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Abstract

Recent research has demonstrated electronic hard-
ware attacks on pacemakers and insulin injectors.
Injecting clock glitches can skip cryptographic instruc-
tions, defeating the security of the executing instruc-
tions. Typically, these attacks destabilize the dynamical
behavior of the electronics.

For over 70 years, flip-flops have been a fundamental
building block of digital computers. Our primary contri-
bution applies self-modifiable differential equations to
a D flip-flop model. In particular, meta operators can
dynamically self-modify the flip-flop differential equa-
tions so that a noise attack is healed or ameliorated.
Overall, we introduce new methods of healing a dynam-
ical system that is performing a task.

1. Introduction

Recent research has shown how adversarial elec-
tronic interactions can disable systems. Insulin injec-
tors have been sabotaged so that the spurious reporting
of the insulin level erratically turns off and on the flow
of insulin [1]. Electronically sabotaged pacemakers
can produce dangerous shock commands [2]. Injecting
clock glitches can skip cryptographic instructions [3].

Out-of-band signal injection attacks alter the
measurements of sensors or actuator inputs at the hard-
ware layer [4]. These attacks target the conversion
process from a physical quantity to an analog property.

Typically, hardware attacks sabotage the intended
dynamical behavior of the electronics. Moreover,
there are currently no general mathematical models for
describing how an extreme electromagnetic injection
(EEMI) attack propagates in electronic components [5].

Current flip-flops are electronic circuits that have
two stable physical states which can store information
(0 or 1). A flip-flop’s state is changed when signals are
applied to one or more of its control inputs. Flip-flops
are fundamental storage elements in sequential logic.

Fig. 1 shows a D flip-flop circuit, composed of four
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Fig. 1. D Flip-Flop Circuit

NAND gates and one NOT gate. CLK is the clock input.
D(t) is the data input value (0 or 1) of the D flip-flop at
time t. At time t, Q(t) is an output state (0 or 1), and
Q(t) = 1−Q(t) is an output state too.

Table 1: D Flip-flop Logic

Time CLK D(t) Q(t+ 1) Q(t+ 1)

t Rising Edge 0 0 1
t Rising Edge 1 1 0
t Non-Rising {0, 1} Q(t) 1−Q(t)

Table 1 shows a D flip-flop’s logic. According to
row 3, if CLK is a non-rising edge at time t, then output
state Q(t + 1) at time t + 1 stays the same as Q(t).
According to rows 1 and 2, if CLK is a rising edge at
time t, then the next output state Q(t+ 1) at t+ 1 is set
to the current value of the data input D(t). If D(t) = q,
then output state Q(t+ 1) is set to q, where q is 0 or 1.

D flip-flops are commonly used in digital electronics
to build computers and communication systems. Hence,
our research focuses on a differential equations model
of a D flip-flop. Our primary contribution applies a
principle of self-modifiability to differential equations in
order to stabilize a D flip-flop during a noise attack. A
software simulation of the model is provided. Another
contribution introduces meta variables as a new tool for
detecting if a flip-flop orbit has been manipulated. Meta
variables and meta operators can heal a flip-flop orbit
disrupted by noise. Overall, new mathematical methods
that heal a dynamical system are introduced.
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2. Related Work

A differential equations model of a D flip-flop gate
was proposed in [5], and was derived from a model in
[6]. An experimental test circuit in [6] facilitated accu-
rate and reproducible measurements of [6]’s model of
flip-flops, built with CMOS [7] ASIC technology. The
model in [5] is a starting point for our results. In [5, 6],
they do not propose a self-modifiable dynamical system,
nor error-correction for flip-flop circuits.

In [8], soft error code correction in flip-flops
addresses errors due to neutrons generated from cosmic
rays and alpha particles from packaging material. In
[8], they do not address active electromagnetic attacks
by Mallory, and self-modifiability is not used.

Self-modifiable machine instructions originated in
[9, 10, 11]. In [12], a principle of self-modifiability and
self-modifiable differential equations were first intro-
duced. In [13, 14], hybrid systems use automata
combined with differential equations to model complex
processes. Hybrid systems do not have a notion of self-
modifiability, nor variable spaces, nor meta operators
that can dynamically add new variables and equations.

