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A Signal Hidden in Quantum Random Noise

The signal and noise probability distributions are identical.
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A Partially Hidden Signal

The signal and noise probability distributions are slightly different.
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A Detectable Signal

The signal and noise probability distributions are quite different.

Hiding Signals in Quantum Random Noise Michael Stephen Fiske HICSS-58



Introduction Hiding Procedures Application & Testing Quantum Computing Summary

Primary Contributions

Quantum random bits xi . Heisenberg uncertainty principle.

Axiom 1: No bias. P(xi = 0) = P(xi = 1) = 1
2 .

Axiom 2: Independence. Event Hi = {x1 = b1, . . . , xi = bi}.
Every bj in {0, 1}. P(xi+1 = 0 | Hi ) = P(xi+1 = 1 | Hi ) =

1
2 .

• Hiding procedure: O(n) fast, inexpensive, post-quantum.

• If m signal and ρ noise bits satisfy axioms 1 & 2, the signal
can be hidden arbitrarily close to perfect secrecy (ρ → ∞).

• A post-quantum key exchange with much smaller key sizes.

• Easy for signal to satisfy axioms 1 & 2. Random keys satisfy
axioms 1 & 2. Plaintext: encrypt before hiding or embed
signal in higher dimensional Hamming space.
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Favorable Properties

• Hiding public keys hinders Mallory-in-the-middle (MITM)
attacks that can attack a Diffie-Hellman exchange.

• Search complexity for hidden, public keys substantially
exceeds the conjectured complexity of a public key.

• Quantum complexity is comparable to Grover’s algorithm.
Post-quantum Internet of Things! Less than $1.00 per device.

• Implementable with TCP/IP infrastructure & an off-the-shelf
quantum random number generator (QRNG flip-flop).

• QRNG flip-flops can generate 3.3 Gigabits per second.

• Decentralization. Alice and Bob have their own QRNGs.
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Related Work

• In 1550, Cardano proposed a rectangular grid for writing hidden
messages. Protection was not adequate.

• Quantum cryptography (Weisner, BB84) relies on the uncertainty
principle. When Eve measures a photon’s polarization, it destroys
the other orthogonal component. Requires polarized photons and
special infrastructure to transmit polarized photons. Alice and Bob
require a shared authentication secret to stop Mallory interfering
with the public channel.

• Quantum secure direct communication (QSDC). QSDC claims
advantages over BB84: QSDC is deterministic; every photon
contributes a key bit so QSDC is more efficient; QSDC requires
expensive quantum hardware and a new physical infrastructure
when feasible.
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A Simple Hiding Example

Signal k1k2k3 = 001. m = 3.

Noise r1r2r3r4r5r6r7 = 10 01 010. ρ = 7.

Map (l1 l2 l3) = (8 3 6). n = 10. n = m + ρ always holds.

Bit k1 = 0 is hidden at location 8.

Bit k2 = 0 is hidden at location 3.

Bit k3 = 1 is hidden at location 6.

Hidden signal S(k1k2k3, r1r2r3r4r5r6r7) = 10 0 01 1 0 0 10.
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Creating a Quantum Random Scatter Map

Input: n

Variables: n, j , r , t, l1, l2, . . . ln.

l1 := 1 l2 := 2 . . . ln := n j := n

while j ≥ 2 {

A QRNG randomly chooses r in {1, 2, . . . , j}.

t := lr

lr := lj

lj := t

j := j − 1
}

Output: π =
(
l1 l2 . . . ln

)
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Scatter Map Definitions

Map π = (l1 l2 . . . ln). Signal k1 . . . km. Noise r1, r2, . . . rρ.

Signal Locations {l1 l2 . . . lm}.

Noise Locations N (l1 l2 . . . lm) = {1, . . . , n} − {l1, l2, . . . , lm}.

Define scatter function S : {0, 1}m × {0, 1}ρ → {0, 1}n.

S(k1, . . . , km, r1, r2 . . . rρ) = (s1, . . . sn).

Signal bits sl1 := k1; sl2 := k2; . . . slm := km.

Noise bits sik := rk . ik is kth smallest number in N (l1 . . . lm).
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Hide a Signal with Scatter Map π

Input: Signal k1 k2 . . . km. Map π = (l1 l2 . . . ln).

