA, reissued,

Blackwell, London, 2001.
[3] , On the Plurality of Worlds, Oxford, Basil Blackwell, 1986.
[4]D.Nute,Counterfactuals and the similarity of words.The Journal of Philosophy, vol. 72

(1975), no. 21, pp. 773–778.
[5] R. Stalnaker, A theory of conditionals in studies in logical theory, American Philo-

sophical Quarterly Monograph Series 2, Oxford, Blackwell, 1986, pp. 98–112.
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! JAMES APPLEBY, Resolving two paradoxes about knowledge states in the foundations of
intuitionistic analysis.
Independent Researcher.
E-mail: j.f.appleby.work@gmail.com.
A choice sequence is a continually growing sequence whose growth may, or may not,

be restricted in some way. They were utilised by Brouwer to resolve a crucial issue with
his intuitionistic re-foundation of mathematics; specifically, they allowed him to bridge gap
between the rationals and the reals.
Choice sequences received no true formalisation in Brouwer’s works, however, from [2]

onwards, he considered them as a pair of growing objects; a list of elements generated so far,
and a list of intensional first order restrictions.
A knowledge state is a formalised way of representing finite information about choice se-

quences. This allows us to formally represent intensional information about choice sequences
and achieve a notion of choice sequence close to that proposed by Brouwer. The theory FIM -
KS put forward in [3] demonstrates that knowledge states can be used to successfully found
intuitionistic analysis. They have also been used in [1] to show that the theory of the creating
subject is not needed.
This talk demonstrates that the theory of knowledge states put forward in [3] allows two

paradoxes to be derived, and it then outlines their resolution.
[1] J. F. Appleby, Choice Sequences and Knowledge States: Extending the Notion of Finite

Information to Produce a Clearer Foundation for Intuitionistic Analysis, Doctoral Thesis,
Keele University, 2017.
[2] L. E. J. Brouwer, Zur begrundung der intuitionistischen Mathematik I.Mathematische

Annalen, vol. 93 (1925), pp. 244–257.
[3] P. Fletcher,Brouwer’s weak counterexamples and the creative subject:A critical survey.

Journal of Philosophical Logic, upcoming.

! TOSHIYASU ARAI, Some results in proof theory.
Graduate School ofMathematical Sciences, TheUniversity of Tokyo, 3-8-1 KomabaMeguro
Tokyo, Japan.
E-mail: tosarai@ms.u-tokyo.ac.jp.
Let me report on some recent results in proof theory such as the proof-theoretic strengths

of the well-ordering principles and of reflecting ordinals.

! PHILIPPE BALBIANI AND TINKO TINCHEV, Computability of contact logics with
measure.
Institut de recherche en informatique de Toulouse, CNRS—Toulouse University, France.
E-mail: Philippe.Balbiani@irit.fr.
Faculty of Mathematics and Informatics, Sofia University St. Kliment Ohridski, Bulgaria.
E-mail: tinko@fmi.uni-sofia.bg.
Contact logics [1] are propositional logics interpreted over Boolean contact algebras [3].

They stem from the point-free approaches of geometry put forward by Whitehead. Their
language L(≤, C ) includes Boolean terms representing regions. Let X be a set of variables.
The set of Boolean terms (s , t, etc) over X being denoted T(X), the set A(X) of atomic
formulas overX consists of all expressions of the form s ≤ t (“s is part-of t”) andC (s, t) (“s
is in contact with t”). The set of all formulas (ϕ,), etc) overX is the least set F(X) containing
A(X) and such that for all ϕ,) ∈ F(X): ⊥ ∈ F(X), ¬ϕ ∈ F(X) and (ϕ ∨ )) ∈ F(X). Of
interest are, of course, the sets of all valid formulas determined by the various classes of
Boolean contact algebras one may consider. See [1, 5] for detailed investigations.
The combination of topological and size information is a fundamental issue for multifar-

ious applications of spatial reasoning [4]. It can be realized by considering Boolean contact
algebras with measure, that is, algebraic structures (A,C,') where (A, C ) is a Boolean con-
tact algebra and' is a positive finitemeasure onA. Contact logicswithmeasure are extensions
of contact logics. Their language L(≤, C,≤m) contains all additional atomic formulas of the
form s ≤m t (“the size of s is less or equal than the size of t”). Of interest are, again, the
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sets of all valid formulas determined by the various classes of Boolean contact algebras with
measure one may consider.
Using complexity results about linear programming [2], we show that the set of all valid

formulas determined by the class of all Boolean contact algebras with measure is in coNP.
Our proof relies on the equivalence between the satisfiability of a given formula ϕ and the
consistency of an associated system Sϕ of linear inequalities. It uses the following facts:
the computation of Sϕ from ϕ is possible in nondeterministic polynomial time; if a sys-
tem of k linear inequalities with integer coefficients of length at most n has a nonnegative
solution then it has a nonnegative solution with at most k positive entries of length in
O(k.(n + log k)).
[1] P. Balbiani, T. Tinchev, andD. Vakarelov,Modal logics for region-based theories of

space. Fundamenta Informaticæ, vol. 81 (2007), pp. 29–82.
[2] V. Chvátal, Linear Programming, Freeman, 1983.
[3]G. Dimov and D. Vakarelov, Contact algebras and region-based theory of space: A

proximity approach–I. Fundamenta Informaticæ, vol. 74 (2006), pp. 209–249.
[4] A. Gerevini and J. Renz, Combining topological and size information for spatial rea-

soning. Artificial Intelligence, vol. 137 (2002), pp. 1–42.
[5] R. Kontchakov, I. Pratt-Hartmann, and M. Zakharyaschev, Spatial reasoning

with RCC 8 and connectedness constraints in Euclidean spaces. Artificial Intelligence, vol. 217
(2014), pp. 43–75.

! JOHN BALDWIN, On strongly minimal Steiner systems: Zilber’s conjecture, universal alge-
bra, and combinatorics.
Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 850 S.
Morgan St., Chicago, IL 60607, USA.
E-mail: jbaldwin@uic.edu.
URL Address: http://homepages.math.uic.edu/∼jbaldwin/.
With Gianluca Paolini [1], we constructed, using a variant on the Hrushovski dimension

function, for every k ≥ 3, 2' families of strongly minimal Steiner k-systems. We study the
mathematical properties of these counterexamples to Zilber’s trichotomy conjecture rather
than thinking of them as merely exotic examples. In particular, the long study of finite Steiner
systems is reflected in results that depend on the block size k. A quasigroup is a structure
with a binary operation such that for each equation xy = z the values of two of the variables
determines a unique value for the third. The new Steiner 3-systems are bi-interpretable with
strongly minimal Steiner quasigroups. For k > 3, we expect to show the pure k-Steiner
systems have ‘essentially unary definable closure’ and do not interpret a quasigroup. But, we
show that for q a prime power the Steiner q-systems can be interpreted into specific sorts
of quasigroups, block algebras. This show a dichotomy within the class of strongly minimal
sets with flat geometries.
We extend the notion of an (a, b)-cycle graph arising in the study of finite and infinite

Stein triple systems [2] by introducing what we call the (a, b)-path graph of a block algebra.
We exhibit theories of strongly minimal block algebras where all (a, b)-paths are infinite and
others in which all are finite only in the prime model. We show how to obtain combinatorial
properties (e.g., 2-transitivity) by either varying the basic collection of finite partial Steiner
systems or modifying the ' function which ensures strong minimality.
[1] J. T. Baldwin and G. Paolini, Strongly minimal Steiner systems I, submitted, 2018.
[2] P. J. Cameron and B. S. Webb, Perfect countably infinite Steiner triple systems. The

Australasian Journal of Combinatorics, vol. 54 (2012), pp. 273–278.
! NIKOLAY BAZHENOV, HRISTOGANCHEV, AND STEFANVATEV,Computable em-
beddings for pairs of linear orderings.
Sobolev Institute of Mathematics, Novosibirsk, Russia and Novosibirsk State University,
Novosibirsk, Russia.
E-mail: bazhenov@math.nsc.ru.
Sofia University, Faculty of Mathematics and Informatics, 5 James Bourchier blvd., 1164,
Sofia, Bulgaria.
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E-mail: ganchev@fmi.uni-sofia.bg.
E-mail: stefanv@fmi.uni-sofia.bg.
Friedman and Stanley [3] introduced the notion ofBorel embedding to compare complexity

of the classification problems for classes of countable structures. Calvert, Cummins, Knight,
andMiller [1] (see also [2] and [4]) developed two notions, computable embeddings andTuring
computable embeddings, as effective counterparts of Borel embeddings.
We follow the approach of [1] and study computable embeddings for pairs of structures,

that is, for classes K containing precisely two nonisomorphic structures. Our motivation for
investigating pairs of structures is two-fold. These pairs play an important role in computable
structure theory and also they constitute the simplest case, which is significantly different
from the case of one-element classes. It is not hard to show that for any computable structures
A and B, the one-element classes {A} and {B} are equivalent with respect to computable
embeddings. On the other hand, computable embeddings induce a nontrivial degree structure
for two-element classes consisting of computable structures.
In this talk, we will concentrate on the pair of linear orders ! and !⋆. By degtc({!,!

⋆})
we denote the degree of the class {!,!⋆} under Turing computable embeddings. Quite un-
expectedly, it turns out that a seemingly simple problem of studying computable embeddings
for classes from degtc({!,!

⋆}) requires developing new techniques.
We give a necessary and sufficient condition for a pair of structures {A,B} to belong

to degtc({!,!⋆}). We also show that the pair {1 + +, + + 1} is the greatest element inside
degtc({!,!

⋆}), with respect to computable embeddings. More interestingly, we prove that
inside degtc({!,!

⋆}), there is an infinite chain of degrees inducedby computable embeddings.
[1]W. Calvert, D. Cummins, J. F. Knight, and S. Miller, Comparing classes of finite

structures. Algebra Logic, vol. 43 (2004), no. 6, pp. 374–392.
[2] J. Chisholm, J. F. Knight, and S. Miller, Computable embeddings and strongly mini-

mal theories. The Journal of Symbolic Logic, vol. 72 (2007), no. 3, pp. 1031–1040.
[3]H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable

structures. The Journal of Symbolic Logic, vol. 54 (1989), no. 3, pp. 894–914.
[4] J. F. Knight, S. Miller, andM. V. Boom, Turing computable embeddings. The Journal

of Symbolic Logic, vol. 72 (2007), no. 3, pp. 901–918.

! NIKOLAY BAZHENOV, MANAT MUSTAFA, AND MARS YAMALEEV, Computable
reducibility, and isomorphisms of distributive lattices.
Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., Novosibirsk, 630090, Russia;
Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
E-mail: bazhenov@math.nsc.ru.
Department ofMathematics, SST, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana,
010000, Kazakhstan.
E-mail: manat.mustafa@nu.edu.kz.
N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 18
Kremlevskaya St., Kazan, 420008, Russia.
E-mail: mars.yamaleev@kpfu.ru.
A standard tool for classifying computability-theoretic complexity of equivalence relations

is provided by computable reducibility. Let E and F be equivalence relations on !. The
relation E is computably reducible to F , denoted by E ≤c F , if there is a total computable
function f(x) such that for all x, y ∈ !,

(x E y) ⇔ (f(x) F f(y)).

The systematic study of computable reducibility was initiated by Ershov [1, 2].
Let α be a computable nonzero ordinal. An equivalence relation R is Σ0α complete (for

computable reducibility) if R ∈ Σ0α and for any Σ0α equivalence relation E, we have E ≤c R.
The article [4] provides many examples of Σ0n complete equivalence relations, which arise in
a natural way in recursion theory. In [3], it was proved that for each of the following classes
K , the relation of computable isomorphism for computable members of K is Σ03 complete:
trees, equivalence structures, and Boolean algebras.
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We prove that for any computable successor ordinal α, the relation of ∆0α isomorphism
for computable distributive lattices is Σ0α+2 complete. We obtain similar results for Heyting
algebras, undirected graphs, and uniformly discrete metric spaces.
[1] Y. L. Ershov, Positive equivalences. Algebra and Logic, vol. 10 (1971), no. 6, pp. 378–

394.
[2] , Theory of Numberings, Nauka, Moscow, 1977, (in Russian).
[3] E. Fokina, S.-D. Friedman, and A. Nies, Equivalence relations that are Σ03 complete

for computable reducibility, Logic, Language, Information and Computation (L. Ong and R.
de Queiroz, editors), Lecture Notes in Computer Science, vol. 7456, Springer, Berlin, 2012,
pp. 26–33.
[4] E. Ianovski, R. Miller, K. M. Ng, and A. Nies, Complexity of equivalence relations

and preorders from computability theory. The Journal of Symbolic Logic, vol. 79 (2014), no. 3,
pp. 859–881.

! NIKOLAY BAZHENOV, DINO ROSSEGGER, LUCA SAN MAURO, AND MAXIM
ZUBKOV, On bi-embeddable categoricity of linear orders.
Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., Novosibirsk, Russia; Novosibirsk
State University, 2 Pirogova St., Novosibirsk, Russia.
E-mail: bazhenov@math.nsc.ru.
Institute of DiscreteMathematics and Geometry, Vienna University of Technology, Wiedner
Hauptstrasse 8-10, 1040 Wien, Austria.
E-mail: dino.rosseger@tuwien.ac.at.
E-mail: luca.san.mauro@tuwien.ac.at.
N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University,
Kremlevskaya 18, Kazan, Russia.
E-mail: maxim.zubkov@kpfu.ru.
Given a linear order L and a linear orderM bi-embeddable with L, we say thatM is

a bi-embeddable copy of L. We study the complexity of embeddings using the following
definition analogous to computable categoricity.

Definition 1. A countable linear order L is (relatively) ∆0n-bi-embeddably categorical if
for any bi-embeddable computable (for any bi-embeddable) copy M, M and L are bi-
embeddable by ∆0n-embeddings (∆L⊕M

n -embeddings, correspondingly).

Recall, that a linear order is scattered if it has no a suborder of type +. It is easy to see,
that the question about the level of bi-embeddable categoricity is nontrivial only for scattered
linear orders. We obtain characterization of linear orders with finite levels of bi-embeddable
categoricity.
Theorem 2. A scattered computable linear order of rank n is relatively ∆02n-bi-embeddably

categorical, and is not ∆02n−1-bi-embeddably categorical.
Acknowledgment. The last author was supported by RFBR grant No. 18-31-00174.

