Stabilizing *D* Flip-flops with Self-Modifiable Differential Equations

Michael Stephen Fiske HICSS-57

Aemea Institute

January 5, 2024.

"The Purpose of Computing is Insight, not Numbers." 1

Another Purpose of Computing is to Robustly Perform Tasks.

¹Richard Hamming. Numerical Methods for Scientists and Engineers: 1962.

Origin of this Paper: HICSS-56

 HICSS-56 paper "Dynamical Systems that Heal" asked: How can self-repair be designed to adequately function while actively being attacked by a sentient adversary?

Self-Modifiable Differential Equations

- HICSS-56 peer reviewer 2 stated: The paper does not seem to cover the case of malicious modification to the ability of an algorithm to detect changes to the code in the first place.
- HICSS-56 peer reviewer 3 stated: The novel aspects of the article
 are focused on self-modifiability for a system of differential equations
 where the 'damage' done to the system may be the results of other
 action like white noise where systems are perturbed slightly.
- Stumbled on "Flip-Flop Gate Model for EEMI Injection." 2

²Valbuena, L., et al. (2019) "Simplified Flip-Flip Gate Model for EEMI Injection." *Intl. Conf. Electromagnetics in Adv. Appl.* 845–850.

- Attack on insulin injector sabotages flow of insulin.³
- Pacemaker attacks produce dangerous shock commands.⁴
- Injecting clock glitches skips cryptographic instructions.⁵
- Out-of-band signal attacks alter sensor measurements.⁶

³Li C., et. al. (2011) "Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system." IEEE Intl. Conf. on e-Health.

⁴Halperin D., et. al. (2008) "Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses." IEEE Symposium on Security and Privacy .

⁵Korak T., Hoefler M. (2014) "On the effects of clock and power supply tampering on two microcontroller platforms." FDTC. 8-17, Sept. 2014.

⁶Giechaskiel I., et. al. (2019) "Taxonomy and challenges of out-of band signal injection attacks and defenses." https://arxiv.org/pdf/1901;06935.pdf. < > >

D Flip-flop

D flip-flops are commonly used in digital electronics.

Flip-flop circuits have two stable physical states.

Self-Modifiable Differential Equations

CLK is clock input. D(t) is data input. Q(t) is output (0 or 1).

Time	CLK	D(t)	Q(t+1)	$\overline{Q}(t+1)$
t	Rising Edge	0	0	1
t	Rising Edge	1	1	0
t	Non-Rising	$\{0,1\}$	Q(t)	1-Q(t)

Research Overview

- Start with a differential equations model of a D flip-flop.⁷
- Self-modifiable differential equations help stabilize a D flip-flop during a noise attack.
- A software simulation is provided. No hardware design yet.
- Meta variables can help detect a manipulated flip-flop orbit.
- Meta variables and operators can heal a flip-flop orbit disrupted by noise.

⁷Valbuena L., et al. (2019) "Simplified Flip-Flop Gate Model for EEMI Injection." *Intl. Conf. on Electromagnetics in Adv. Appl.*. 845–850.

Self-Modifiable Differential Equations

- LSI Logic scientists created a flip-flop model based on CMOS ASIC technology, using an experimental test circuit.8
- Valbuena's flip-flop differential equations model is derived from [8].
- Soft error code correction in flip-flops addresses errors due to radiation from cosmic rays and packaging material. Active electromagnetic attacks by Mallory are not addressed.
- In 2023, introduced self-modifiable differential equations. 10

⁸Horstmann J.U., et al. (1989) "Metastability behavior of cmos asic flip-flops in theory and test". IEEE J. Solid Circuits. 24(1) 146-157.

⁹Mitra S., et al. (2007) "Soft Error Resilient System Design through Error Correction." Intl. Federation for Info. Processing. 249, 143-156.

¹⁰Fiske M.S. (2023) "Dynamical Systems that Heal" = HICSS-56, 6685–6694. → 🤄 Stabilizing D Flip-flops with Self-Modifiable Differential Equations

Self-Modifiable Differential Equations

D Flip-flop Differential Equations Model

D flip-flop orbit
$$u(t) = (u_1(t), u_2(t))$$
. $\frac{du}{dt} = (\frac{du_1}{dt}, \frac{du_2}{dt}) = L_a(u)\begin{pmatrix} \cos \alpha(u) & -\sin \alpha(u) \\ \sin \alpha(u) & \cos \alpha(u) \end{pmatrix} (a-u) + L_b(u)\begin{pmatrix} \cos \beta(u) & -\sin \beta(u) \\ \sin \beta(u) & \cos \beta(u) \end{pmatrix} (b-u)$.

Vector Field $\frac{du}{dt}$

D Flip-flop Differential Equations: $L_p(u)$. $\alpha(u)$, $\beta(u)$

$$p = (p_1, p_2), \quad u = (u_1, u_2). \ ||p - u||^2 = (p_1 - u_1)^2 + (p_2 - u_2)^2.$$

Symmetric function $L_p(u) = \frac{L_0}{1 + |p-u||^2 - d}. \ c = 0.8, \ d = 1, \ L_0 = 2.$

Build $\alpha(u)$ and $\beta(u)$: $\angle(p, u) = \operatorname{atan2}(p_2 - u_2, p_1 - u_1)$.

