Michael Stephen Fiske

Aemea Institute mf@aemea.org

IHIET-AI Lausanne, Switzerland April 22, 2022

Table of contents

1 Hinder Malware with Hard AI Problems

2 Visual Image Authentication

Application 1: Visual Image One-Time Passcodes Application 2: Detecting Eve-in-the-Middle Attacks Cryptographic Library

3 Acknowledgments

Limitations of Malware Detection

- Malware enables breaching of computer systems.
- Cybersecurity solutions focus on malware detection.¹
- Detection faces fundamental limits in Computer Science:
 - 1. No computer algorithm can detect all malware.²
 - 2. NP problems³ (traveling salesman) hide the malware.⁴

¹Nwokedi Idika and Aditya P. Mathur. A Survey of Malware Detection Techniques. Technical Report. Purdue University. February 2007.

²E. Filiol. Computer Viruses: From Theory to Applications. Springer, 2005. ³Stephen Cook. The P versus NP Problem. Clay Math Institute, 2000. ⁴Eric Filiol. Malicious Cryptology and Mathematics. Cryptography and Security in Computing. Chapter 2. Intech, March 7, 2012.

Use Hard AI Problems that People Understand

- Use hard AI problems that are easy for people to understand.
- Human visual intelligence still surpasses AI visual recognition.⁵
 - 1. Distracting Objects.
 - 2. Visual Occlusions.
 - 3. Undefined or Ambiguous Problems.

⁵Maithilee Kunda. AI, visual imager, and a case study on the challenges posed by human intelligence tests. PNAS. Volume 117. No. 47. pages 29390–29397, November 24, 2020.

Distracting Objects

- If train is the object, then clouds and birds are distracting objects.
- If **bird** is the object, then clouds and a train are distracting objects.
- If **clouds** are the object, then birds and a train are distractions.

Visual Occlusions

If the object is **cowboy hat**, then the helicopter occludes the hat.

If the object is **gorilla**, then the bottle occludes the gorilla.

An Ambiguous Image using Distraction and Occlusions In the image below, is the object an animal that flies? A machine that flies? An animal that walks? An object that cuts?

Application 1: Visual Image One-Time Passcodes

Visual Image One-Time Passcodes⁶

Alice requests to login to her bank account.

Alice receives an image passcode via email or SMS:

⁶Michael Stephen Fiske. US 10,592,651. March 17, 2020

Application 1: Visual Image One-Time Passcodes

Display Screen 1

Alice must select the elephant with her fingers or mouse:

Application 1: Visual Image One-Time Passcodes

Display Screen 2

Alice must select the piano with her fingers or mouse:

Application 1: Visual Image One-Time Passcodes

Display Screen 3

Alice must select the horse with her fingers or mouse:

Application 1: Visual Image One-Time Passcodes

Display Screen 4

26 -

Alice must select the trumpet with her fingers or mouse:

Application 1: Visual Image One-Time Passcodes

Real-time Visual Image One-Time Passcodes

In subsequent visual image OTPs, object categories can change.

Below is a visual OTP using outlines, rotations and occlusions:

Real-time Demonstration: https://nps.cryptografx.eu

Application 2: Detecting Eve-in-the-Middle Attacks

Detecting Eve-in-the-Middle Attacks

Alice and Bob perform a key exchange.⁷

Alice and Bob do not trust a central authority.

 7g is an element of an abelian group, agreed upon by Alice and Bob. \Rightarrow \Rightarrow \sim

Application 2: Detecting Eve-in-the-Middle Attacks

An Eve-in-the-Middle Attack on a Key Exchange⁸

Eve intercepts Alice's public key g^a and Bob's public key g^b . Eve sends public key g^d to Alice and public key g^e to Bob.

Application 2: Detecting Eve-in-the-Middle Attacks

An Eve-in-the-Middle Detection Algorithm

- ϕ is a one-way hash function.⁹
- Visual encoding f(b₁...b_n) chooses the *i*th image as b_i mod 16. If b₁ = 7, then the first image is horse.

Alice and Bob compare their visual images (typically, 5 images) derived from f ∘ φ(g^{ab}).

⁹NIST. FIPS-180-4. Secure Hash Standard. March 2012.

Application 2: Detecting Eve-in-the-Middle Attacks

Example: Alice and Bob Compare Their Images

They don't match: an Eve-in-the-Middle attack occurred.

Cryptographic Library

Protected with Standard Cryptographic Primitives

Our cryptographic library is coded in ANSI C:

- Elliptic curve 25519 implements our public key exchange and digital signatures.¹⁰ ¹¹
- Our one-way hash functions are implemented with SHA-512.¹²
- Our symmetric cryptography is implemented with AES-256.¹³

¹⁰Daniel Bernstein. Curve25519: new Diffie-Hellman speed records. Public Key Cryptography. LNCS 3958. New York, Springer. 207-228, 2006.

¹¹Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang. High-speed high-security signatures. Journal of Cryptographic Engineering. 2, 77-89, 2012

¹²NIST. FIPS-180-4. Secure Hash Standard. March 2012.

¹³NIST. Advanced Encryption Standard (AES), FIPS 197. November, 2001.

Acknowledgments

We thank Darren Sullivan for his outstanding software development efforts.

We thank Mark Tuttle for sponsoring Darren's software development efforts.

Michael Stephen Fiske