! FRODE ALFSON BJØRDAL, Capture, Replacement, Specification.
Departamento de Filosofia na Universidade Federal do Rio Grande do Norte, Natal, Brasil.
Seksjon for Filosofi ved Universitetet i Oslo, Oslo, Norge.
E-mail: frode.bjordal@filosofi.uio.no.
Let W be Zermelo set theory Z minus specification and choice. For α(v, x, y) any first

order condition in the language of set theory on the indicated free variables, legislate:
Axiom of Capture:
∀v∃w∀x(x ∈ w ↔ ∃y(y ∈ v ∧ α(v, x, y) ∧ (∀z)(α(v, z, y)→ x = z)))
Let ZF be Zermelo-Fraenkel set theory: We show ZF =W+ Axiom of Capture.

Capture avoids the cumbersome restriction to functional condition, and is justified by the
idea that we should accept as many instances of naive comprehension as possible. Versions
of capture are of use in the context of the author’s alternative set theory £ as in [1] because
they allow for more flexibility in expressing useful closure principles.
[1] F. A. Bjørdal, Elements of librationism, http://arxiv.org/abs/1407.3877.
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! PIOTR BŁASZCZYK, Axioms for Euclid’s Elements book V, their consequences and some
independence results.
Institute of Mathematics, Pedagogical University of Cracow, Krakow, Podchorazych 2,
Poland.
E-mail: pb@up.krakow.pl.
Euclid’s Elements, book V develops the theory of proportions as applied to magnitudes;

it is the key theory for understanding Greek and early modern mathematics. By formalizing
its definitions and the tacit assumptions behind its proofs, we reconstruct book V with its 25
Propositions as an axiomatic theory.
The general term'ε(ε-o. covers line segments, triangles, convex polygones, circles, solids,

angles, and arcs of circles. We formalize Euclid’s magnitudes of the same kind (line segments
being of one kind, triangles being of another, etc.) as an additive semigroup with a total
order, (M,+, <), characterized by the following five axioms:

E1. (∀x, y)(∃n ∈ N)[nx > y],
E2. (∀x, y)(∃z)[x < y ⇒ x + z = y],
E3. (∀x, y, z)[x < y ⇒ x + z < y + z],
E4. (∀x)(∀n ∈ N)(∃y)[ny = x],
E5. (∀x, y, z)(∃v)[x : y :: z : v].
We show that E4 follows from E1–E3, E5; we prove the independence of the Axioms E1,

E2, E3.We discuss the use of E1 in the Proposition V.8; we show that E1 does not follow from
the Dedekind completeness axiom (although it does follow from the completeness axiom in
an orderd group). We interpret Greek proportion in an Archimedean ordered field, and offer
an algebraic interpretation of the axiom The whole is greater than the part.
We present schemes of Euclid’s propositions; they consist of algebraic formulae represent-

ing sequences of (grammatical) sentences, signs representing phrases that occur in the Greek
text and references to the axioms, definitions, and other propositions. We discuss under what
assumptions these schemes could be turned into modern proofs. Finally, we present algebraic
paraphrases of all 25 Propositions of book V as derived from the Axioms E1–E5.
[1] F. Beckmann, Neue Gesichte zum 5. Buch Euklidis. Archive for History of Exact Sci-

ences, vol. 4 (1967), pp. 1–144.
[2] P. B!laszczyk and K. Mrówka, Euklides, Elementy, Ksiegi V-VI. Tłumaczenie i Ko-

mentarz, Copernicus Center Press, 2013.
[3] J. L. Heiberg, Euclidis Elementa, Teubneri, 1883–1888.
[4] I. Mueller, Philosophy of Mathematics and Deductive Structure in Euclid’s Elements,

MIT Press, 2006.

! PIOTR BŁASZCZYK ANDMARLENA FILA, Limits of diagrammatic reasoning.
Institute of Mathematics, Pedagogical University of Cracow, Krakow, Podchorazych 2,
Poland.
E-mail: marlena.fila@up.krakow.pl.
We challenge theses of [2] and [4] concerning the Intermediate Value Theorem (IVT); we

argue that a diagrammatic reasoning is reliable provided one finds a formula representing the
diagram.
IVT states: If (F,+, ·, 0, 1, <) is an ordered field, f: [0, 1] -→ F is a continuous map

such that f(0)f(1) < 0, then f(x) = 0, for some x ∈ (0, 1). An accompanying diagram,
diag(IVT), depicts a graph of f intersecting a line (F,<), as the function values differ in sign.
(a) In [2], Brown argues that diag(IVT) guarantees the existence of an intersection point.

(b) In [4], Giaquinto argues that diag(IVT) do not guarantee the existence thesis, since
continuous functions include nonsmooth functions that find no graphic representations.
(ad a) We show that IVT is equivalent to Dedekind Cuts principle (DC): If (A,B) is a

Dedekind cut in (F,<), then

(∃!c ∈ F )(∀x ∈ A)(∀y ∈ B)[x ≤ c ≤ y].

We also provide a graphic representation for DC.
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This equivalence justifies the claim that IVT is as obvious as DC. There is, however, no
relation between diag(IVT) and diag(DC), all the more between diag(IVT) and the formula
DC. Thus, Brown’s claim has to be based on the analytic truth IVT ⇔ DC .
(ad b) Diagrams representing lines (F, <) do not depict whether the field (F,+, ·, 0, 1, <)

is Euclidean (closed under the square root operation), or (R,+, ·, 0, 1, <), or a real-closed
field; graphs of f do not distinguish between polynomial and smooth functions. IVT for
polynomials, IVTp, is valid in real-closed fields (these fields could be bigger or smaller
than real numbers); in fact, IVTp is the axiom for real-closed fields (next to the Euclidean
condition).
Bolzano is believed to give the first proof of IVT. In fact, he sought to prove IVTp, whilst

IVT was just the lemma. Mislead by a diagram, Bolzano proved the theorem not as general
as it could be: he proved only that IVTp is valid in the domain of real numbers.
[1] P. B!laszczyk, A purely algebraic proof of the fundamental theorem of algebra. Annales

Universitatis Paedagogicae Cracoviensis, vol. 206 (2016), pp. 7–23.
[2] B. Bolzano, Rein Analytischer Beweis, Gotlieb Hasse, 1817.
[3] J. R. Brown, Proofs and pictures. The British Journal for the Philosophy of Science,

vol. 48 (1997), pp. 161–180.
[4]M. Giaquinto, Crossing curves: A limit to the use of diagrams in proofs. Philosophia

Mathematica, vol. 19 (2011), pp. 181–207.

! MARIJA BORIČIĆ, Suppes–style natural deduction system for classical logic.
Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, Belgrade, Serbia.
E-mail: marija.boricic@fon.bg.ac.rs.
An elegant way to work with probabilized sentences was proposed by P. Suppes (see

[3] and [4]). According to his approach we develop a natural deduction system NKprob(ε)
inspired by Gentzen’s natural deduction system NK for classical propositional logic. We use
a similar approach as in defining general probability natural deduction system NKprob (see
[1]). Our system will be suitable for manipulating sentences of the form An, where A is any
propositional formula and n a natural number, with the intended meaning ‘the probability
of truthfulness of A is greater than or equal to 1− nε’, for some small ε > 0.
For instance, the rules dealing with conjunction looks as follows:

Am Bn

(A ∧ B)m+n
(I∧) Am (A ∧ B)n

Bn
(E∧)

and modus ponens:

Am (A→ B)n

Bm+n

The system NKprob(ε) will be a natural counterpart of our sequent calculus LKprob(ε) (see
[2]).
[1]M. Boričić, Inference rules for probability logic. Publications de l’Institut Mathema-

tique, vol. 100 (2016), no. 114, pp. 77–86.
[2] , Suppes-style sequent calculus for probability logic. Journal of Logic and Com-

putation, vol. 27 (2017), no. 4, pp. 1157–1168.
[3] P. Suppes, Probabilistic inference and the concept of total evidence, Aspects of Inductive

Logic (J. Hintikka and P. Suppes, editors), North-Holland, Amsterdam, 1966, pp. 49–65.
[4] C.G.Wagner,Modus tollens probabilized.British Journal for thePhilosophy ofScience,

vol. 54 (2004), no. 4, pp. 747–753.

! DAVID BRADLEY-WILLIAMS,Canonical invariants for t-stratifications.
Mathematisches Institut derHeinrich-Heine-Universität,Universitätsstr. 1, 40225Düsseldorf,
Germany.
E-mail: david.bradley-williams@uni-duesseldorf.de.
A classical tool in singularity theory is the notion of a stratification of algebraic subsets

of Rn or Cn . In [1], Immanuel Halupczok has developed the notion of t-stratification in
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the context of sets definable in a valued field. We will present joint work with I. Halupc-
zok, in which we investigate invariants of such stratifications that we associate canoni-
cally to definable sets, with particular interest in valued fields such as such as R((t)) and
C((t)).
Acknowledgment. This is joint work with Immanuel Halupczok (HHU Düsseldorf).
[1] I. Halupczok, Non-Archimedean Whitney stratifications. Proceedings of the London

Mathematical Society, vol. 109 (2014), no. 5, pp. 1304–1362.
! ANAHIT CHUBARYAN AND ARTUR KHAMISYAN, On the proof complexity in two
universal proof system for all versions of many-valued logics.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Armenia.
E-mail: achubaryan@ysu.am.
E-mail: Artur.Khamisyan@gmail.com.
Two types of universal propositional proof systems were described in [2] such that propo-

sitional proof system for every version of MVL can be presented in both of described forms.
The first of introduced systems (US) is a Gentzen-like system, the second one (UE) is based
on the generalization of the notion of determinative disjunctive normal form, defined by first
coauthor for two-valued logic [1]. The last type proof systems are weak ones with a simple
strategist of proof search andwe have investigated the quantitative properties, related to proof
complexity characteristics in them. In particular, for some class of many-valued tautologies
simultaneously optimal bounds (asymptotically the same upper and lower bounds) for each
of main proof complexity characteristics (size, steps, space, and width) were obtained in the
second-type systems, considered for some versions of many-valued logic. Now we investigate
the relations between the main proof complexty measures in both universal systems. We
prove that the system UE p-simulates the system US, but the system US does not p-simulate
the system UE and, therefore, the systems UE and US do not be p-equivalent, but neverthe-
less some classes of k-tautologies have the same proof complexities bounds in both systems,
hence we obtain symilar results in Gentzen-like system for the same and for other classes of
many-valued tautologies as well.
Acknowledgment. This work was supported by the RA MES State Committee of Science,

in the frames of the research project Nr. 18T-1B034.
[1] A.Chubaryan,Relative efficiency of some proof systems for classical propositional logic.

Proceedings of NASA RA, vol. 37 (2002), no. 5, and Journal of CMA (AAS), vol. 37, no. 5,
pp. 71–84.
[2] A. Chubaryan andA. Khamisyan, Two types of universal proof systems for all variants

of many-valued logics and some properties of them, Iran Journal of Computer Science, 2018,
Springer Verlag, https://doi.org/10.1007/s42044-018-0015-4.
[3] A. Chubaryan, A. Khamisyan, and A. Tshitoyan, On some proof systems for many-

valued logics and on proof complexities in it, National Academy of Sciences of Armenia,
Reports, vol. 116 (2016), no. 2, pp. 108–114, (in Russian).

! ANAHIT CHUBARYAN, GARIK PETROSYAN, AND SERGEY SAYADYAN,Monot-
onous and strong monotonous properties of some propositional proof systems for classical and
non classical logics.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Armenia.
E-mail: achubaryan@ysu.am, garik.petrosyan.1@gmail.com, sayadyan@gmail.com.
For some propositional proof system of classical and nonclassical logics we investigate the

relations between the lines (t-complexities) and sizes (l -complexities) of proofs for minimal
tautologies, which are not a substitution of a shorter tautology of this logic, and results of a
substitutions in them. For every minimal tautology ϕ of fixed logic by S(ϕ) is denoted the
set of all tautologies, which are results a substitution in ϕ.

Definition 1. The proof system Φ is called t-monotonous (l -monotonous), if for every
minimal tautology ϕ of this system and for every formula ) from S(ϕ) tΦ(ϕ) ≤ tΦ())
(lΦ(ϕ) ≤ tΦ())).
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Definition 2. The proof system Φ is called t-strong monotonous (l -strong monotonous),
if for every nonminimal tautology ) of this system there is such minimal tautology ϕ of this
system such that ) belong to S(ϕ) and tΦ()) ≤ tΦ(ϕ) (lΦ()) ≤ tΦ(ϕ)).

Formerly it is proved in [3], that Frege systems for classical and nonclassical logics are
neither t-monotonous nor l -monotonous.
Now we consider the following systems: propositional resolution systems RC,RI,RJ for

classical, intuitionistic and Johansson’s logics accordingly, eliminations systems E?, EI , EJ ,
based on the determinative normal forms for the same logics [1], and the system GS, based
on generalization of splitting method [2].
Theorem 3. The systemsRC,RI and RJ are t-strong monotonous (l -strong monotonous),

but neither of them is t-monotonous (l -monotonous).
Theorem 4. Each of the systems EC , EI , EJ and GS is neither t-monotonous (l -mono-

tonous) nor t-strong monotonous (l -strong monotonous).
Acknowledgment. This work was supported by the RAMES State Committee of Science,

in the frames of the research project Nr. 18T-1B034.
[1] A.Chubaryan andA.Chubaryan,On the proofs complexity in the resolution systems of

intuitionistic andminimal propositional logic, thisBulletin, vol. 11 (2005), no. 2, pp. 271–272.
[2] , On the bounds of the main proof measures in some propositional roof systems,

Scholars Journal of Physics, Mathematics and Statistics, vol. 1 (2014), no. 2, pp. 111–117.
[3] A. Chubaryan and G. Petrosyan, Frege systems are no monotonous. Evolutio, vol. 3

(2016), pp. 12–14.