DNA repair has been extensively studied for over
fifty years. DNA models explain repair at a biomolec-
ular level [15]. Organisms have repaired their DNA for
perhaps a few billion years.1 Biomolecular DNA models
do not propose self-modifiable differential equations.

“Self-modifying systems” were proposed for under-
standing the development of complexity in biology [16].
However, the mathematics described in [16] doesn’t
actually self-modify: e.g., there is no formalism for
adding new variables and equations as time proceeds.
Moreover, Turing machines are described in [16]’s “self-
modifying systems”, even though the rules governing a
Turing machine program stay fixed.

3. A D Flip Flop Gate Model

A D flip-flop gate model2 [5] is reviewed and
explained. Fig. 2 shows a vector field of the model,
generated by Julia’s plotting software [19]. The vector
field is plotted on a subset [−2, 2]× [−2, 2] of R2.

In Fig. 2, fixed points3 a = (1,−1) and b = (−1, 1)
represent two stable states4 that this D flip-flop model

1Archaeans, single-celled microorganisms, have been detected in
shales dating from 2.7 billion years ago.

2According to Dr. Valbuena [17], his model is based on an elec-
tromechanical D flip-flop so that orbits can be measured. Model
constants can be selected to match the experimental data in [6] with
high accuracy. An electromechanical D flip-flop was built because his
calculations predicted that measurements, of a commercial D flip-flop,
would occur over extremely small time horizons (picoseconds) [18].

3Sometimes fixed points are called equilibrium points.
4Q(t) and Q(t) correspond to the 1st and 2nd coordinates of the

fixed point: bit 0↔ −1 and bit 1↔ 1. In table 1, D(t) is 0 or 1.

can reach. The rest of this section defines the differential
equations that produce the vector field in Fig. 2.
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Fig. 2. D flip-flop vector field (du1

dt ,
du2

dt )

Let c, d and L0 be constants that are real numbers.
For a fixed point p = (p1, p2) in the square {(x, y) ∈
R2 : −2 ≤ x, y ≤ 2} and any point u = (u1, u2) ∈ R2,
define metric ||p − u||2 = (p1 − u1)

2 + (p2 − u2)
2.

Define a radially symmetric function centered at p as

Lp(u) =
L0

1 + ec||p−u||2−d
. Function Lp(u) helps define

a differential equation (1) flip-flop model. (In sections 4
and 5, signal input and noise are added to the model.)

du

dt
= La(u)

(
cosα(u) − sinα(u)
sinα(u) cosα(u)

)
(a− u) +

Lb(u)

(
cosβ(u) − sinβ(u)
sinβ(u) cosβ(u)

)
(b− u) (1)

α(u) and β(u) have two favorable properties:
• Angles α(u) and β(u) are smooth functions of u near
the stable manifold u2 = u1 that separates the basins of
attraction of stable fixed points a and b.
• Angle functions α(u) and β(u) help realistically
model flip-flop behavior measured in hardware.

The rest of this section defines functions that help
build α(u) and β(u). gA and gB are constructed from
fixed points A = (a1, a2), B = (b1, b2), and constant κ.
For u = (u1, u2), define gA(u) = 1

2+
1
2 tanh(u1−κa1),

and define gB(u) = 1
2 − 1

2 tanh(u1 − κb1).
For u = (u1, u2) and fixed point p = (p1, p2), define

∠(p, u) = atan2(p2 − u2, p1 − u1).5 Recall that
5∠(p, u) computes the angle between the x-axis and the vector

p⃗− u⃗, where p⃗ = ⟨p1, p2⟩ and u⃗ = ⟨u1, u2⟩.

Page 7409



atan2(y, x) =



arctan(y/x) if x > 0
arctan(y/x) + π if x < 0 and y ≥ 0
arctan(y/x)− π if x < 0 and y < 0
π/2 if x = 0 and y > 0
−π/2 if x = 0 and y < 0
undefined if x = 0 and y = 0

Define ϕB(u) = −π
2 tanh(u2). Define γ(u) = π −

ϕB(u). Define ϕA(u) = atan2
(
sin γ(u), cos γ(u)

)
.

Define α(u) = 1
2 gA(u)

(
ϕA(u)− ∠(A, u)

)
.

Define β(u) = 1
2 gB(u)

(
ϕB(u)− ∠(B, u)

)
.