Fixed points $A = (a_1, a_2)$ and $B = (b_1, b_2)$.

$$\phi_B(u) = -\frac{\pi}{2} \tanh(u_2).$$

$$\phi_A(u) = \operatorname{atan2} \left(\sin \gamma(u), \cos \gamma(u) \right), \text{ where } \gamma(u) = \pi - \phi_B(u).$$

Define $g_A(u) = \frac{1}{2} + \frac{1}{2} \tanh(u_1 - \kappa a_1)$, where $\kappa = 1$.

Define $g_B(u) = \frac{1}{2} - \frac{1}{2} \tanh(u_1 - \kappa b_1)$.

Define $\alpha(u) = \frac{1}{2} g_A(u) (\phi_A(u) - \angle(A, u)).$

Define $\beta(u) = \frac{1}{2} g_B(u) (\phi_B(u) - \angle(B, u))$.

Adding Input

Input pulses store (toggle) the data input in the D flip-flop.

$$\frac{du}{dt} = L_a(u) \begin{pmatrix} \cos \alpha(u) & -\sin \alpha(u) \\ \sin \alpha(u) & \cos \alpha(u) \end{pmatrix} (a-u) + L_b(u) \begin{pmatrix} \cos \beta(u) & -\sin \beta(u) \\ \sin \beta(u) & \cos \beta(u) \end{pmatrix} (b-u) + \begin{pmatrix} K_1 \\ K_2 \end{pmatrix} \mathcal{I}(t)$$

$$c = 0.8$$
, $d = 1$, $L_0 = 2$, $\kappa = 3$. Fixed points $a = (1, -1)$, $b = (-1, 1)$.

$$K_1 = 0.6$$
, $K_2 = -1.5$.

Toggling the Flip-Flop State

 $igg(rac{ {\mathcal K}_1}{{\mathcal K}_2} igg) {\mathcal I}(t)$ models data input D(t) and clock input CLK.

$$Q(t)=0$$
. $\overline{Q}(t)=1$. \leftrightarrow $b=(-1,1)$. $\mathcal{I}(t)=0 \leftrightarrow \text{row 3 of Table 1}$.

$$\mathcal{I}(16) = 1 \leftrightarrow \text{row } 2.$$
 $Q(t+1) := 1$ $Q(t+1) = 1.$ $\overline{Q}(t+1) = 0.$ $\leftrightarrow a = (1,-1).$

• u(41.8)

Add noise term $+\binom{K_3}{K_4}\eta(t)$ to the model. $K_3=0$. $K_4=1$.

Alice's goal: Hinder Mallory from sabotaging her flip-flop.

Self-Modifiable Differential Equations

Our approach is partially motivated by information theory.

Analogous to error-correction bits¹¹ add new variables.

Only mathematical / software methods are explored. Hardware implementations are not described.

Use self-modifiable differential equations to ameliorate noise.

¹¹Hamming R.W. (1950) "Error Detecting and Error Correcting Codes." Bell Technical J. 29(2), 147–160.

Principle of Self-Modifiability in Dynamical Systems

Differential equations are a dynamical system on a manifold. 12

A set of rules governs a dynamical system:

In a computer program, each instruction is a rule.

In a system of differential equations, each equation is a rule.

A self-modifiable dynamical system changes its own rules: add new rules to itself; replace rules with new rules; or delete rules.

 $^{^{12}\}mathbb{C}$ is a 2-D manifold. The unit circle S^1 is a 1-D manifold. Both the torus $S^1\times S^1$ and sphere S^2 are 2-D manifolds.

Meta Variables & Meta Operators

A meta operator specifies how to self-modify an equation.

Self-Modifiable Differential Equations

A meta operator requires a specific time to execute.

A meta variable ω helps detect an event.

A function $f(t, \omega, \frac{d\omega}{dt})$ is integrated with respect to time.

$$\frac{d\omega}{dt} = \frac{du_4}{dt} - \frac{du_2}{dt}. \quad \text{Time } s_2 = \inf\{\tau \ge 0 : \big| \int_0^\tau \frac{d\omega}{dt} \ dt \big| \ge \theta_2\}.$$

A detectable event: integral first goes beyond threshold θ_2 .

A meta operator corresponding to ω executes at time s_2 .

Alice adds healing variables u_3 , u_4 . u_1 , u_2 are signal variables.