! LUDOVICA CONTI, One or more Logicisms.
Department of Humanities, University of Pavia, Corso Str. Nuova, 65, 27100, Italy.
E-mail: ludoconti@gmail.com.
The aim of this talk consists in comparing different ways to pursue a logicist project. More

in particular, I would compare a proof-theoretic version of logicism, like Tennant’s costruc-
tivist logicism (CL [3]), with two axiomatic versions, namely Heck’s finite Frege Arithmetic
(FFA [1]) and a free zig-zag logicism (FZL), obtained by the adoption of a negative free logic
and a restricted version of Basic Law V1.
Both these three systems allows us to derive any instance of the comprehension axiom

schema but the different restrictions of the logic (in CL and in FZL) and of the abstraction
principles (HP in FFA and BLV in FZL) determine the different strength of the theories.
My two aims consist in, first, discussing the conjecture (proposed by Tennant in [3])

that CL is the intuitionistic (relevant) fragment of Heck’s FFA and, secondly, clarifying the
existential role of abstraction principles in systems which adopt free logic. Comparing the
derivational power of CL and FZL, we can observe that the first one allows us to derive the
existential claim ∃x(x = ♯F ) only where F is a concept with a finite extension, while the
second one allows us to derive also the existential instance of such theorem where F means
natural number—namely a concept with an infinite extension.
1T-BLV: ∀F∀G(ϵ(F ) = ϵ(G) ↔

∧
x(Fx ↔ Gx) ∧ (φ(F ) ∧ φ(G))—where φ means

“positive”—it contains second-order variables only in the scope of an even number of nega-
tion symbols).
[1] R. K. Heck, Finitude and Hume’s principle. Journal of Philosophical Logic, vol. 26

(1997), no. 6, pp. 589–617.
[2] J. Payne,Abstraction relations need not be reflexive.Thought, vol. 2 (2013), pp. 137–147.
[3]N. Tennant, Existence and identity in free logic: A problem for inferentialism? Mind,

New Series, vol. 116 (2007), no. 464, pp. 1055–1078.
! VALERIA DE PAIVA, LUIZ CARLOS PEREIRA, AND ELAINE PIMENTEL, New
ecumenical systems.
Department of Philosophy – PUC-Rio/UERJ, Brazil.
E-mail: luiz@inf.puc-rio.br.
Department of Mathematics – UFRN, Brazil.
E-mail: elaine.pimentel@gmail.com.
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University of Birmingham, UK.
E-mail: valeria.depaiva@gmail.com.
Much has been said about the connections between intuitionistic logic and classical logic.

Recently, Prawitz (see [4]) proposed a natural deduction ecumenical system that puts together
classical and intuitionistic logic in a single system, a codification where classical logic and
intuitionistic logic can coexist “in peace.” The main idea behind this codification is that
classical and intuitionist logic share the constants for conjunction, negation, the absurd,
and the universal quantifier, but each has its own disjunction, implication and existential
quantifier. Similar ideas are present in Dowek [2] and Krauss [3]. The aims of the present
article are: (i) to present an ecumenical sequent calculus for classical and intuitionistic logic
and to state some proof theoretical properties of the system, and (ii) to propose a new
ecumenical system, based on the multiple conclusion intuitionistic sequent calculus FIL [1],
that combines classical logic and the logic of constant domains.
[1] V. de Paiva and L. C. Pereira, A short note on intuitionistic propositional logic with

multiple conclusions.Manuscrito Rev. Int. Fil., vol. 28 (2005), no. 2, pp. 317–329.
[2]G. Dowek, On the definitions of the classical connective and quantifiers, Why is this a

Proof (E. Haeusler, W. Sanz, and B. Lopes, editors), College Books, UK, 2015, pp. 228–238.
[3] P. H. Krauss, A constructive interpretation of classical mathematics. Mathematische

Schriften Kassel, preprint, 1992, No. 5/92.
[4]D. Prawitz, Classical versus intuitionistic logic, Why is this a Proof (E. Haeusler,

W. Sanz, and B. Lopes, editors), College Books, UK, 2015, pp. 15–32.

! RUMEN DIMITROV, VALENTINA HARIZANOV, ANDREY MOROZOV, PAUL
SHAFER, ALEXANDRA SOSKOVA, AND STEFAN VATEV, Cohesive powers of !.
Department of Mathematics, Western Illinois University, Macomb, IL 61455, USA.
E-mail: rd-dimitrov@wiu.edu.
Department of Mathematics, George Washington University, Washington, DC 20052, USA.
E-mail: harizanv@gwu.edu.
Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia.
E-mail: morozov@math.nsc.ru.
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
E-mail: p.e.shafer@leeds.ac.uk.
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd., 1164,
Sofia, Bulgaria.
E-mail: asoskova@fmi.uni-sofia.bg.
E-mail: stefanv@fmi.uni-sofia.bg.
A cohesive power of a computable structure is an effective analog of an ultrapower of

the structure in which a cohesive set plays the role of an ultrafilter. We study the cohesive
powers of computable copies of the structure (!, <), that is, the natural numbers with their
usual order. By a computable copy of (!, <), we mean a computable linear order L = (L,≺)
that is isomorphic to (!, <), but not necessarily by a computable isomorphism. That is, the
successor function of L may not be computable. Our main findings are the following. First,
recall that 1 denotes the order type of the integers, that + denotes the order type of the
rationals, and that ! + (+ × 1) (often also written ! + 1+) is familiar as the order type of
countable nonstandard models of Peano arithmetic.

1. If L is a computable copy of (!, <) with a computable successor function, then every
cohesive power of L has order type ! + (+ × 1).

2. There is a computable copy L of (!, <) with a noncomputable successor function such
that every cohesive power of L has order type ! + (+ × 1).

3. Most interestingly, there is a computable copy L of (!, <) (with a necessarily noncom-
putable successor function) having a cohesive power that is not of order type!+(+×1).

! DMITRY EMELYANOV, BEIBUT KULPESHOV, SERGEY SUDOPLATOV, On compo-
sitions of structures and compositions of theories.
Novosibirsk State Technical University, Novosibirsk, Russia.
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E-mail: dima-pavlyk@mail.ru.
International Information Technology University, Almaty, Kazakhstan.
E-mail: b.kulpeshov@iitu.kz.
Sobolev Institute ofMathematics, Novosibirsk State Technical University, Novosibirsk State
University, Novosibirsk, Russia.
E-mail: sudoplat@math.nsc.ru.
We consider both compositions of structures and compositions of theories and apply these

compositions obtaining compositions of algebras of binary formulas [1].
LetM and N be structures of relational languages ΣM and ΣN , respectively. We define

the compositionM[N ] ofM and N satisfying ΣM[N ] = ΣM ∪ ΣN ,M [N ] = M × N and
the following conditions:
(1) if R ∈ ΣM \ ΣN , '(R) = n, then ((a1, b1), . . . , (an, bn)) ∈ RM[N ] if and only if

(a1, . . . , an) ∈ RM;
(2) if R ∈ ΣN \ ΣM, '(R) = n, then ((a1, b1), . . . , (an, bn)) ∈ RM[N ] if and only if

a1 = · · · = an and (b1, . . . , bn) ∈ RN ;
(3) if R ∈ ΣM ∩ ΣN , '(R) = n, then ((a1, b1), . . . , (an, bn)) ∈ RM[N ] if and only if

(a1, . . . , an) ∈ RM, or a1 = · · · = an and (b1, . . . , bn) ∈ RN .
The theory T = Th(M[N ]) is called the composition T1[T2] of the theories T1 = Th(M)

and T2 = Th(N ).
Theorem 1. IfM and N have transitive automorphism groups thenM[N ] has a transitive

automorphism group, too.

By Theorem 1, T = Th(M[N ]) is transitive, and the operationM[N ] can be considered
as a variant of transitive arrangements of structures [2].
The composition M[N ] is called E-definable if M[N ] has an ∅-definable equivalence

relationE whoseE-classes are universes of the copies ofN formingM[N ]. By the definition,
each E-definable compositionM[N ] is represented as a E-combination [3] of copies of N
with an extra-structure generated by predicates onM and linking elements of the copies
of N .
Theorem 2. If a compositionM[N ] is E-definable then the theory Th(M[N ]) uniquely

defines the theories Th(M) and Th(N ), and vice versa.
Theorem 3. If a compositionM[N ] is E-definable then the algebra PT of binary isolating

formulas for T = Th(M[N ]) is isomorphic to the composition PT1 [PT2 ] of the algebras PT1
and PT2 of binary isolating formulas for T1 = Th(M) and T2 = Th(N ).

[1] I. V. Shulepov and S. V. Sudoplatov, Algebras of distributions for isolating formulas
of a complete theory. Siberian Electronic Mathematical Reports, vol. 11 (2014), pp. 362–389.
[2] S. V. Sudoplatov, Transitive arrangements of algebraic systems. SiberianMathematical

Journal, vol. 40 (1999), no. 6, pp. 1142–1145.
[3] , Combinations of structures. The Bulletin of Irkutsk State University, Series

“Mathematics”, vol. 24 (2018), pp. 65–84.

! JOSÉ ESPÍRITO SANTO AND GILDA FERREIRA, An embedding of IPC into Fat not
relying on instantiation overflow.
Centro de Matemática, Universidade do Minho, R. da Universidade, 4710-057 Braga, Por-
tugal.
E-mail: jes@math.uminho.pt.
Departamento de Ciência e Tecnologia, Universidade Aberta, Rua Almirante Barroso, n 38,
1000-013 Lisboa, Portugal.
E-mail: gmferreira@fc.ul.pt.
Since 2006 [2], it is known that intuitionistic proposicional calculus IPC can be embedded

into system Fat—a restriction of Girard’s polymorphic system F to atomic universal instan-
tiations. Such embedding relies on the Russell–Prawitz’s [4] translation of the connectives
bottom and disjunction, ⊥ := ∀X.X and A ∨ B := ∀X . ((A → X ) ∧ (B → X )) → X ,
and on the phenomenon of instantiation overflow [3]—the possibility of deriving in Fat the
instantiation of these two universal formulas by any (not necessarily atomic) formula. In the
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present talk we show that there is an alternative (refined) embedding of IPC into Fat, still
based on the Russell–Prawitz’s translation of connectives, but based on the admissability of
disjunction and absurdity elimination rules, rather than instantiation overflow. Such alter-
native embedding works as well as the original embedding at the levels of provability and
preservation of proof reduction (both embeddings preserve $+-conversions and map com-
muting conversions to $-equality) but the alternative embedding is more economical than
the original one in terms of the size of the Fat proofs and the length of Fat simulations.
Acknowledgment. Details of this work can be found on [1].
[1] J. Espı́rito Santo and G. Ferreira, A refined interpretation of intuition-

istic logic by means of atomic polymorphism. Studia Logica, first online 2019,
https://doi.org/10.1007/s11225-019-09858-1.
[2] F. Ferreira, Comments on predicative logic. Journal of Philosophical Logic, vol. 35

(2006), pp. 1–8.
[3] F. Ferreira and G. Ferreira, Atomic polymorphism. The Journal of Symbolic Logic,

vol. 78 (2013), no. 1, pp. 260–274.
[4] D. Prawitz, Natural Deduction. A Proof-Theoretical Study, Almquist and Wiksell,

Stockholm, 1965.

! MARTAFIORICARONES,ALBERTOMARCONE,PAULSHAFER,ANDGIOVANNI
SOLDÁ, Reverse Mathematics of some principles related to partial orders.
Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università† di Udine, Via
delle Scienze 206, Udine, Italy.
E-mail: marta.fioricarones@uniud.it.
E-mail: alberto.marcone@uniud.it.
School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
E-mail: P.E.Shafer@leeds.ac.uk.
E-mail: mmgs@leeds.ac.uk.
In this talk, we will study (some variations of) the following theorem, due to Rival and

Sands [3] in the context of Reverse Mathematics:

Theorem. (RS-po) Let P be an infinite partial order of finite width k. Then there is an
infinite chain C of P such that for every element p ∈ P, p is comparable with 0 or infinitely
many elements of C .

In particular, we show that ACA0, the third of the Big Five subsystems of Z2, is enough to
proveRS-po, although no reversal is known to hold. An interesting result is obtained by fixing
the width of the partial order P: if k = 3, we prove that the theorem is equivalent to ADS,
a combinatorial principle introduced by Hirschfeldt and Shore in [2], and a widely studied
element of the “zoo below ACA0” (a very good presentation of which is given for instance
in [1]). Notably, this version of the theorem appears to be the first natural mathematical
statement proven to be equivalent to ADS.
Finally, some partial results on a stronger versionofRS-po, wherewe require comparability

with 0 or cofinitely many elements of C , will be presented.
[1]D. R. Hirschfeldt, Slicing the Truth: On the Computable and Reverse Mathematics of

Combinatorial Principles, World Scientific, 2015.
[2]D. R. Hirschfeldt and R. A. Shore, Some principles weaker than Ramsey’s theorem

for pairs. The Journal of Symbolic Logic, vol. 72 (2007), no. 1, pp. 171–206.
[3] I. Rival andB. Sands,On the adjacency of vertices to the vertices of an infinite subgraph.

Journal of the London Mathematica Society, vol. s2-21 (1980), no. 3, pp. 393–400.

! MICHAEL STEPHEN FISKE, Quantum random self-modifiable computation.
Aemea Institute, San Francisco, CA, USA.
E-mail: mf@aemea.org.
Among the fundamental questions in computer science, at least two have a deep impact

on mathematics. What can computation compute? How many steps does a computation
require to solve an instance of the 3-SAT problem? Our work addresses the first question, by
introducing a new model called the ex-machine [3]. The ex-machine executes Turing machine
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instructions and two special types of instructions.Quantum random instructions are physically
realizable with a quantum random number generator [4, 6].Meta instructions can add new
states and add new instructions to the ex-machine.
A countable set of ex-machines is constructed, each with a finite number of states and

instructions; each ex-machine can compute a Turing incomputable language, whenever the
quantum randomness measurements behave like unbiased Bernoulli trials. In 1936, Alan
Turing posed the halting problem for Turing machines and proved that this problem is
unsolvable for Turing machines. Consider an enumeration Ea(i) = (Mi , Ti ) of all Turing
machines Mi and initial tapes Ti , each containing a finite number of nonblank symbols.
Does there exist an ex-machine X that has at least one evolutionary path X → X1 → X2 →
. . . →Xm, so at themth stage ex-machineXm can correctly determine for 0 ≤ i ≤ m whether
Mi ’s execution on tape Ti eventually halts? We construct an ex-machine Q(x) that has one
such evolutionary halting path.
The existence of this path suggests that David Hilbert [5] may not have been misguided to

propose thatmathematicians search for finitemethods to help constructmathematical proofs.
Our refinement is that we cannot use a fixed computer program that behaves according
to a fixed set of mechanical rules. We must pursue computational methods that exploit
randomness and self-modification [1, 2] so that the complexity of the program can increase
as it computes.
[1]M. S. Fiske, Turing incomputable computation, Turing-100 Proceedings. Alan Turing

Centenary, vol. 10, EasyChair, 2012, pp. 66–91.
[2] , Quantum random active element machine, Unconventional Computation and

Natural Computation, LectureNotes in Computer Science, vol. 7956, Springer, 2013, pp. 252–
254.
[3] , Quantum random self-modifiable computation, 2018, pp. 1–50,

https://arxiv.org/abs/1807.01369.
[4]M. Herrero-Collantes and J. C. Garcia-Escartin, Quantum random number gener-

ators. Reviews of Modern Physics, vol. 89, no. 1, p. 015004. APS, February 22, 2017.
[5]D. Hilbert, Mathematische Probleme. Nachrichten von der Gesellschaft der Wis-

senschaften zu Göttingen, Mathematische–Physikalische Klasse, vol. 3 (1900), pp. 253–297.
[6] A. Kulikov, M. Jerger, A. Potoc̆nik, A. Wallraff, and A. Fedorov, Realization

of a quantum random generator certified with the Kochen–Specker theorem. Physical Review
Letter, vol. 119, p. 240501. December 11, 2017.