Constants c = 0.8, d = 1, L0 = 2, and κ = 3,
and fixed points a = (1,−1) and b = (−1, 1) gener-
ated the vector field shown in Fig. 2. These constants
were chosen, based on software simulations [19] of the
model; some graphs and figures in [5] based on phys-
ical measurements from a electromechanical D flip-flop
built in a lab [18]; and email communications [17].

For all values c in interval [0.8, 1.3], d in [0.4, 1.2],
L0 in [1, 3], and κ in [3,∞), the vector field, in equation
(1), “stays qualitatively close to the vector field” in Fig.
2: stable fixed points a and b do not move or vanish,
and the two basins of attraction are separated by the line
u2 = u1. At values c = 1

2 , d = 4
5 , L0 = 2, κ = 3, fixed

points a and b, on opposite sides of u2 = u1, vanish: a
bifurcation occurs near c = 1

2 .

4. Adding Input to the Model

Fig. 2 shows a vector field of the D flip-flop model
that has two stable outputs. In one output, a flip-flop’s
orbit reaches the attracting fixed point at b = (−1, 1); in
the second output state, the orbit reaches the attracting
fixed point a = (1,−1). For example, the first coordi-
nate of b can represent a logical 0 bit; the first coordinate
of a can represent a logical 1 bit.

For u = (u1, u2), line u2 = u1 is a boundary of the
system of equations, defined in equation (1), because it
separates initial points u(0) that eventually reach fixed
point a = (1,−1) and points that eventually reach fixed
point b = (−1, 1).6 For all initial points u(0) = (x0, y0)
satisfying x0 < y0, the orbit of u(0) converges to b =
(−1, 1). For all points u(0) = (x0, y0) satisfying x0 >
y0, the orbit of u(0) converges to a = (1,−1).

We add input signal I(t) with constants K1, K2:

du

dt
= La(u)

(
cosα(u) − sinα(u)
sinα(u) cosα(u)

)
(a−u) + Lb(u)

cosβ(u) − sinβ(u)
sinβ(u) cosβ(u)

(b− u) +

K1

K2

I(t) (2)

6In electronics, u2 = u1 is sometimes called a wall; in dynamical
systems, u2 = u1 is a stable manifold with saddle fixed point (0, 0).

An example of I(t) is defined that illustrates
how the input signal can toggle the flip-flop between
fixed points a = (1,−1) and b = (−1, 1). For
parameters T0, period ρ and pulse width τ , define
r(t, T0, ρ) = (t − T0) mod ρ. Define ψ(t, T0, ρ, τ) =1 if r(t, T0, ρ) ≤ τ and ⌊(t− T0)/ρ⌋ is even.
−1 if r(t, T0, ρ) ≤ τ and ⌊(t− T0)/ρ⌋ is odd.
0 if r(t, T0, ρ) > τ

I(t) = ψ(t, 16, 24, 1.8) is shown in Fig. 3.7

Fig. 3. Input Signal I(t). T0 = 16. ρ = 24. τ = 1.8.

4.1. A Toggled Flip-Flop Orbit

Fig. 4 shows an orbit of the flip-flop model with
initial point u(0) = (−1.7, 0.8) during the time period
Γ = [0, 17.8]. During u(t)’s entire orbit, the constant
values are K1 = 0.6, K2 = −1.5, T0 = 16, period
p = 24, and width τ = 1.8. Input signal I(t) =
ψ(t, 16, 24, 1.8), where I(16) = 1. See Fig. 3.

Origin Introduction D Flip-flop Model Self-Modifiability Summary

Math Variables and Symbols

u(16)

u(17.8)

u(40)

u(41.8)

Stabilizing D Flip-flops with Self-Modifiable Di↵erential Equations Michael Stephen Fiske

Origin Introduction D Flip-flop Model Self-Modifiability Summary

Math Variables and Symbols

u(16)

u(17.8)

u(40)

u(41.8)

Stabilizing D Flip-flops with Self-Modifiable Di↵erential Equations Michael Stephen Fiske

u(16)

u(17.8)

u(20)

u(40)

u(41.8)

u(45)

u(16)

u(17.8)

u(20)

u(40)

u(41.8)

u(45)

Fig. 4. Orbit of u(0) = (−1.7, 0.8). Γ = [0, 17.8].