Alice’s QRNG creates noise r1 r2 . . . rρ. ρ = n −m.

Alice’s map π sets sl1 = k1 . . . slm = km.

Per S(k1, . . . , km, r1, r2 . . . rρ), Alice fills in S = (s1 . . . sn).

Alice sends S to Bob.

Output: Bob’s π extracts k1 . . . km from S.
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A Random Hidden Nonce Makes π Reusable

• Alice and Bob share π.

• Each transmission uses a distinct hiding map σ.

• Each time Alice’s QRNG generates a new random nonce N .

• Alice executes procedure 3 to derive σ from N & π.

• Alice hides her signal with map σ.

• Alice hides nonce N , using part of π.

• Bob uses part of π to extract nonce N from the noise.

• Bob executes procedure 3 to derive σ from N & π.

• Bob uses σ to extracts Alice’s signal from the noise.
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Procedure 3: Randomly Generating σ

Inputs: m, n. π = (l1l2 . . . ln). κ, N , j0. Ψ is SHA-512.

q1 := l1 q2 := l2 . . . qn := ln j := j0.

while j ≥ 2 {
κ := Ψ(κ)⊕R(κ, 8)

N := Ψ(κ N )⊕R(N , 8)

r := (N mod j) + 1

t := qr

qr := qj

qj := t

j := j − 1
}
Output: σ =

(
q1 q2 . . . qm

)
.
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Procedure 3 Explained at HICSS-58
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Mathematical Analysis of a Single Transmission

• If an m-bit signal & ρ bits of noise satisfy axiom 1 (unbiased)
& axiom 2 (independence), our math proofs show that a
one-time transmission S from Alice to Bob approaches perfect
secrecy as ρ increases.

• Perfect secrecy: the probability that a signal = k1, k2, . . . km
before Eve sees S remains unchanged after Eve sees S.

• If necessary, transform the signal so it satisfies axioms 1 & 2.
Good keys automatically satisfy axioms 1 & 2.

• Our proofs rely on the standard normal curve’s geometry. A
binomial distribution approaches the standard normal curve as
n = m + ρ increases. (Central Limit Theorem.)
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Hiding Public Keys in Noise

• A new key exchange can hide public keys in noise.

• Hinders MITM attack on a Public Key Exchange.
Complexity is too high for Eve.

• Implemented with the 25519 elliptic curve.1

• Mallory’s complexity is 1037 for a naked 25519 public key P.
If no auxiliary information, Mallory has no halting criteria.

• Post-quantum. Reduces key sizes. A quantum computer can
break naked 25519 public keys in O(n2) or O(n3) steps.

1D.Bernstein.(2006) “Curve25519: new Diffie-Hellman speed records.”
Public Key Cryptography.LNCS 3958. Springer. 207–228.
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Hiding Hinders Mallory in the Middle Attacks

Eve-in-the-Middle attack on the Key Exchange 

  gd    

  ga    

  ge    

  gb    

Eve and Bob  share secret  gbe .   Eve and Alice share secret  gad.   
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A Hidden 25519 Elliptic Public Key P
Alice’s hidden public key P = 119 179 68 170 227 9 166 162 231 42 145 129 112 181 218 237 103 207 26 200 158
198 149 143 41 87 194 114 11 1 214 24

σ(0) = 1993. σ(1) = 725. σ(2) = 405. σ(3) = 138. σ(4) = 1825. σ(5) = 1553. σ(6) = 213. σ(7) = 858.

n = 2048. m = 255. All signal bits are blue, except first 8 bits are orange. Decimal 119 = 0111 0111

0000101001000111101101010100110100001110010010100101011111101100100010110100001000000100101100010010
1001111111100100000010100001011011100100000010111100100110111011000111100101101011010110100101011101
1111001011000101110011011001110011100100101000111111101100101010111101011000011101010011111110110111
0011011100100001001100011111011000101101000110011011110011000100011101101011110011011000101001101001
0100010001001100101111100101110010001111111100110010111111110100100001110001110101101100111001111001
0000110000100100010011101100101101011101000011001000000110010110100010100000100100000111111001000101
1010001111111010100100110000010111011101110001110010011011111100000010001000100101101110011111100110
0110101010101011011100011110100000110000111110000111101111101111101110011011110111100011111101110011
1111001001111110101111110001010001101010111110001110001101000101110001000110011110110110110100000010
0100110100110001010001001000111110101111011010100101101010110011000000001011100101101101000111001110