! MICHAL TOMASZ GODZISZEWSKI, DINO ROSSEGGER, AND LUCA SAN
MAURO, Quotient presentations of structures.
Logic Department, Institute of Philosophy, University of Warsaw, Poland.
E-mail: mtgodziszewski@gmail.com.
Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria.
E-mail: dino.rossegger@tuwien.ac.at, luca.san.mauro@tuwien.ac.at.
A c.e. quotient presentationof a structureA = ⟨A; {fi}i∈I , {Rj}j∈J ⟩ consists of a structure

A∗ = ⟨N; {f∗
i }i∈I , {R∗

i }j∈J ⟩ and a c.e. equivalence relation E (often called a ceer) such that
the functions of A∗ are uniformly computable, the relations of A∗ are uniformly c.e., E is
a congruence with respect to A∗, and A∗/E ∼= A. E realizes A if (A∗, E) is a c.e. quotient
presentation of A, for some A∗; otherwise, E omits A. Khoussainov and his collaborators
(see, e.g., [2, 3]) investigated, for familiar classes of structures, which structures are realized
by a given ceer E. We are interested in the reverse problem, that is, we study the structure of
the following spectra.

Definition 1. The spectrum of ceers of a structureA is the following class of ceers

CeersSp(A) = {E ∈ Ceers : E realizesA}.

During the talk, we will discuss the main motivations for the project and we will demon-
strate theorems relating the program to the study of some distinguished classes of equivalence
relations, such as those considered in [1].
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[1]U. Andrews and A. Sorbi, Joins and meets in the structure of Ceers. Computability,
forthcoming.
[2] E. Fokina, B. Khoussainov, P. Semukhin, andD. Turetsky, Linear orders realised by

c.e. equivalence relations. The Journal of Symbolic Logic, vol. 81 (2016), no. 2, pp. 463–482.
[3] A. Gavruskin, S. Jain, B. Khoussainov, and F. Stephan, Graphs realised by r.e.

equivalence relations.Annals of Pure and Applied Logic, vol. 165 (2014), no. 7, pp. 1263–1290.

! EVGENY GORDON, On extension of Haar measure in 2-compact groups.
Retired, 9 Hanarkis street 31, Ashdod, Israel.
E-mail: gordonevgeny@gmail.com.
In the article [3] the model of ZFC, where every set of reals, definable by a sequence

of ordinals is Lebesgue measurable was constructed under assumptions of existence of an
inaccessible cardinal. On the base of this model the model of ZF+DC, in which every set
of reals is Lebesgue measurable was presented. In [1], it was proved without the assumption
of existence of inaccessible cardinal that the possibility to extend the Lebesgue measure
to a nonregular 2-additive invariant measure defined on all sets of reals is consistent with
ZF+DC. Later on Shelah proved that the assumption of existence of inaccessible cardinal
cannot be removed from the Solovay’s result [2]. In the talk we present the following theorem.

Theorem 1. Letα be an arbitrary ordinal definable in ZF. DenoteBase(X, $) andExt(X, $)
the statements
1. “X is a 2-compact group with the base of topology of cardinality $”;
2. “In a 2-compact group X the left Haar measure can be extended to a left invariant
2-additive measure defined on all subsets of X definable by a $-sequence of ordinals”.

respectively. Then the following proposition is consistent with ZFC:

∀X∀ $ < ℵα < |R|
(
Base(X, $) −→ Ext(X, $)) .

[1]G. Saks,Measure-theoretical uniformity in recursion theory and set theory. Transactions
of the American Mathematical Society, vol. 142 (1969), no. 2, pp. 381–420.
[2] S. Shelah, Can you take Solovay’s inaccessible away? Israel Journal of Mathematics,

vol. 48 (1984), no. 1, pp. 1–47.
[3] R. Solovay, A model of set theory in which every set of reals is Lebesgue measurable.

Annals of Mathematics, vol. 92 (1970), no. 1, pp. 1–56.

! MATTIASGRANBERGOLSSONANDGRAHAMLEIGH,Partial conservativity of ÎD
i
1

over Heyting Arithmetic via realizability.
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg,
P.O. Box 200 SE405 30 Göteborg, Sweden.
E-mail: mattias.granberg.olsson@gu.se.
E-mail: graham.leigh@gu.se.
The result that intuitionistic ÎD1 (ÎD

i
1) is conservative over Heyting Arithmetic seems to

have been proved only quite recently in a series of articles by Buchholz, Arai, and Rüede and
Strahm [3, 1, 4, 2]. We present work in progress on a proposal for a hopefully novel proof of
this result, or a substantial part of it, based on realizability and ideas from formal truth. The
idea is to use Gödel’s Diagonal Lemma to show that every axiom of some suitable subtheory
of ÎD

i
1 (e.g., of fix-points only for strongly positive operators) is realizable, that realizability

respects intuitionistic derivability and that realizability is disquotational for certain classes
of formulae (e.g., almost negative formulae).
[1] T. Arai, Some results on cut-elimination, provable well-orderings, induction and reflec-

tion. Annals of Pure and Applied Logic, vol. 95 (1998), no. 1–3, pp. 93–184.
[2] , Quick cut-elimination for strictly positive cuts. Annals of Pure and Applied

Logic, vol. 162 (2011), no. 10, pp. 807–815.
[3]W. Buchholz, An intuitionistic fixed point theory. Archive for Mathematical Logic,

vol. 37 (1997), no. 1, pp. 21–27.
[4] C.Rüede andT. Strahm, Intuitionistic fixed point theories for strictly positive operators.

Mathematical Logic Quarterly, vol. 48 (2002), no. 2, pp. 195–202.
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! HAROLDHODES, Ramified-types for states of affairs.
Philosophy Department, Cornell University, 242 East Avenue, Ithaca, NY 14853, USA.
E-mail: hth3@cornell.edu.
Assume that for any monadic predication P(u), which predicates the property being P

of an object u, there is a unique state-of-affairs (which consists in u being P) which that
predication represents; let *P(u)* be that state-of-affairs. I will give an argument that for
every object u there are distinct properties being P and being Q such that *P(u)* = *Q(u)*.
Use the following impredicative second-order comprehension principle: (G) some X every y
(X(y) iff some Z (y = *Z(u)* and not Z(y))).
So far, no problem. But one might think that states-of-affairs have constituents, and that

the following principle of constituency is true for any u and any property being P: (C) The
constituents of *P(u)* are exactly u and being P.
By (C), the only constituents of *P(u)* are u and being P, and the only constituents of

*Q(u)* are u and being Q, which entails that being P = being Q.
We could reject (C), at least in its full generality. Or we could say that (G) is defective. The

former leads to a novel version of logical-atomist metaphysics. The latter points to a (to my
knowledge) novel form of ramification.

! JOHN HOWE, Ramsey degrees of structures with equivalence relations.
School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
E-mail: mmjah@leeds.ac.uk.
TheRamsey theory of homogeneous structures is an attempt to answer the question of how

the infinite version Ramsey’s theorem changes if instead of having ! as a pure set, we require
more structure. This dates back to work of Galvin and Devlin on the rationals, with more
recent results about graphs coming Sauer and Dobrinen. Both of these have used techniques
involving tree Ramsey theorems, whereas Nguyen Van Thé’s work about ultrametric spaces
uses the classical Ramsey theorem. I will explain some recent work unifying these approaches
and yielding results about the generic ordered equivalence relation.

! A. K. ISSAYEVA AND A. R. YESHKEYEV, The principle of a “rheostat of atomicity” in
the study of AAP models.
Faculty of Mathematics and Information Technologies, Karaganda State University, Uni-
versity str., 28, building 2, Kazakhstan.
E-mail: aibat.kz@gmail.com, isa aiga@mail.ru.
In this abstract, we want to share with the results concerning the study of countable

algebraically prime and atomic models in the sense of studying inductive generally speaking
incomplete theories.
Furtherwewill have deal with countable language and some different subclasses of Jonsson

theories.
Let AAP be a fixed semantic property, of the following properties combinations: A is

atomicity, AP is algebraically primeness. Let AAP mean atomic, algebraically prime model.
Principle of “rheostat”.
Let two countable models A1, A2 of some Jonsson theory T be given. Moreover, A1 is an

atomic model in the sense of [2], and X is (∇1,∇2)− cl -algebraically prime set of theory T
and cl(X ) = A2. In the meaning of [3].
By the definition of (∇1,∇2)-algebraic primeness of the set X , the model A2 is in the

same time existentially closed and algebraically prime. Thus, the model A2 is isomorphically
embedded in the model A1. Since by condition the model A1 is countably atomic, then
according to the Vaught’s theorem, A1 is prime, that is, it is elementarily embedded in the
model A2. Thus, the models A1, A2 differ from each other only by the interior of the set X .
This follows from the fact that any element of a ∈ A2\X implements some principle type,
since a ∈ cl(X ). That is, all countable atomic models in the sense of [2] are isomorphic
to each other, then by increasing X we find more elements that do not realize the principle
type and, accordingly, cl(X ) is not an atomic model in the sense of [2]. Thus, the principle
of rheostat is that, by increasing the power of the set X , we move away from the notion of
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atomicity in the sense of [2] and on the contrary, decreasing the power of the set X we move
away from the notion of atomicity in the sense of [1].
In according above mentioned notions we have some numbers of theorems. Those results

very close to investigation around atomicity and algebraically primeness in the frame of [1].
Nevertheless even if algebraically primeness is the same, but the combinations of AAP-
atomicity differs from atomicity from [1].
[1] J. T. Baldwin andD.W.Kueker, Algebraically prime models.Annals of Mathematical

Logic, vol. 20 (1981), no. 3, pp. 289–330.
[2] R. Vaught, Denumerable Models of Complete Theories in Infinitistic Methode, Perga-

mon, London, 1961, pp. 303–321.
[3] A. R. Yeshkeyev, A. K. Issayeva, and N. M. Mussina, The atomic definable subsets

of semantic model. Bulletin of the Karaganda University-Mathematics, vol. 94 (2019), no. 2,
pp. 84–91.

! TATYANA IVANOVA AND TINKO TINCHEV, First-order theory of lines in Euclidean
plane.
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
E-mail: tatyana.ivanova@math.bas.bg.
Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, Sofia,
Bulgaria.
E-mail: tinko@fmi.uni-sofia.bg.
The article [1] gives qualitative spatial reasoning in Euclidean plane based solely on lines.

The relations of parallelism and convergence between lines are considered.
In this talk, we consider a continuation of [1] by adding a new predicate—perpendicularity.

We introduce a first-order theory of lines in Euclidean plane with predicates parallelism, con-
vergence and perpendicularity. The logic is complete with respect to the Euclidean plane,
!—categorical and not categorical in every uncountable cardinality. We prove that the mem-
bership problem of the logic is PSPACE-complete.
[1] P. Balbiani and T. Tinchev, Line-based affine reasoning in Euclidean plane. Journal of

Applied Logic, vol. 5 (2007), no. 3, pp. 421–434.

! JOOST J. JOOSTEN, Hyperarithmetical Turing progressions.
University of Barcelona, Spain.
E-mail: jjoosten@ub.edu.
URL Address: http://www.phil.uu.nl/∼jjoosten/.
Turing progressions arise by iteratedly adding consistency statements over a sound base

theory. Schmerl employed Turing progressions over a weak base system in [2] to gauge the
(consistency) strength of certain substantially stronger formal systems thus giving rise to
ordinal analyses for these systems. Beklemishev showed in [1] how such analyses can be
presented and in large part performed within polymodal provability logics. Beklemishev’s
method employed arithmetic consistency notions only. In this talk, we dwell on new tech-
niques that have been developed to take this further to include hyperarithmetical consistency
notions.
[1] L. D. Beklemishev, Provability algebras and proof-theoretic ordinals, I. Annals of Pure

and Applied Logic, vol. 128 (2004), no. 1–3, pp. 103–124.
[2]U. R. Schmerl, A fine structure generated by reflection formulas over primitive recursive

arithmetic, Logic Colloquium ’78 (Mons, 1978), Studies in Logic and the Foundations of
Mathematics, vol. 97, North-Holland, 1979, pp. 335–350.

! HIROTAKA KIKYO, On automorphism groups of Hrushovski’s pseudoplanes in rational
cases.
Department of Informatics, Kobe University, 1-1 Nada, Kobe, 657-8501, Japan.
E-mail: kikyo@kobe-u.ac.jp.
Hrushovski constructed pseudoplanes corresponding to irrational numbers which refute

a conjecture by Lachlan [2]. Hrushovski’s construction is valid for any real numbers α with
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0 < α < 1. The automorphism groups of the pseudoplanes corresponding to rational
numbers α with 0 < α < 1 are simple groups.
[1]D.M. Evans, Z. Ghadernezhad, andK. Tent, Simplicity of the automorphism groups

of some Hrushovski constructions. Annals of Pure and Applied Logic, vol. 167 (2016), pp. 22–
48.
[2] E. Hrushovski, A stable ℵ0-categorical pseudoplane, unpublished notes, 1988.
[3]H. Kikyo,Model completeness of generic graphs in rational cases. Archive for Mathe-

matical Logic, vol. 57 (2018), no. 7–8, pp. 769–794.
[4]H. Kikyo and S. Okabe, On Hrushovski’s pseudoplanes, Proceedings of the 14th and

15th Asian Logic Conference (B. Kim, J. Brendle, et al., editors), World Scientific, 2019,
pp. 175–194.