Point u(16) is very close to stable fixed point b =
(−1, 1). I(t)’s effect on u(t)’s orbit is shown in Fig. 4:
at time t = 16, the orbit abruptly changes. When I(t) =
1, term (K1I(t),K2I(t)) dominates the other terms in
equation (2) that create the vector field in Fig. 2. During
time period [16, 17.8], the orbit crosses boundary u2 =
u1, so u(17.8) is in fixed point a’s basin of attraction.

During time period (17.8, 20], I(t) = 0. u(t)’s orbit
follows the vector field in Fig. 2. u(20) is close to fixed
point a = (1,−1). See Fig. 5. During period [20, 40),
I(t) = 0, so u(t)’s orbit approaches even closer to a.

7I(t) is normalized to 1. If an electronic flip-flop operates at 3
volts, then I(t) = 1 may correspond to 3 volts.
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Fig. 5. Orbit of u(0) = (−1.7, 0.8). Γ = [0, 20].

At time t = 40, I(40) = −1 so there is an abrupt
change in the orbit. During time period [40, 41.8], Fig.
6 shows the orbit has crossed the boundary u2 = u1.
Point u(41.8) is in fixed point b’s basin of attraction.
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Fig. 6. Orbit of u(0) = (−1.7, 0.8). Γ = [0, 41.8].

During period [41.8, 45], I(t) = 0. u(t) follows Fig. 2’s
vector field and approaches b = (−1, 1). See Fig. 7.
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Fig. 7. Orbit of u(0) = (−1.7, 0.8). Γ = [0, 45].

We explain how I(t)’s toggling relates to table 1.
(K1I(t),K2I(t)) models data input D(t) combined
with clock input CLK. Q(t) = 0, Q(t) = 1 corresponds
to b = (−1, 1). Q(t) = 1, Q(t) = 0 corresponds to
a = (1,−1). I(t) = 0 corresponds to row 3 of Table 1.
I(t) = 1 at t = 16 corresponds to row 2, whereQ(t+1)
is set to 1, as u(20) ≈ a.8 I(40) = −1 corresponds to

8Q(t+ 1)’s time scale is distinct from u(t)’s time scale.

row 1, where Q(t+1) is set to 0, as u(t) is toggled to b.
If input constants K1,K2 are too small, then |K1|

and |K2| must be substantially different. When |K1|
and |K2| are small and |K1| ≈ |K2|, u(t)’s orbit
cannot be successfully toggled from one fixed point to
the other fixed point because the vector field is close
to zero near the saddle point (0, 0). When K1 = 0.6,
K2 = −0.6, c = 0.8, d = 1, L0 = 2, κ = 3 with
u(0) = (−1.7, 0.8) as in Figs. 4-7, and τ = 1.8 then
u(17.8) ≈ (−0.484, 0.492). The flip-flop’s orbit does
not cross the boundary u2 = u1 and returns to fixed
point b by time t = 24. Keeping the other constants
the same, when K1 = 1.5 and K2 = −1.5 with
u(0) = (−1.7, 0.8), then u(17.8) ≈ (1.47,−1.47), so
the orbit successfully crosses boundary u2 = u1.

Successful toggling depends upon time width τ of
input I(t). For example, when K1 = 1.5 and K2 =
−1.5 with u(0) = (−1.7, 0.8) and τ = 1, the orbit
successfully crosses the boundary u2 = u1. When
τ = 0.8, the orbit does not cross u2 = u1 and by time
t = 24, u(24) ≈ (−0.986, 0.987) ≈ b.

5. Noise Can Disrupt Flip-Flop Toggling

A noise pulse can disrupt flip-flop toggling. Noise
term η(t) is added to equation (2). K3,K4 are constants.

du

dt
= La(u)

(
cosα(u) − sinα(u)
sinα(u) cosα(u)

)
(a− u) +

Lb(u)

(
cosβ(u) − sinβ(u)
sinβ(u) cosβ(u)

)
(b− u) +(

K1

K2

)
I(t) +

(
K3

K4

)
η(t) (3)

Set h(t, l, f) = sin
(
2πf(t − l)

)
. Set g(t, l, δ, k) =

tanh(k(t− l)) + tanh(−k(t− l + δ)). See Fig. 8.