Set
$$\nu_1(t) = (u_1(t), u_2(t))$$
 and $\nu_2(t) = (u_3(t), u_4(t))$. For $i = 1, 2$:

$$\begin{split} \frac{d\nu_{i}}{dt} &= L_{a}(\nu_{i}) \begin{pmatrix} \cos\alpha_{i}(\nu_{i}) & -\sin\alpha_{i}(\nu_{i}) \\ \sin\alpha_{i}(\nu_{i}) & \cos\alpha_{i}(\nu_{i}) \end{pmatrix} (a - \nu_{i}) + \begin{pmatrix} K_{i,1} \\ K_{i,2} \end{pmatrix} \mathcal{I}(t) \\ L_{b}(\nu_{i}) \begin{pmatrix} \cos\beta_{i}(\nu_{i}) & -\sin\beta_{i}(\nu_{i}) \\ \sin\beta_{i}(\nu_{i}) & \cos\beta_{i}(\nu_{i}) \end{pmatrix} (b - \nu_{i}) + \begin{pmatrix} K_{i,3} \\ K_{i,4} \end{pmatrix} \eta_{i}(t) \end{split}$$

Boundary conditions $u_1(0) = u_3(0)$ and $u_2(0) = u_4(0)$.

Input constants $K_{1,1} = K_{2,1} = 0.6$, and $K_{1,2} = K_{2,2} = -1.5$.

Noise constants $K_{1,3} = 0$, and $K_{1,4} = 1$: noise only disrupts signal variable u_2 . Meta operator 2 assumes there is no noise injection on variables u_3 , and u_4 , so $K_{2,3} = K_{2,4} = 0$.

Meta Operator 2 Heals Noise Attack

No Healing. Toggle Fails.

Self-Modifiable Differential Equations

Meta Operator 2. $\frac{d\omega_2}{dt} = \frac{du_4}{dt} - \frac{du_2}{dt}$. $\omega_2(0) = 0$. $\theta_2 = 0.2$.

If $|\omega_2(t)| \geq \theta_2$, set $\frac{du_2}{dt} = \frac{du_4}{dt}$.

 $\eta_2(t)$ attacks signal variable u_2 . $\eta_3(t)$ attacks healing variable u_4 .

$$\eta_i(t) = \chi(t, \frac{33}{2}, \frac{1}{2}, \delta_i, 5, \frac{3}{2})$$
, where $\delta_2 = \frac{1}{3}$ and $\delta_3 = 1$.

$$\chi(t, l, f, \delta, k, A) = A * g(t, l, \delta, k) * h(t, l, f).$$

$$g(t, l, \delta, k) = \tanh(k(t - l)) + \tanh(-k(t - l + \delta)).$$

$$h(t, l, f) = \sin(2\pi f(t - l)).$$

Healing variable is a single point of failure of meta operator 2.

Use six variables u_1, \ldots, u_6 . Decentralize roles of variables u_i .

Meta Equations:
$$\omega_1(0) = \omega_2(0) = \omega_3(0) = 0.$$

$$\frac{d\omega_1}{dt} = \frac{du_4}{dt} - \frac{du_2}{dt}. \quad \frac{d\omega_2}{dt} = \frac{du_6}{dt} - \frac{du_4}{dt}. \quad \frac{d\omega_3}{dt} = \frac{du_2}{dt} - \frac{du_6}{dt}.$$

Meta Operator 5:

$$\begin{split} &\text{if} \quad |\omega_1(s_1)| \geq \theta \quad \text{and} \quad |\omega_3(s_3)| \geq \theta \quad \text{set} \quad \frac{du_2}{dt} = \frac{1}{2} \Big(\frac{du_4}{dt} + \frac{du_6}{dt} \Big). \\ &\text{if} \quad |\omega_1(s_1)| \geq \theta \quad \text{and} \quad |\omega_2(s_2)| \geq \theta \quad \text{set} \quad \frac{du_4}{dt} = \frac{1}{2} \Big(\frac{du_2}{dt} + \frac{du_6}{dt} \Big). \end{split}$$

if $|\omega_2(s_2)| \ge \theta$ and $|\omega_3(s_3)| \ge \theta$ set $\frac{du_6}{dt} = \frac{1}{2} \left(\frac{du_2}{dt} + \frac{du_4}{dt} \right)$.

Meta Operator 5 Succeeds

Succeeds with same noise pulses η_2 , η_3 . (Meta operator 2 fails.)

Noise pulses attack u_2 and u_4 , respectively.

Tests feasibility of building meta operator 2.

 C_1 and C_2 are D flip-flop circuits. S is a self-modifiable circuit.

Circuit S computes $\frac{d\omega_1}{dt} = \frac{du_3}{dt} - \frac{du_1}{dt}$. $\frac{d\omega_2}{dt} = \frac{du_4}{dt} - \frac{du_2}{dt}$.

if $|\omega_1(s_1)| \ge \theta_1$ or $|\omega_2(s_2)| \ge \theta_2$ circuit S self-modifies circuit C_1 .

Research Summary

- A D flip-flop differential equations model was used.
- A noise attack can disrupt a flip-flop orbit.
- Analogous to error codes, additional (healing) variables, meta variables, meta operators and self-modifiable differential equations can help ameliorate a noise attack.
- Signal functionality and healing should be decentralized over standard and meta variables.
- Outlined a hardware design: tests meta operator 2's feasibility.

Research Questions

- Can a hardware flip-flop self-modify to hinder noise attacks?
- Can a chaotic attractor decentralize signal and healing among multiple variables?
- Can bifurcation theory provide insight on how to design new meta operators?
- Can quantum entanglement help self-modify a quantum dynamical system?