! JULIA KNIGHT, ALEXANDRA SOSKOVA, AND STEFAN VATEV, Effective coding
and decoding structures.
Department of Mathematics, Notre Dame University, 255 Hurley, Notre Dame, IN 46556,
USA.
E-mail: knight.1@nd.edu.
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd., 1165,
Sofia, Bulgaria.
E-mail: asoskova@fmi.uni-sofia.bg.
E-mail: stefanv@fmi.uni-sofia.bg.
Friedman and Stanley introduced Borel embeddings as a way of comparing classification

problems for different classes of structures. A Borel embedding of a class K in a class K ′

represents a uniform procedure for coding structures from K in structures from K ′. Many
Borel embeddings are actually Turing computable.
When a structure A is coded in a structure B, effective decoding is represented by a

Medvedev reduction ofA to B. Harrison-Trainor, Melnikov, Miller, andMontalbán defined
a notion of effective interpretation of A in B and proved that this is equivalent with the
existing of computable functor, that is, a pair of Turing operators, one taking copies of B
to copies of A, and the other taking isomorphisms between copies of B to isomorphisms
between the corresponding copies of A. The first operator is a Medvedev reduction. For
some Turing computable embeddings Φ, there are uniform formulas that effectively interpret
the input structure in the output structure.
The class of undirected graphs and the class of linear orderings both lie on top underTuring

computable embeddings. The standard Turing computable embeddings of directed graphs
(or structures for an arbitrary computable relational language) in undirected graphs come
with uniform effective interpretations. We give examples of graphs that are not Medvedev
reducible to any linear ordering, or to the jump of any linear ordering. Any graph can be
interpreted in some linear ordering using computable Σ3 formulas. Friedman and Stanley
gave a Turing computable embedding L of directed graphs in linear orderings. We show that
there do not exist L!1!-formulas that uniformly interpret the input graph G in the output
linear ordering L(G).

! THOMASG. KUCERA ANDMARCOSMAZARI-ARMIDA,On universal modules with
pure embeddings.
Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada.
E-mail: thomas.kucera@umanitoba.ca.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, USA.
E-mail: mmazaria@andrew.cmu.edu.
This article arose out of the realization of the second author that some notions of the

theory of abstract elementary classes can be used to generalize a result of Shelah [2, 1.2]
concerning the existence of universal reduced torsion-free abelian groups with respect to
pure embeddings. The contribution of the first author was limited to helping him expand
and extend the results to theories of modules.
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We show that certain classes of modules have universal models with respect to pure
embeddings.
Theorem 1. LetR be a ring,T afirst-order theorywith an infinitemodel extending the theory

of R-modules and KT = (Mod(T ),≤pp) (where ≤pp stands for pure submodule). Assume KT
has joint embedding and amalgamation.
If 3|T | = 3 or ∀' < 3('|T | < 3), then KT has a universal model of cardinality 3.
We begin the study of limit models for classes of R-modules with joint embedding and

amalgamation. As a by-product of this study, we characterize limit models of countable cofi-
nality in the class of torsion-free abelian groups with pure embeddings, answering Question
4.25 of [1].
Theorem 2. If G is a (3,!)-limit model in the class of torsion-free abelian groups with pure

embeddings, then G ∼= Q(3) ⊕
∏
p Z
(3)
(p)

(ℵ0)
.

[1]M. Mazari-Armida, Algebraic description of limit models in classes of abelian groups,
preprint, https://arxiv.org/abs/1810.02203.
[2] S. Shelah, Universal structures. Notre Dame Journal of Formal Logic, vol. 58 (2017),

no. 2, pp. 159–177.

! TAISHI KURAHASHI, Derivability conditions and the second incompleteness theorem.
Department of Natural Science, National Institute of Technology, Kisarazu College, 2-11-1
Kiyomidai-higashi, Kisarazu, Chiba, Japan.
E-mail: kurahashi@n.kisarazu.ac.jp.
Let T be any recursively axiomatized consistent extension of Peano arithmetic. In his

famous article, Gödel showed that the consistency statement ConT ≡ ∃x(Fml(x)∧¬PrT (x))
cannot be proved in T . In the second volume of Grundlagen der Mathematik, Hilbert and
Bernays proposed a set of conditions for provability predicates which is sufficient for a version
of the second incompleteness theorem.That is, if PrT (x) is aΣ1 provability predicate satisfying
their conditions, then Con0T ≡ ∀x(Fml(x) ∧ PrT (x) → ¬PrT (¬x)) cannot be proved in T .
Löb [4] found another set of conditions, and proved the so-called Löb’s theorem under his
conditions. Löb’s theorem immediately implies that Con1T ≡ PrT (#0 ̸= 0$) cannot be proved
in T . Notice that for provability predicates, Con0T implies Con

1
T , and Con

1
T implies ConT .

Related to derivability conditions and the second incompleteness theorem, we proved the
following results.
1. There are new sets of derivability conditions which are sufficient for unprovability of
Con0T .

2. If a Σ1 provability predicate PrT (x) satisfies the following condition BU2 , then PrT (x)
satisfies provable Σ1-completeness.

BU2 : If T ⊢ ϕ(x⃗)→ )(x⃗), then T ⊢ PrT (#ϕ(⃗̇x)$)→ PrT (#)(⃗̇x)$).
This is an improvement of Buchholz’s observation [1].

3. Hilbert and Bernays’ conditions and Löb’s conditions are incomparable.
4. Both of Hilbert and Bernays’ conditions and the global versions of Löb’s conditions
are not sufficient for T $ ConT . This shows that both of Hilbert-Bernays’ conditions
and Löb’s conditions do not accomplish Gödel’s original statement of the second
incompleteness theorem.

[1]W. Buchholz, Mathematische Logik II, 1993, http://www.mathematik.uni-
muenchen.de/∼buchholz/articles/LogikII.ps.
[2] T. Kurahashi, A note on derivability conditions, arXiv:1902.00895.
[3] ,Rosser provability and the second incompleteness theorem, arXiv:1902.06863.
[4]M. H. Löb, Solution of a problem of Leon Henkin. The Journal of Symbolic Logic,

vol. 20 (1955), no. 2, pp. 115–118.

! SATORU KURODA, On Takeuti-Yasumoto forcing.
Department of Liberal Arts, Gunma Prefectural Women’s University, Gunma, Japan.
E-mail: satoru@mail.gpwu.ac.jp.
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In late 1996, G. Takeuti andM.Yasumoto [1] published a article on applications of forcing
method for nonstandard models of bounded arithmetic.
In this talk, we will give a reformulation of their forcing construction in terms of two-

sort bounded arithmetic. In particular, we will construct Boolean algebras on which generic
extensions are models for theories for subclasses of PTIME such asNC 1 orNL. For instance,
let B be the Boolean algebra whose underlying set consists of Boolean formulas over n inputs
where n is a fixed nonstandard number. Then a generic subset of B constitutes a generic
extension which is a model of VNC1.
It turns out that such generic extensions have close connections with separation problems

of complexity classes in the ground model. Namely letM |= V1 be a countable nonstandard
model which is not closed under exponentiation. Then we can show thatM |= (NC 1 = P)
if and only if any generic extension based on Boolean algebra for NC 1 is a model of VP.
We will also discuss the problem of relating propositional provability in the ground model

and the generic extension.
[1]G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic, Lecture Notes in

Logic, vol. 6, Cambridge University Press, 1996, pp. 120–138.

! MICHAEL LIEBERMAN, JIŘÍ ROSICKÝ, AND SEBASTIEN VASEY,Weak factoriza-
tion systems and stable independence.
Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 602 00 Brno,
Czech Republic.
E-mail: lieberman@math.muni.cz.
We discuss recent joint work with Rosický and Vasey, [2], which reveals surprising connec-

tions between model-theoretic independence notions and the behavior of weak factorization
systems, which play an important role in the analysis of model categories and in homological
algebra. In essence, given a reasonable category K and family of maps M, the category
KM obtained by restricting to the morphisms inM has a stable independence notion just
in caseM forms the left half of a cofibrantly generated weak factorization system, that is,
one generated by pushouts and transfinite compositions from a set—rather than a class—of
basic maps. We sketch the argument, recalling the category-theoretic generalization of sta-
ble nonforking independence from [2], as well as the necessary terminology involving weak
factorization systems.
As a particular example, we specialize to the case K = R-Mod andM a class of homo-

morphisms with kernels in a fixed subcategory: this generalizes the (abstract elementary)
classes of modules ⊥N considered by Baldwin–Eklof–Trlifaj, [3], and answers a number of
questions from their article. In particular, we prove that this class is tame and stable whenever
it is an AEC.
[1] J. Baldwin, P. Eklof, and J. Trlifaj, ⊥N as an abstract elementary class. Annals of

Pure and Applied Logic, vol. 149 (2007), no. 1–3, pp. 25–39.
[2]M. Lieberman, J. Rosický, and S. Vasey,Weak factorization systems and stable inde-

pendence, submitted, arXiv:1904.05691v2.
[3] , Forking independence from the categorical point of view. Advances in Mathe-

matics, vol. 346 (2019), pp. 719–772.

! ROBERT S. LUBARSKY, Feedback hyperjump.
Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Rd., Boca
Raton FL 33431, USA.
E-mail: robertlubarsky@att.net.
Under feedback computability, the halting problem relative to the halting problem is

the halting problem: X = X ′. Most, if not all, notions of computation that allow for
an oracle have a feedback version. The ones that have been explored so far are Turing
computability, primitive recursion, and infinite time Turing machines. This talk will include
an introduction to feedback, and the current state of knowledge about feedback hyperjump
(X = OX ).
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[1]N. Ackerman, C. Freer, and R. Lubarsky, Feedback computability on Cantor space,
Logical Methods in Computer Science, LICS 2015. Special Issue, to appear; also available at
http://math.fau.edu/lubarsky/pubs.html.
[2] , An introduction to feedback Turing computability, Annals of Pure and Ap-

plied Logic, LFCS 2016. Special Issue, submitted; also available at http://math.fau.edu/
lubarsky/pubs.html.
[3] R. Lubarsky, ITTMs with feedback, Ways of Proof Theory (R. Schindler, editor),

Ontos, Eichenweg 25, Ortenberg 63683, Germany, 2010, pp. 341–354. http://www.ontos-
verlag.de, http://www.ontoslink.com/.
[4] , Parallel feedback Turing computability, Proceedings of LFCS 2016 (Artemov

and Nerode, editors), Lecture Notes in Computer Science, vol. 9537.

! PATRICK LUTZ AND JAMES WALSH, Descending sequences of hyperdegrees and the
second incompleteness theorem.
Department of Mathematics, University of California, Berkeley, 1095 Evans Hall #3840,
Berkeley, CA 94720-3840, USA.
E-mail: pglutz@berkeley.edu.
Group in Logic and the Methodology of Science, University of California, Berkeley, 1043
Evans Hall #3840, Berkeley, CA 94720-3840, USA.
E-mail: walsh@math.berkeley.edu.
It follows fromclassical results due toSpector that there is no sequenceof realsA0 , A1, A2, . . .

such that for each n, An ≥H OAn+1 . We will give a new proof of this result using the second
incompleteness theorem.Wewill thenmention how this fact can be used to give an alternative
proof of a result of Simpson and Mummert on a semantic version of the second incomplete-
ness theorem for $n models. Both of these results seem to suggest a more general connection
between well-foundedness of certain partial orders and the second incompleteness theorem.
We will mention several other examples of this connection.

! ALICE MEDVEDEV AND ALEXANDER VAN ABEL, The Feferman–Vaught Theorem
and products of finite fields.
Department of Mathematics, The Graduate Center, City University of New York, 365 5th
Ave, New York, NY 10016, USA.
Department of Mathematics, The City College of New York, City University of New York,
160 Convent Ave, New York, NY 10031, USA.
E-mail: medvedev.math.ccny@gmail.com.
Department of Mathematics, The Graduate Center, City University of New York, 365 5th
Ave, New York, NY 10016, USA.
E-mail: avanabel@gradcenter.cuny.edu.
We prove that in a product ring of finite fields, the definable subsets are boolean combina-

tions of ∃∀∃-definable sets. This follows from the Feferman–Vaught Theorem on definability
in product structures [1], and Kiefe’s quantifier reduction result for finite fields [2]. We obtain
via our proof that products of integral domains have the maximum amount of definable
subsets allowed by the Feferman–Vaught theorem.
[1] S. Feferman andR. Vaught, The first order properties of products of algebraic systems.

Fundamenta Mathematicae, vol. 47 (1959), no. 1, pp. 57–103.
[2] C.Kiefe, Sets definable over finite fields:Their zeta-functions.Transactions of the Amer-

ican Mathematical Society, vol. 223 (1976), pp. 45–59.

! JOSÉ M. MÉNDEZ, GEMMA ROBLES, AND FRANCISCO SALTO, Falsity constants
for two independent families of quasi-Boolean logics.
Universidad de Salamanca. Edificio FES, Campus Unamuno, 37007, Salamanca, Spain.
E-mail: sefus@usal.es.
URL Address: http://sites.google.com/site/sefusmendez.
Dpto. de Psicologı́a, Sociologı́a y Filosofı́a, Universidad de León, Campus Vegazana, s/n,
24071, León, Spain.
E-mail: gemma.robles@unileon.es.
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URL Address: http://grobv.unileon.es.
E-mail: francisco.salto@unileon.es.
In [1], two families of quasi-Boolean logics are defined. One of them is intuitionistic

in character; the other one, dual intuitionistic in nature. Both families are determined by
a Routley-Meyer ternary relational semantics, negation being interpreted by the “Routley
operator” or “Routley star”. The aim of this article is to reconsider the two aforementioned
families from the point of view of the same semantics except that now negation will be
interpreted by means of two different types of falsity constants following the techniques and
strategies discussed in [2]. We will compare the results obtained with those recorded in [1].
Acknowledgment.Work supported by research project FFI2017-82878-P, financed by the

Spanish Ministry of Economy, Industry and Competitiveness.
[1] J. M. Méndez, G. Robles, and F. Salto, Basic quasi-Boolean extensions of relevant

logics (abstract), this Bulletin, Contributed talk presented at the ASL European Summer
Meeting (Logic Colloquium 2018), Udine, Italy, 23–28 July, 2018, forthcoming.
[2]G. Robles and J. M. Méndez, Routley–Meyer Ternary Relational Semantics for

Intuitionistic-type Negations, Elsevier, 2018.

! ROSARIOMENNUNI, Product of invariant types modulo domination-equivalence.
University of Leeds, UK.
E-mail: r.mennuni@leeds.ac.uk.
In stable theories it is possible to associate to sufficiently big models a certain monoid

obtained by quotienting the semigroup of types with tensor product by a relation called
“domination-equivalence”. This equivalence relation was generalised to arbitrary theories
in [1], where it was studied in the case of the theory of algebraically closed valued fields
and it was shown that every global invariant type is domination-equivalent to a product of
types concentrating in the residue field or in the value group. Unfortunately, domination-
equivalence is not always a congruence with respect to the product of invariant types, as
shown in [2]. The aim of this talk is to present an instance of this incompatibility, along with
a first development of the general theory of this interaction.
[1]D. Haskell, E. Hrushovski, and D. Macpherson, Stable Domination and Indepen-

dence in Algebraically Closed Valued Fields, Lecture Notes in Logic, Cambridge University
Press, 2008.
[2] R. Mennuni, Product of invariant types modulo domination-equivalence. Archive for

Mathematical Logic, accepted.