Fig. 8. h(t, 332 ,
1
2 ) is magenta. g(t, 332 , 1, 5) is a pulse.

Set χ(t, l, f, δ, k,A) = A ∗ g(t, l, δ, k) ∗ h(t, l, f).
Fig. 9 shows an instance of η(t) = χ(t, 33

2 ,
1
2 , 1, 5,

3
2 ).

In Fig. 9, l = 33
2 is the time location of the noise. f = 1

2
is the frequency of function h. δ = 1 is the time width
of function g. Constant k = 5 sets the steepness of g on
each side of time l. A = 3

2 is the amplitude.
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Fig. 9. Noise η(t) = χ(t, 332 ,
1
2 , 1, 5,

3
2 ).

Figs. 10 and 11 show a noise injection on u(t) =(
u1(t), u2(t)

)
where K3 = 0 and K4 = 1.0. Input I(t)

= ψ(t, 16, 24, 1.8). Noise η(t) = χ(t, 332 ,
1
2 , 1, 5,

3
2 )

disrupts u2(t)’s orbit during time period [14.5, 17.5].9

Fig. 10. Noise orbit u(0) = (−1.7, 0.8). Γ = [0, 17.8].

Fig. 10 shows the effect on u(0) = (−1.7, 0.8)’s
orbit. u(17.8) still lies in fixed point b’s basin of attrac-
tion. Compare Figs. 10 and 4.

During period [17.8, 24], Fig. 11 shows that u(0)’s
orbit converges to fixed point b = (−1, 1). Noise η(t),
in Fig. 9, has disrupted I(t)’s flip-flop toggling.

Fig. 11. Noise orbit u(0) = (−1.7, 0.8). Γ = [0, 24].

6. Gate Model Assumptions

In our model, Alice’s goal is to hinder Mallory from
sabotaging Alice’s flip-flop computation. Assumptions
about Mallory’s sabotaging with noise are described
after a comprehensive description of our extended
model. Some of these assumptions defer hardware
implementations to a subsequent paper.

9|η(t)| < 10−19 whenever t lies in [0, 14.5) ∪ (17.5,+∞).

7. Adding Healing Variables

When a simulated EEMI attacks the D flip-flop
model, an effective attack creates enough noise for a
long enough period of time so that the orbit is corrupted
with respect to the boundary u2 = u1. The noise causes
the output of the flip-flop to compute the incorrect value.
A primary goal is to explore mathematical methods of
healing a disrupted flip-flop orbit, since hardware imple-
mentations are beyond the scope of this paper.

An information theory [20] analogy is helpful in
explaining our approach. Suppose Alice transmits 16
bits of signal to Bob. If any of the 16 bits are flipped due
to noise in the transmission medium, Bob has no way of
knowing if any of the bits have been flipped. To repair
errors, Alice must transmit additional bits that help Bob
with error code correction [21].

Similar to error correction, an extension of equation
(3) adds new variables that heal the flip-flop orbit when
it is disrupted by noise. Set ν1(t) = (u1(t), u2(t)).
For i ≥ 2, set νi(t) = (u2i−1(t), u2i(t)). Define n
differential equations, where each i is in 1, . . . , n:

dνi
dt

= La(νi)

(
cosαi(νi) − sinαi(νi)
sinαi(νi) cosαi(νi)

)
(a−νi) +

Lb(νi)

(
cosβi(νi) − sinβi(νi)
sinβi(νi) cosβi(νi)

)
(b−νi) +(

Ki,1

Ki,2

)
I(t) +

(
Ki,3

Ki,4

)
ηi(t) (4)

Analogous to α(u) and β(u) in section 3, angles α1 and
β1 are computed between the two vectors derived from
u1 and u2. If i ≥ 2, angles αi and βi are computed
between the two vectors derived from u2i−1 and u2i.

When n = 2, two new variables u3, u4 and two more
standard differential equations are added to the system.
System u(t) = (u1(t), u2(t), u3(t), u4(t)) is subject to
equation (4). Set boundary conditions u1(0) = u3(0)
and u2(0) = u4(0). Set input constants K1,1 = K2,1 =
0.6, and K1,2 = K2,2 = −1.5. Set noise constants
K1,3 = K2,3 = K2,4 = 0, and K1,4 = 1.