1010110111101100000011001011100111010101000000100100100111011101100100000001101110100101000001110000
1011111100100111010000010001110101110111110011011101000000000100110011100111100010011010001010000111
0101010110100010100111011000001001111000110111001001100011100001011100111111101011000001000100001010
0010111111111100111000001010110101011011100100100010110011001111010001001001110101011110111111100110
1101010100100101110011000010001101110110000111011100101100011011101000100111001000111100000001110101
1111110110110011101111110011110000000111111110010111011110110110010111111100000100110111001010001010
0010000001001010110100110010000100000110101111111110111011111011101101110111100000110011101100011001
1110011001100000000000101110000011000011001011100001111001101100001111010011110000011111001101011001
0110000101101011011001000100010010001011111101011101100000011011111101011110000100001111111000000110
1100110100100001011010110010000001001001110101110011111101110101100010101100100011001001101111001110
110011111111001100111101101011100100101000101110
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Complexity of Finding a 25519 Elliptic Public Key P

σ determines where P is hidden.

A random nonce hidden in the noise unpredictably changes σ each
time. (Entropy Invariance.)

Every possible σ is uniformly reachable from π, based on Diehard
testing of Procedure 3.

Eve knowing where P was hidden in a prior hidden transmission
reveals nothing about the location of the new P.

Since there are more than 255 0s and 1s of noise, every public key
P in {0, 1}255 is possible.

Stops MITM attack: If Eve doesn’t know π, Eve must test every
possible P. That won’t work.
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Statistical Testing of 25519 Public Keys & QR Noise

Statistical testing helps verify 25519 public keys (signal) and
quantum random noise satisfy axioms 1 & 2.

do 80 million times {
a QRNG creates a 25519 private key κ.

compute public 25519 key P from κ.

write κ to noise_control_file.txt

for each bit bi in byte j of P
write bit bi in byte_j_bit_i.txt }

Diehard tests on byte_j_bit_i.txt look for statistical anomalies
in the ith bit of the jth byte of 25519 public keys.

Every file byte_j_bit_i.txt passed all 13 Diehard tests.
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Relevance to Quantum Computing

• N unsorted databased items. Classical algorithm O(N2 ) steps.

• Grover’s quantum algorithm takes O(
√
N) steps.

• Grover’s algorithm requires a terminating condition.

• Scatter maps in L(m,n) correspond to N database items.

• Eve has a terminating condition for scatter maps only if Eve
has auxiliary information about σ after the scatter.

• Conjectured complexity is O
(√

n!
(n−m)!

)
if Eve has a

terminating condition.

•
√

8192!
(8192−255)! > 10498 for m = 255 & n = 8192.
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Research Summary

• A procedure hides a signal in quantum random noise.

• The locations of the signal bits randomly change each time.

• Security of the hidden signal can be made arbitrarily close to
perfect secrecy.

• A new key exchange hides public keys in noise.

• Diehard tests verified that the probability distribution of
25519 public keys satisfy axioms 1 & 2.

• Our hiding procedure can be implemented with TCP/IP
infrastructure and an inexpensive, off-the-shelf QRNG.
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Factorial Growth vs. Exponential Growth

Set r(n) = n!
2n .

r(k)
r(k−1) =

k!
2k

2k−1

(k−1)! =
k
2 whenever k ≥ 1.

Hence, r(2n) = r(n)
n∏

k=1

(2n−k+1)
2 > r(n) n! If n ≥ 3, r(2n) > n!
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Future Work & Research

Future work should explore an Internet of Things (IoT)
implementation due to being low cost and post-quantum.

Based on Grover’s algorithm, we anticipate Eve’s quantum

complexity is O
(√

n!
(n−m)!

)
when m signal bits are hidden in

n −m noise bits and signal and noise satisfy axioms 1 & 2.

Future research should explore variations of Grover’s algorithm to
further analyze the quantum complexity of our key exchange
hidden in noise.
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