! RYSZARDMIREK, Euclidean Geometry in Renaissance.
Department of Logic, Pedagogical University of Krakow, ul. Podchorazych 2, Poland.
E-mail: mirek.r@poczta.fm.
Renaissance geometry refers directly or indirectly to Euclidean geometry. Fibonacci’s

Practica geometriaewritten in 1220 contains a large collection of geometry problems arranged
into eight chapters with theorems based on Euclid’s Elements. Piero della Francesca in
his treatise solely devoted to the subject of perspective De Prospectiva Pingendi, written
possibly by about 1474, refers to many Euclid’s theorems. For instance in Proposition 1.13,
which is known as the first new European theorem in geometry after Fibonacci, the proof
refers to the similarity of the triangles. In Elements discussion of these issues is included
in the Book VI, Proposition 4 to 8. In turn to determine the height of a man one can
use the rectangle. The method refers to Euclidean Proposition 16, Book 4, which involves
constructing a fifteen-sided figure, equilateral and equiangular. What, however, is the most
interesting these and other propositions can be used in the interpretation of the paintings of
Piero della Francesca. Luca Pacioli, the pupil of Piero, in hisDe divina proportionemoved the
mathematical and artistic problems of proportion, especially the mathematics of the golden
ratio and its application in architecture.
The purpose of the study is to describe and compare Renaissance geometry in combination

with Euclidean one.In the Renaissance the mathematical sciences were in the center of
attention and there was a close union between them and the fine arts.
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! MEHA MISHRA AND A. V. RAVISHANKAR SARMA, An inconsistency tolerant para-
consistent deontic logic of moral conflicts.
Humanities and Social Sciences Department, Indian Institute of Technology Kanpur, India.
E-mail: meha@iitk.ac.in.
E-mail: avrs@iitk.ac.in.
Moral conflicts are special kind of situations that arise as a reaction to dealing with the

conflicting obligations. The resolution of moral conflicts has been studied extensively within
the area of moral reasoning whereas representation within the framework of Deontic logic.
Despite of moral conflicts are very much part of our linguistic discourse and our tolerance
towards them is frequent phenomena, yet the core principles of Standard Deontic Logic
fail to capture the intuitive notion of moral conflicts in a satisfactory manner. This poses a
major challenge in handlingmoral conflicts.We argue that situations involvingmoral conflicts
mainly concerned with tolerating inconsistencies, and we assume that best known framework
for dealing with moral conflicts are the deontic logics extended with the paraconsistent
logic. In paraconsistent logics, a conflict can be represented, operated, isolated, without
invalidating the inference rules. I examine three prominent paraconsistent logics; Grahm
Priest’s logic LP, the logic RM of the school of relevance logic and the Da Costa’s logics Cn
based on the three valued logic. We emphasize on Deontic paraconsistent logics based on
Priest’s paraconsisntent logic. I illustrate my work with a classic example from famous Indian
epic ‘Mahabharata’ where the protagonist Arjuna faces moral conflict in the battlefield of
Kurukshetra. The inquiry is to find an adequate set of principles to accommodate Arjuna’s
moral conflict in paraconsistent deontic logics. Meanwhile, it is also interesting to relate
Krishna’s arguments for resolving Arjuna’s conflict to paraconsistent approach of conflict
tolerance.
[1]N. C. A. Da Costa andW. A. Carnielli, On paraconsistent deontic logic. Philosophia,

vol. 16 (1986), no. 3, pp. 293–305.
[2]D. Gabbay, J. Horty, X. Parent, R. van der Meyden, and L. van der Torre, Hand-

book of Deontic Logic and Normative Systems, College Publication, 2013.

! ANDREY MOROZOV AND JAMALBEK TUSSUPOV, On minimal elements in the ∆-
reducibility on families of predicates.
Sobolev institute of mathematics SB RAS, Koptyug Ave. 4 and Novosibirsk state university,
Pirogova str. 1, Novosibirsk, 630090, Russia.
E-mail: morozov@math.nsc.ru.
L.N. Gumilyov Eurasian National University, ul. Satpaeva 2, Astana, 010008, Kazakhstan.
E-mail: tussupov@mail.ru.
Fix some countable set U . By predicate here we mean an arbitrary subset of an arbi-

trary finite Cartesian power of U . We study two kinds of reducibilities on finite families of
predicates.
We say that a predicate R is ∆-definable over the predicates P1, . . . , Pk if R itself and its

complement can be defined in the structure ⟨U ;P1, . . . , Pk⟩ by means of ∃-formulas with
parameters.
Let S0 = {P0, . . . , Pk−1} and S1 be two finite families of predicates. We say that S0 is

∆-definable in S1, if all the predicates in S0 are ∆-definable in S1 and we denote this fact as
S0 %0∆ S1. If S0 %0∆ S1 and S1 %0∆ S0 then we denote this fact as S0 ≡0∆ S1. The relation %0∆
is a preordering, ≡0∆ is an equivalence and the quotient %0∆/≡0∆ defines an upper semilattice
in which the least upper bound of elements S0/≡0∆ and S1/≡0∆ equals to (S0 ∪ S1)/≡0∆ and
⊥0∆ = ∅/≡0∆ is the smallest element. Denote this semilattice by D

0
∆.

If we consider families of predicates up to isomorphism, we arrive at the notion of ∆-
reducibility on families of predicates. We say that a finite family of predicates S0 ∆-reduces to
a finite family S1 (and denote this as S0 %∆ S1), if there exists a finite family of predicates S ′

such that S ′
0 %0∆ S1 and S ′

0 is a conjugate of S0 by means of some permutation on U .
If S0 %∆ S1 and S1 %∆ S0 then we denote this fact as S0 ≡∆ S1. The quotient %∆/≡∆

defines a structure D∆, which is a partial order with smallest element⊥∆ = ∅/≡∆ .
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Theorem 1.

1. The structure D∆ fails to be an upper semilattice.
2. The families consisting of unary predicates define in D∆ an ideal of order type !.

Theorem 2. Each of the structuresD0∆ \{⊥0∆} andD∆ \{⊥∆} contains 2! minimal elements.
Both the coauthors were partially supported by Committee of Science in Education and

Science Ministry of the Republic of Kazakhstan (Grant No. AP05132349).

! JOACHIMMUELLER-THEYS,Multi-valued interpretations.
Kurpfalzstr. 53, 69 226 Nußloch bei Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.
It seems at least unlikely that there is an natural way to extend the {0, 1}-interpretations

of PL to arbitrary values from the unit interval [0, 1] = {x ∈ IR: 0 ≤ x ≤ 1}.
0. For technical reasons, we use the following PL-language: p1, p2, p3, . . . , ¬φ,

∧
Φ,

∨
Ψ,

whereΦ,Ψ stand for finite sets of formulæ previously built. For instance, φ ∧) :=
∧
{φ,)}.

apv(φ) be the set of atomic propositional variables p occurring in φ.
Formulæ are binarily interpreted in well-known way, e. g. V (p) ∈ {0, 1}, V ′(¬φ) = 1 iff

V ′(φ) = 0, V ′(
∧
Φ) = 1 iff V ′(φ) = 1 for all φ ∈ Φ. V ′(

∨
∅) = 0. |= φ :iff V ′(φ) = 1 for all

V , whence |= φ ↔ ) iff V ′(φ) = V ′()).
I. Let apv(φ) = {p1, . . . , pn}. Call κ :=

∧
Λ fundamental iff either pk ∈ Λ or ¬pk ∈ Λ for

every 1 ≤ k ≤ n. κ1⊥ κ2 if Λ1 ̸= Λ2. There is an unique set K of fundamental κ such that
|= φ ↔

∨
K , where 5 :=

∨
K corresponds to (full) DNF.

Now let W (p) ∈ [0, 1] be any multi-valued assignment. The MVI or Buchholz valuation
W ′ is constructed as follows:
W ′(pk) :=W (pk),
W ′(¬pk) := 1−W ′(pk),
W ′(κ) :=

∏
3∈ΛW

′(3),
W ′(5) :=

∑
κ∈K W

′(κ),
W ′(φ) :=W ′(5);
revealing the somehow evident principles used.
Let W0.5 := 1

2 . W
′
0.5 = &PL has been paradigm for MVI, whereby PL-probability &PL(φ)

equals the number of rows with value 1 in the (binary) truth table of φ divided by 2n—
originating with the Tractatus, probably.
II. Except for &(

∧
Λ) =

∏
3∈Λ &(3), the principles used to define W

′ are all properties of
probability functions & in the sense of probability logic—maybe of many-valued logic at
all—, and we showed that the literal-independent & can be identified with ourW ′.
However, the nearness to stochastics is deceptive:Consider, e. g., coin toss,where &(heads∧

tails) ̸= &(heads) · &(tails).
III. What have we found? The status of literal-independency has remained unclear.

Acknowledgments. After a joint quest, Wilfried Buchholz had solved the problem
technically.—Preliminary versions were presented at ASL-APA and UniLog 2018. Thanks
to many participants, Walter Carnielli, Luis Estrada-González, Peter Maier-Borst, Schafag
Kerimova, and Andreas Haltenhoff.

! RANJANMUKHOPADHYAY, Cut elimination and Restall’s defining rules.
Philosophy andComparative Religion, Visva-Bharati University, Santiniketan 731235, India.
E-mail: mukhopadhyay.ranjan@gmail.com.
The Cut Rule as a structural rule used in sequent calculi can be seen in the context of

justification of deduction as a recognition of the possibility of indirect proofs for a sentence
having logical constant(s). The demand for Cut Elimination Theorem for a calculus having
logical constants can be seen, from this perspective, as the demand for showing that if there
is an indirect proof for such a sentence then there is a direct proof for it as well. It can be
shown that a calculus which has Cut Elimination Theorem for it satisfies Belnap’s (“Tonk,
Plonk and Plink”, 1962) condition of being a conservative extension of the source calculus
(S: deducibility as such) comprising of only structural rules including Cut, and the Axiom of
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Identity. Belnap held that an extended calculus having logical constants should also satisfy
the condition of uniqueness.
Restall (“General Existence 1 : Quantification and Free Logic”, 2019) takes sequents as

proof-theoretic representations of ‘clash’ between assertions and denials of formulae. Restall
shows that his Defining Rules for the classical first order logical constants make way for, not
only a conservative extension of S into Classical First Order Predicate (Free) Logic, but also
for an uniquely defining extension aswell. Restall shows how the usual left/right sequent rules
for the constants can be restored from the Defining Rules. For such a restoration Axiom of
Identity and the Cut rule become necessary for him. This article observes that this necessary
use of Cut here importantly shows that what is achieved by a Cut Elimination Theorem for a
usual calculus (as discussed above) is achieved by Restall’s calculus with Defining Rules too,
but of course without demanding that Cut be eliminable.
Some ramifications of this feature of Restall’s calculus are explored.

! FEDERICOMUNINI, FRANCOPARLAMENTO,ANDFLAVIOPREVIALE,The sub-
term property for some equality sequent calculi.
Department of Mathematics, Computer Science and Physics, University of Udine, via Delle
Scienze 206, 33100 Udine, Italy.
E-mail: franco.parlamento@uniud.it.
As for cut elimination (see [3, p. 93]), we say that the subterm property holds for a sequent

calculus S if there is a “nontrivial” algorithm for transforming a derivation in S of a sequent
S into a derivation of S in the same system, that contains only terms occurring in S. We
show that the subterm property holds for the following purely equality calculi based on the
structural rules:

1. ∗EQN (N for “natural”), which has the reflexivity axioms ⇒ t = t and the multiple
congruence rule

Γ⇒ r1 = s1 . . . Γ⇒ rn = sn Γ⇒ F [v1/r1, . . . , vn/rn]
Γ⇒ F [v1/s1, . . . , vn/sn]

2. ∗EQB (B for “Birkhoff”), which has the reflexivity axioms and the rules:

Γ⇒ r = s
Γ⇒ s = r

Γ⇒ r = s Γ⇒ s = t
Γ⇒ r = t

Γ⇒ r1 = s1 . . . Γ⇒ rn = sn
Γ, P[v1/r1, . . . , vn/rn]⇒ P[v1/s1, . . . , vn/sn]

Γ⇒ r1 = s1 . . . Γ⇒ rn = sn
Γ⇒ t[v1/r1, . . . , vn/rn] = t[v1/s1, . . . , vn/sn]

3. ∗EQ, which has the reflexivity axioms and the rules

Γ⇒ F [v1/r1, . . . , vn/rn]
r1 = s1, . . . , rn = sn,Γ⇒ F [v1/s1, . . . , vn/sn]

Γ⇒ F [v1/r1, . . . , vn/rn]
s1 = r1, . . . , sn = rn,Γ⇒ F [v1/s1, . . . , vn/sn]

where Γ is a finite multiset of formulae, F is a formula, P is an atomic formula different from
an equality, r,s , t, the ri ’s and si ’s are terms and the vi ’s are variable of a first order language
and E[vi/t1, . . . , vi /tn] is used to denote the result of the simultaneous replacement of the
free variables v1, . . . , vn by the terms t1, . . . , tn in the formula or term E.
Moreover, for ∗EQN and ∗EQB cut elimination and the subterm property hold simul-

taneously, namely a derivation in any of such systems of a sequent S can be transformed
into a cut-free derivation of S in the same system, containing only terms occurring in S. Al-
though cut elimination holds also for ∗EQ, it does not hold simultaneously with the subterm
property.
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[1] F. Parlamento and F. Previale, Absorbing the structural rules in the sequent calculus
with additional atomic rules, Logic Colloquium 2018, this Bulletin, vol. 25 (2019), no. 2,
pp. 260–261.
[2] , The cut elimination and nonlengthening property for the sequent calculus with

equality, Logic Colloquium 2016, this Bulletin, vol. 23 (2017), no. 2, pp. 251–252.
[3] A. S. Troelstra andH. Schwichtenberg, Basic Proof Theory, second ed., Cambridge

University Press, Cambridge, 2000.