Both ν1(t) and ν2(t) have the same stable fixed
points a = (a1, a2) and b = (b1, b2). Hence, if noise
injection does not occur, then the orbits of ν1(t) and
ν2(t) are identical: ν1(t) = ν2(t) for all t.

Assume u1 and u2 “perform the computation”. u1
and u2 are called signal variables. u3 and u4 are called
repair or healing variables.10 For each i in {1, 2}, define

meta differential equations:
dωi

dt
=
dui+2

dt
− dui

dt
with

initial conditions ω1(0) = ω2(0) = 0. ω1 and ω2 are

10Variables u3 and u4 are analogous to error correction bits.
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meta variables. Define two thresholds θ1, θ2 > 0 and
two meta operator execution times s1, s2.11

Let s1 be the first time, where |ω1(s)| ≥ θ1. Then

s1 = inf
{
τ ≥ 0 :

∣∣∣
τ∫
0

(du3

dt
− du1

dt

)
dt
∣∣∣ ≥ θ1

}
. (∗)

If s1 exists, at time s1 a meta operator M1 bound to ω1

executes: M1 modifies du1

dt = . . . in equation (4).
Let s2 be the soonest time such that |ω2(s2)| ≥ θ2.

s2 = inf
{
τ ≥ 0 :

∣∣∣
τ∫
0

(du4

dt
− du2

dt

)
dt
∣∣∣ ≥ θ2

}
. (∗∗)

If s2 exists, then at time s2 meta operator M2 bound to
ω2 executes: M2 modifies du2

dt = . . . in equation (4).
Meta operator 1 is defined below.

Meta Operator 1. Lock Variables u1, u2
if |ω1(s1)| ≥ θ1 OR |ω2(s2)| ≥ θ2

for i in {1, 2} {(
u1(si), u2(si)

)
is the current point.

set dui
dt

(u1, u2, s) = 0 for s ∈ [si, si + θi].
}

Set θ1 = θ2 = 0.01. Fig. 12 shows (u1, u2)’s orbit
when meta operator 1 is bound to ω2 and θ2. Fig. 4
shows (u3(t), u4(t))’s orbit.12 In meta operator 1, vari-
ables u3 and u4 lock (u1, u2)’s orbit near fixed point b.
If there is an AND gate to compare to (u3, u4), the result
can detect a noise injection on (u1, u2).

Fig. 12. Meta Procedure 1. u(0) = (−1.7, 0.8). Γ =
[0, 17.8]. Noise orbit of (u1, u2).

Variables (u3, u4) help heal an attack on (u1, u2).
Meta Operator 2. Self-Modify Vector Field
if |ω1(s1)| ≥ θ1 {(

u1(s1), u2(s1)
)

is the current point.

for all s ≥ s1 such that |ω1(s)| ≥ θ1:

set
du1

dt
(u1, u2, s) =

du3

dt
(u1, u2, s).

}

11Meta variables and meta operators are more comprehensively
defined in the appendix. Section 10.1 defines a detectable event. Set

Ci = (−∞,−θi]∪ [θi,∞) for i in {1, 2}. Set f
(
ω,

dω

dt
, t

)
=

dω

dt
.

X = R. Then (*) and (**) satisfy condition (***), defined in 10.1.
12(u1(t), u2(t))’s orbit is the same as Fig. 4 when there is no noise.

if |ω2(s2)| ≥ θ2 {(
u1(s2), u2(s2)

)
is the current point.

for all s ≥ s2 such that |ω2(s)| ≥ θ2:

set
du2

dt
(u1, u2, s) =

du4

dt
(u1, u2, s).

}
In a simulation of meta operator 2, the same noise

injection is used as section 5 that caused the flip-
flop toggling to fail (Fig. 11). The noise constants
are K1,3 = 0; K1,4 = 1, and K2,3 = K2,4 =
0. During time period [16, 17.8], noise pulse η(t) =
χ(t, 332 ,

1
2 , 1, 5,

3
2 ), shown in Fig. 9, attempts to disrupt

u2’s orbit when input signal I(t) = ψ(t, 16, 24, 1.8).
Fig. 13 shows that meta operator 2 with θ1 = θ2 =

0.2 successfully heals this noise injection in variable u2.
By t = 24, the orbit

(
u1(t), u2(t)

)
successfully toggles

and reaches a = (1,−1). Compare Figs. 13 and 11.