! N. M. MUSSINA AND A. R. YESHKEYEV, Hybrids of classes from Jonsson spectrum.
Faculty of Mathematics and Information Technologies, Karaganda State University, Uni-
versity str., 28, building 2, Kazakhstan.
E-mail: aibat.kz@gmail.com, nazerke170493@mail.ru.
Let A be an arbitrary model of countable language. JSp(A) = {T/T is Jonsson theory

in this language and A ∈ ModT} and JSp(A) is said to be the Jonsson spectrum of the
model A.

Definition 1. We say that the Jonsson theory T1 is cosemantic to the Jonsson theory
T2 (T1 67 T2) if CT1 = CT2 , where CTi are semantic model of Ti , i = 1, 2.

The relation of cosemanticness on a set of Jonsson theories is an equivalence relation.
Then JSp(A)/ 67 is the factor set of the Jonsson spectrum of the model A with respect to
67.
Let us define the essence of the symbol ! of the operation for algebraic construction

of models, which will play an important role in the definition of hybrids. Let symbol ! ∈
{∪,∩,×,+,⊕,

∏
F
,
∏
U
}, where ∪-union, ∩-intersection, ×-Cartesian product, +-sum and ⊕-

direct sum,
∏
F
-filtered product and

∏
U
-ultraproduct.

Definition 2. A hybrid of classes [T ]1, [T ]2 is the class [T ]i ∈ JSp(A)/ 67 if Th∀∃(C1 !
C2) ∈ [T ]i , we denote such hybrid as H ([T ]1, [T ]2).

Note the following fact:
Fact 1. For the theory H ([T ]1, [T ]2) in order to be Jonsson enough to be that (C1 ! C2) ∈

E[T ]i , where [T ]i ∈ JSp(A)/ 67.
Finally, the main results are the following theorem.
Theorem 3. Let [T ]1, [T ]2 be perfect convex existentially prime complete for ∀∃-sentences

classes from JSp(A)/ 67. Xi are ∀∃-dcl -sets in the class [T ]i , i ∈ {1, 2}, that is, Xi ⊆ Ci ,
whereMi=dcl(Xi )∈ E[T ]i ,Ti = Th∀∃(Mi)are also perfect convex existentially prime complete
for ∀∃-sentences Jonsson theories. Then, if their hybridH ([T ]1, [T ]2) is a model consistent with
[T ]i , thenH ([T ]1, [T ]2) is a perfect class from JSp(A)/ 67 for i = 1, 2.
Theorem 4. Let [T ]1, [T ]2 satisfy the conditions ofTheorem1and [T ]1 , [T ]2 be!-categorical.

Then their hybrid H ([T ]1, [T ]2) is also a !-categorical class from JSp(A)/ 67.
All concepts that are not defined in this abstract can be extracted from [1, 2].
[1]M. T. Kassymetova and A. R. Yeshkeyev, Jonsson Theories and their Classes of

Models, KSU, Karaganda, [in Russian], 2016.
[2]N.M.Mussina andA.R.Yeshkeyev,Properties of hybrids of Jonsson theories.Bulletin

of the Karaganda University. Seria of “Mathematics”, vol. 92 (2018), no. 4, pp. 99–104.

! MANAT MUSTAFA AND SERGEY OSPICHEV, About Rogers semilattices of finite fam-
ilies in Ershov hierarchy.
Department of Mathematics,Nazarbayev University, Kabanbaybatyr 53, Nur-Sultan, Kaza-
khstan.
E-mail: manat.mustafa@nu.edu.kz.
Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, Russia.
E-mail: ospichev@math.nsc.ru.
There is a well-known result, that any finite family of c.e. sets has computable principal

numbering[3]. In [1], K. Abeshev shows that there is a finite family of sets in Ershov hierarchy
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withoutΣ−12 -computable principal numbering.With the help ofΓ-operator in [2], above result
can be generalized to any level (finite and successor ordinals) of Ershov hierarchy. Here we
concentrate our interest to different types of Σ−12 -computable numberings of finite families
of Σ−12 -sets and c.e.-sets. The main result is:

Theorem. Let S = {A, B} be any family with A,B are c.e. sets with A ⊆ B but A \ B is
not c.e., then the Rogers semilatticeR−1

2 (S) is isomorphic to family L
m
0 of allm-degrees of c.e.

sets.

Corollary. Any Σ−12 -computable numbering of S is equivalent to some computable num-
bering of S .
Acknowledgment.Secondauthorwas supportedbyRFBRaccording to the researchproject

17-01-00247.
[1]K. Abeshev, On the existence of universal numberings for finite families of d.c.e. sets.

Mathematical Logic Quarterly, vol. 60 (2014), no. 3, pp. 161–167.
[2] I. Herbert, S. Jain, S. Lempp, M. Mustafa, and F. Stephan, Reductions between types

of numberings, preprint, www.math.wisc.edu/∼lempp/papers/redandnumb.pdf.
[3] A. H. Lachlan, Standard classes of recursively enumerable sets. Zeitschrift für mathe-

matische Logik und Grundlagen der Mathematik, vol. 10 (1964), no. 2–3, pp. 23–42.

! RICARDONICOLÁS-FRANCISCOANDLUISESTRADA-GONZÁLEZ,Negation can
be just what it has to.
Institute for Philosophical Research, UNAM, Circuito Maestro Mario de la Cueva s/n,
Ciudad Universitaria, C.P. 04510, Coyoacán, México D.F., México.
E-mail: gyl.ric@gmail.com.
E-mail: loisayaxsegrob@gmail.com.
According to Jc Beall [1], there is no logical negation because a logical negation must

be either exclusive or exhaustive, but there are no logical reasons that force negation in
either way in the correct logic—that, for reasons that we cannot reproduce here, has to be
subclassical for Beall (see [2]). In this article, we provide some counterarguments to Beall. In
particular, we probe characterizations of negation that do not involve the need for exhaustion
or exclusion, for example, the flip-flop character of negation as present in Beall’s preferred
subclassical logic: FDE.
[1] J. Beall, There is no logical negation: True, false, both and neither.Australasian Journal

of Logic, vol. 14 (2017), no. 1 pp. 1–29.
[2] ,The simple argument for subclassical logic. Philosophical Issues, vol. 28 (2018),

no. 1, pp. 30–54.

! INESSA PAVLYUK AND SERGEY SUDOPLATOV, On ranks for families of theories of
finite abelian groups.
Novosibirsk State Pedagogical University, Novosibirsk, Russia.
E-mail: inessa7772@mail.ru.
Sobolev Institute of Mathematics, Novosibirsk, Russia; Novosibirsk State Technical Univer-
sity, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
E-mail: sudoplat@math.nsc.ru.
We continue to study families of theories of abelian groups [3] characterizing e-minimal

subfamilies [4] for finite abelian groups by Szmielew invariants αp,n , $p, (p, ε [2, 1], where p
are prime numbers, n ∈ ! \ {0}, as well as describing possibilities for the rank RS(·) [4].
We denote by TA,fin the family of all theories of finite abelian groups.
Theorem 1. For any infinite family T ⊆ TA,fin the following conditions are equivalent: (1) T

is e-minimal; (2) dim(T ) = 1, that is, T does not have independent limit values for Szmielew
invariants; (3) for any upper bound αp,n ≥ m or lower bound αp,n ≤ m, for m ∈ !, there are
finitely many theories in T satisfying this bound; having finitely many theories with αp,n ≥ m,
there are infinitely many theories in T with a fixed value αp,n < m.
Theorem 2. Let α be a countable ordinal, n ∈ ! \ {0}. Then there is a subfamily T ⊂ TA,fin

such that RS(T ) = α and ds(T ) = n.
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The families T for the proof of Theorem 2 have closures ClE(T ) inside TA,fin ∪TA,pf , where
TA,pf is the set of theories of pseudofinite abelian groups, and these closures are d -definable.
Acknowledgment. This research was partially supported by Russian Foundation for Basic

Researches (Project No. 17-01-00531-a), the program of fundamental scientific researches of
the SB RAS No. I.1.1, project No. 0314-2019-0002, and Committee of Science in Education
and Science Ministry of the Republic of Kazakhstan (Grant No. AP05132546).
[1] P. C. Eklof and E. R. Fischer, The elementary theory of abelian groups. Annals of

Mathematical Logic, vol. 4 (1972), pp. 115–171.
[2] Y. L. Ershov, andE. A. Palyutin,Mathematical Logic, FIZMATLIT,Moscow, 2011.
[3] I. I. Pavlyuk and S. V. Sudoplatov, Families of theories of abelian groups and their

closures. Bulletin of Karaganda University. Series “Mathematics”, vol. 90 (2018), pp. 72–78.
[4] S. V. Sudoplatov, Ranks for families of theories and their spectra, 2019,

arXiv:1901.08464v1 [math.LO].
[5]W. Szmielew, Elementary properties of Abelian groups. Fundamenta Mathematicae,

vol. 41 (1955), pp. 203–271.

! IAROSLAV PETIK, Reading Feyerabend: from epistemic anarchism to anarchism in founda-
tions of formal systems.
Institute of Philosophy of H. S. Skovoroda of Ukrainian Academy of Sciences, Department
of Logic and Methodology of Science, Ukraine.
E-mail: iaroslav.petik@gmail.com.
Paul Feyerabend was a famous philosopher of science who developed a theory of scientific

anarchism. It claims that rationality and scientific method are only the products of one
separate tradition of thought which competes with numerous other traditions [1]. In this
schema science is an eclectic set of different competing systems which functions as an evolving
system. But there is no general criterion like rationality for the process of selection. On the
other hand the question of foundations of formal systems asks the question what is the
ontological foundation for any kind of formal systemmathematics, logic system, the language
of programming, etc. The program of logicism was aimed at proving that all the chapters of
mathematics can be reduced to purely logical constructions. Different philosophical theories
in mathematics claim that all the mathematics can be reduced to theory of sets, theory
of categories, some constructive principles, etc. None of these attempts were eventually
successful. The idea of the thesis is to extrapolate and anarchic ideas of Feyerabend on the
question about foundations of formal systems. Maybe attempts to find the main formal
system were all unsuccessful because there is no such system. There is of course the question
of practice in the Feyerabend’s conception and its counterpart for the case of formal systems.
Probably the role of practice should be admitted in this case as well but in a more specified
form. In conclusion it should be said that if the anarchism is eligible for the domain of formal
systems than the question about foundations of these systems should be also shifted to the
study of cooperation of different systems as equal competing structures.
[1] P. Feyerabend, Science in Free Society, Verso, London, 1982.

! A. V. RAVISHANKAR SARMA, Belief revision based on abductive reasoning.
Department of Humanities and Social Sciences, IIT Kanpur, India.
E-mail: avrs@iitk.ac.in.
Belief revison is concerned with the adjustment of currently held beliefs in the light of new

information, particularly when the old belief are contradicting the new information [1]. This
article discusses the role of abductive reasoning—that is, reasoning in which explanatory
hypotheses are formed and evaluated, in the change of beliefs. Recent work in artificial
intelligence and Philosophical logic recognizes the importance of abductive reasoning within
the process of belief revision, discovery, creativity. The cental idea of the article is that agent
seek explanations together with its justification into the agent’s current epistemic state before
integrating the new information. In the process, an agent given various potential explanations,
need to chose the best possible explanation amongst the other competing explanations. We
propose an ordering explanations based on the heirarchies of ordering of beliefs called
abductive entrenchment ordering of beliefs. This is modification of Pagnucco, Nayak and
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Foo’s model [3], in two different ways. First, it proposes abductive entrenchment based on
causal explanation and second, it takes care of some of the semantic propertoes such as
causal properties, causal explanation, causal relevance, with the belief revision process. The
presence or lack of these semantic properties leads to the better understanding of ordering of
explanations. We also take insights from Kuhn’s [2] exhaustive virtues for the theory choice,
including accuracy, consistency, scope, simplicity and fruitfulness.
[1] P. Gärdenfors and D. Makinson, Revisions of knowledge systems using epistemic

entrenchment, Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about
Knowledge, Morgan Kaufmann Publishers Inc., 1988.
[2] T. Kuhn, Objectivity, Value Judgment, and Theory Choice, in The Essential Tension:

Selected Studies in Scientific Tradition and Change, University of Chicago Press, Chicago and
London, 1977.
[3]M. Pagnucco, A. C. Nayak, and N. Y. Foo, Abductive reasoning, belief expansion

and nonmonotonic consequence, Proceedings of the ICLP–95 Joint Workshop on Deductive
Databases and Logic Programming and Abduction in Deductive Databases and Knowledge-
based Systems, 1995.

! NOAH SCHOEM, Destruction of ideal saturation.
MSCS, University of Illinois at Chicago, 851 S. Morgan Street 322, Chicago, IL, USA.
E-mail: nschoe4@uic.edu.
An ideal I on κ is κ+-saturated if every antichain of (P(κ)/I,≤I ) has cardinality ≤κ, and

is κ+-presaturated if I is precipitous and the forcing (P(κ)/I,≤I ) preserves κ+. We answer
an open question of [1] of whether there is a forcing extension that destroys κ+-saturation of
ideals on κ while preserving their κ+-presaturation in the affirmative.
[1] S. Cox andM. Eskew, Strongly proper forcing and some problems of Foreman. Trans-

actions of the American Mathematical Society, vol. 371 (2019), pp. 5039–5068.

! SOURAV TARAFDER, Foundations of mathematics in a model of paraconsistent set theory.
Department of Commerce, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata-700016,
India.
E-mail: souravt09@gmail.com.
Based on the Boolean-valued model construction of classical set theory, we constructed

generalised algebra-valued models in [1]. We defined a three-valued algebra PS3 such that
its logic is paraconsistent [3], and the PS3-valued model V(PS3) validates the negation-free
fragment of ZF [1]. In [2], we studied ordinal numbers in V(PS3).
In this talk, we shall discuss properties of the natural numbers in V(PS3). We consider

the ordinal ! (as defined in [2]) as the set of natural numbers and prove that this is an
inductive set; from this, we conclude that mathematical induction holds in V(PS3) and discuss
the arithmetic of natural numbers in this model. Using the standard definition of sizes of sets
via bijective functions, we shall define the notion of cardinality in our model and prove some
classical theorems such as Cantor’s theorem on the size of the power set of a set.
[1] B. Löwe and S. Tarafder, Generalized algebra-valued models of set theory. Review of

Symbolic Logic, vol. 8 (2015), no. 1, pp. 192–205.
[2] S. Tarafder, Ordinals in an algebra-valued model of a paraconsistent set theory, Logic

and its Applications, 6th ICLA, vol. 8923, (M. Banerjee and S. Krishna, editors), Springer-
Verlag, Berlin, Mumbai, India, 2015, pp. 195–206.
[3] S. Tarafder andM.K.Chakraborty,Aparaconsistent logic obtained froman algebra-

valued model of set theory, New Directions in Paraconsistent Logic, 5th WCP, vol. 152 (J.-Y.
Béziau, M. K. Chakraborty, and S. Dutta, editors), Springer, New Delhi, Kolkata, India,
2016, pp. 165–183.

! SEBASTIEN VASEY, Forking and categoricity in nonelementary model theory.
Department of Mathematics, Harvard University, Cambridge, Massachusetts, USA.
E-mail: sebv@math.harvard.edu.
URL Address: http://math.harvard.edu/∼sebv/.
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The classification theory of elementary classes was started byMichael Morley in the early
sixties, when he proved that a countable first-order theory with a single model in some
uncountable cardinal has a single model in all uncountable cardinals. The proof of this
result, now called Morley’s categoricity theorem, led to the development of forking, a notion
of independence jointly generalizing linear independence in vector spaces and algebraic
independence in fields and now a central pillar of modern model theory.
In recent years, it has become apparent that the theory of forking can also be developed

in several nonelementary contexts. Prime among those are the axiomatic frameworks of
accessible categories and abstract elementary classes (AECs), encompassing classes ofmodels
of any reasonable infinitary logics. A test question to judge progress in this direction is the
forty year old eventual categoricity conjecture of Shelah, which says that a version ofMorley’s
categoricity theorem should hold of any AEC. I will survey recent developments, including
the connections with category theory and large cardinals, a theory of forking in accessible
categories (joint withM. Lieberman and J. Rosický), as well as the resolution of the eventual
categoricity conjecture from large cardinals (joint with S. Shelah).

! ANDREAS WEIERMANN, A unifying approach to Goodstein principles.
Institute for Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281
S8, 9000 Ghent, Belgium.
E-mail: Andreas.Weiermann@UGent.be.
TheGoodstein principle is arguably themost elementary principle which is independent of

first order Peano arithmetic. In our presentation we discuss general properties of Goodstein
principles which allow to formulate natural variants of the Goodstein principle which do not
depend an a specifc notion of base-k representations of natural numbers.
Acknowledgment. This is in part joint work with T. Arai, D. Fernández Duque, and

S. Wainer.
[1] T. Arai, D. F. Duque, S. Wainer, and A. Weiermann, Predicatively unprovable termi-

nation of the Ackermannian Goodstein process, submitted.
[2] E.A.Cichon, Short proof of two recently discovered independence results using recursion

theoretic methods.Proceedings of theAmericanMathematical Society, vol. 87 (1983), pp. 704–
706.
[3] R. L. Goodstein, On the restricted ordinal theorem. The Journal of Symbolic Logic,

vol. 9 (1944), pp. 33–41.
[4] , Transfinite ordinals in recursive number theory. The Journal of Symbolic Logic,

vol. 12 (1947), pp. 123–129.
[5] L. Kirby and J. Paris, Accessible independence results for Peano arithmetic. Bulletin of

the London Mathematical Society, vol. 14 (1982), no. 4, pp. 285–293.
[6] A. Weiermann, Ackermannian Goodstein principles for first order Peano arithmetic,

Sets and Computations, Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore, vol. 33, World Scientific Publishing, Hackensack, NJ, 2018, pp.
157–181.

! PEDRO H. ZAMBRANO, Tameness in classes of generalized metric structures: quantale-
spaces, fuzzy sets, and sheaves.
Universidad Nacional de Colombia, Bogota, Colombia.
E-mail: phzambranor@unal.edu.co,phzambranor@gmail.com.
Tameness is a very important model-theoretic property of abstract classes of structures,

under the assumption of which strong categoricity [4, 7] and stability transfer theorems
[2, 8] tend to hold. We generalize the argument of Lieberman and Rosický [5]—based on
Makkai and Paré’s result on the accessibility of powerful images of accessible functors
[3] under the existence of a proper class of almost strongly compact cardinalities [1]—
that tameness holds in classes of metric structures, noting that the argument works just
as well for structures with underlying Q-spaces, Q a reasonable quantale. Dropping the
reflexivity assumption from the definition of metrics, we obtain a similar result for classes
with underlying partial metric spaces: through straightforward translations from partial

�%%"$���((( 31�2#9475 !#7�3!#5�%5#�$ ��%%"$���4!9 !#7��� �����2$� ���
 
�
�!( �!1454�6#!���%%"$���((( 31�2#9475 !#7�3!#5 �.0�144#5$$���� �� 
� �����! ����/1#������1%��������	��$C2:53%�%!�%�5�,1�2#9475�,!#5�%5#�$�!6�C$5��1D19�12�5�1%

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.56
https://www.cambridge.org/core


528 LOGIC COLLOQUIUM ’19

metrics to fuzzy sets and sheaves, we obtain, respectively, fuzzy and sheafy analogues of this
result.
Acknowledgment. This is joint work with Michael Lieberman and Jiřı́ Rosický.
[1] J. Bagaria andM. Magidor, Group radicals and strongly compact cardinals. Transac-

tions of the American Mathematical Society, vol. 366 (2014), pp. 1857–1877.
[2] J. Baldwin,D.Kueker, andM.VanDieren,Upward stability transfer for tame abstract

elementary classes. Notre Dame Journal of Formal Logic, vol. 47 (2006), no. 2, pp. 291–298.
[3] A. Brooke-Taylor and J. Rosický, Accessible images revisited. Proceedings of the

American Mathematical Society, vol. 145 (2017), no. 3, pp. 1317–1327.
[4] R. Grossberg and M. VanDieren, Categoricity from one successor cardinal in tame

abstract elementary classes. Journal of Mathematical Logic, vol. 6 (2006), no. 2, pp. 181–201.
[5]M. Lieberman and J. Rosický, Hanf numbers via accessible images. Logical Methods

in Computer Science, vol. 13 (2017), no. 2:11, pp. 1–15.
[6]M. Lieberman, J. Rosický, and P. Zambrano, Tameness in generalized metric struc-

tures, preprint, arXiv:1810.02317.
[7] S. Vasey and S. Shelah, Categoricity and multidimensional diagrams,

arXiv:1805.06291.
[8] P. Zambrano, A stability transfer theorem in d-tame metric abstract elementary classes.

Mathematical Logic Quarterly, vol. 58 (2012), no. 4–5, pp. 333–341.
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! JOHN CORCORAN, Russell 1919 on fractions.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
We investigate the treatment of fractions inRussell’s 1919 classic Introduction toMathemat-

ical Philosophy [3]. In contrast to rational numbers, every fraction has an integral numerator
and a nonzero integral denominator, but usage varies on exactly which integers are involved
(see [4, pages 161ff]). Our interest was first drawn to the topic by the following surprising
result—paraphrasing Russell’s page 66, as in [1].

Russell 1919’s Fraction–Separator Theorem: the fraction whose numerator is the sum of the
numerators of two unequal given fractions and whose denominator is the sumof the denominators
is between the two given fractions—excluding cases when the sum of the denominators equals
zero.

Although Russell gives none, proof is obtainable from page 270 of De Morgan 1831 [2].
The paraphrase differs from Russell’s wordsmainly in adding the exclusion, which we then

took to correct a minor oversight: one denominator can’t be the negative of the other. Russell
himself had earlier considered negative fractions on page 26: “Here we have first a series of
negative fractions with no end, and then a series of positive fractions with no beginning”.
His usage on page 26 makes it impossible to determine whether he considered 0/1 to be

a fraction. However, later, on page 84 Russell writes about fractions as though the numer-
ators and denominators were all and only positive integers—as on page 54 of Whitehead
1911 [5].
Russell’s [3] is unusually critical of unwarranted “identification” of distinct number classes,

for example, page 63 warns against thinking that “a fraction whose denominator is 1 may be
identifiedwith thenatural numberwhich is its numerator”.Nevertheless, it never distinguishes
fractions from rationals and, worse, it occasionally confuses fractions with certain ratios and
with certain relations.
[1] J. Corcoran, Russell 1919’s fraction-separator theorem, this Bulletin, vol. 24 (2018),

p. 381.
[2] A. De Morgan, Study and Difficulties of Mathematics, Open Court, 1831/1943.
[3] B. Russell, Introduction to Mathematical Philosophy, Dover, 1919.
[4] P. Suppes, Axiomatic Set Theory, Dover, 1960/1972.
[5] A. Whitehead, Introduction to Mathematics, Oxford University Press, 1911.
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! JOHNCORCORANANDMILES RIND,What syllogisms are: three views, eight centuries.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
At issue is the nature of “the syllogisms” inPriorAnalytics [6]. For centuries from the 1200s,

the dominant view was enshrined in the medieval mnemonic “Barbara–Celarent” [3]: syllo-
gisms are certain valid premise-conclusion arguments commonly mislabeled “inferences”. In
the mid-1900s many logicians adopted the Łukasiewicz view [4]: syllogisms are certain true
universal propositions informally called “implications”. A fruitful two-sided debate ensued
producing evidence weakening the Łukasiewicz case.
Toward the last quarter of the 1900s, a third contender appeared. Independently, Corcoran

[2] and Smiley [5] took the class of syllogisms to exclude propositions while including not only
the valid arguments recognized as syllogisms in medieval times but also deductions estab-
lishing validity—notably the indirect deductions known as “per-impossibile syllogisms” [5,
p. 136]. A deduction contains, besides an argument’s premises and conclusion, reasoning
chains showing that the premises’ information contains the conclusion’s.
The debate became three-sided for some years. Today theŁukasiewicz view lacks defenders

leaving the debate to the medieval and Corcoran-Smiley views.
We detail the three views—emphasizing differences. For example, the medieval syllogisms

are valid but ‘true’ does not apply to them, though their premises and conclusions are all true
or false. The Łukasiewicz syllogisms are all true but the term ‘valid’ as applied to arguments
is inappropriate. The Corcoran–Smiley syllogisms cannot be said to be true in the sense
applicable to propositions but they are all valid in the sense that their conclusions follow
from their premises. Moreover, many of them containing reasoning are “cogent” [1] in an
epistemic sense inapplicable to Łukasiewicz and medieval syllogisms.
[1] J. Corcoran, Argumentations and logic. Argumentation, vol. 3 (1989), pp. 17–43.
[2] , Aristotle’s prototype rule-based underlying logic. Logica Universalis, vol. 2

(2018), pp. 9–35.
[3] J. Corcoran, D. Novotný, and K. Tracy, Deductions and reductions decoding syllo-

gistic mnemonics. Entelekya Logico-Metaphysical Review, vol. 2 (2018), pp. 5–39.
[4] J. Łukasiewicz, Aristotle’s syllogistic, Oxford University Press, 1951.
[5] T. Smiley,What is a syllogism? Journal of Philosophical Logic, vol. 2 (1973), pp. 136–

154.
[6] R. Smith, Aristotle’s Prior Analytics, Hackett, 1989.

! JOHN CORCORANAND KEVIN TRACY, Validity, soundness, truth, known validity, and
known truth.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Valid arguments are those whose conclusions follow from their premise-sets. Some valid

arguments have false conclusions. In such cases a premise is false. No valid argument with
all true premises has a false conclusion [1].
Valid arguments with all their premises true are sometimes called sound. However, usage

varies. Some established logicians use ‘sound’ as a synonymous substitute for ‘valid’ [4, 2];
others reserve ‘sound’ for other uses [1, 5]. Some classic texts don’t use ‘sound’ in any logical
senses [6].
Some valid arguments with all premises true have conclusions that are not known to be

true. In some cases the premises are not all known to be true. In some cases the arguments
are not known to be valid.
In particular, contrary to several logic texts, some “sound” arguments have conclusions

that are not known to be true. In some cases the premises of a “sound” argument are
not known to be true. In some cases a “sound” argument is not even known to be valid.
Moreover, in some cases, no person who knows the truth of the premises knows the validity
of the argument. In fact, most “sound” arguments are not known to be “sound”.
“Sound” arguments are not proofs. Even arguments known to be “sound” are not

proofs [1]. However, every proof contains an argument known to be “sound” by those
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people who recognize it as a proof, that is, by those for whom it produces knowledge that its
conclusion is true [1].
This article quotes and analyses dozens of passages contradicting one ormore of the above

basic points. Some are in recent publications [3]. Some are in older publications [5].
[1] J. Corcoran, Argumentations and logic. Argumentation, vol. 3 (1989), pp. 17–43.
[2] E. J. Lemmon, Beginning Logic, Hackett, 1965/1978.
[3] A.Malpass andM. A.Marfori,History of Philosophical and Formal Logic; Aristotle

to Tarski, Bloomsbury, 2017.
[4] B. Mates, Elementary Logic, Oxford University Press, 1972.
[5]W. Quine, Philosophy of Logic, Harvard, 1970/1986.
[6] A. Tarski, Introduction to Logic, Dover, New York, 1995.
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In a series of articles [1]–[3] properties for combinations of structures are studied. Here

we discuss a P-combination of countably many copies of an ℵ0-categorical structure of pure
linear order and present a description of its countable spectrum.
If ⟨M1, <1⟩ and ⟨M2, <2⟩ are linear orders then their linearly ordered disjoint combination

(or concatenation), denoted byM1 +M2, is the linear order ⟨M1 ∪M2, <⟩, where a < b iff
([a, b ∈M1 ∧ a <1 b] or [a, b ∈M2 ∧ a <2 b] or [a ∈M1 ∧ b ∈M2]).
Let Mi := ⟨Mi ;<Mi ,Σi ⟩ be a linearly ordered structure for each i ∈ !. We denote by

M ′ a linearly ordered disjoint P-combination of the structuresMi , i ∈ !, in the language
{<, Σ, P1i }i∈!, whereΣ = ∪i∈!Σi , and the universe of the combination is

⋃
i∈!Mi ;Pi(M

′) =
Mi for each i ∈ !; either Pk(M ′) < Pm(M ′) or Pm(M ′) < Pk(M ′) for any k,m ∈ ! with
k ̸= m, and there are no coinciding relations (but the order relation) and functions acting in
distinct P-predicates.
Theorem 1. Let M be an ℵ0-categorical structure of pure linear order, M ′ be a linearly

ordered disjoint P-combination of! copies ofM . ThenTh(M ′) has either 2! countable models
or exactly (k + 2)m · (k2 + 3k + 2)s countable models for some nonnegative integers k, m and
s with k ≥ 1.
Observe that if the structureM , in Theorem 1, is weakly o-minimal and 1-indiscernible,

then the value (k + 2)m · (k2 + 3k + 2)s is transformed into the value 3m · 6s .
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