Fig. 13. Horizontal axis: u1. Vertical axis: u2.
Meta Operator 2. θ1 = θ2 = 0.2. Γ = [0, 24].

Observe that K2,3 = K2,4 = 0, so healing variables
u3, u4 are not attacked with noise. Also, K1,4 = 1, so
variable u2 is disrupted by noise near t = 16.13

If the thresholds are set to θ1 = θ2 = 1 and the
time width δ of η(t) is set to 1.4, then meta operator 2
no longer can heal the noise disruption. For these same
values, θ1 = θ2 = 1 and δ = 1.4, if width τ of I(t)
increases from 1.8 to 2.0, then meta operator 2 success-
fully heals the stronger noise injection, even with very
weak thresholds θ1 = θ2 = 1. There are two effects.
Meta operator 2 heals u2’s orbit at t ≈ 15.63. The
second effect is that η(t) is effectively 0 after t = 17,
and I(t) = 1 until t = 18. See Fig. 14.

Consider that meta variables ω1, ω2 integrate the
difference between variables u1, u3 and u2, u4, respec-
tively: dωi

dt = dui+2

dt − dui

dt , where i is 1 or 2. If
|ω2| ≥ θ2 = 1, then |u2 − u4| ≥ 1. This means it is
likely that the (u1, u2) and (u3, u4) orbits are on oppo-
site sides of the line u2 = u1, implying that u2’s orbit
was disrupted from its correct orbit.

13In Fig. 9, the peak of pulse η(t) is near t = 16. The peak ampli-
tude of noise pulse η(t) is over 5 times larger than the peak amplitude
of the noise pulses, used by [5] in figure 6b.
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Fig. 14. I(t) is green. τ = 2. η(t) is magenta. δ = 1.4

Meta operator 3 increases the pulse width of I(t).
Meta Operator 3. Self-Modify Input Signal

if |ω1(s1)| ≥ θ1 OR |ω2(s2)| ≥ θ2

increase pulse width τ of input I(t)
Meta operator 4 combines meta operators 2 and 3.

Meta Operator 4. Heal

Operator 2 changes the vector field.

Operator 3 changes the input signal.

if |ω1(s1)| ≥ θ1
execute s1 parts of Operators 2 & 3

if |ω2(s2)| ≥ θ2
execute s2 parts of Operators 2 & 3

8. Decentralizing Healing Variables

In this section, the role of each variable is decentral-
ized over time. A noise injection only lasts for a short
period of time.14 Decentralization of a task between
variables addresses the weakness that a sophisticated
Mallory will attempt to attack the weakest part of the
system. Hence, in meta operators 1, 2, 3 and 4, if
Mallory knows or guesses which variables perform the
healing, Mallory will likely attack the healing variables.

To address this single point (variable) of failure, the
variables should heal each other in one or more vari-
able cycles. Decentralization enables each variable to
have a dual purpose: signal and healing. After showing
how meta operator 2 fails on a noise attack on its healing
variable, meta operator 5 is defined that is more robust
to noise. Lastly, we explain variable cyclicity and how
changes in the noise parameters and number of variables
affects the efficacy of meta operator 5.

A noise attack on meta operator 2 is examined.
A successful attack provides an example that demon-
strates the intuition of Mallory attacking the healing
variable. Fig. 15 shows two noise pulses η2(t) =
χ(t, l, f, δ2, k,A). and η3(t) = χ(t, l, f, δ3, k,A) with

14The case, when the noise is generated for the duration of the
whole computation, is not addressed: this is analogous to physically
destroying a computer. A priority is to hinder Mallory from manip-
ulating the computation to do something that benefits Mallory: e.g.,
flipping a bit in a flip-flop to subvert a cryptography algorithm.

Fig. 15. Two Noise Pulses ηi(t) = χ(t, l, f, δi, k,A).
l = 33

2 . f = 1
2 . δ2 = 1

3 . δ3 = 1. k = 5. A = 3
2 .

parameters l = 33
2 , f = 1

2 , δ2 = 1
3 , δ3 = 1, k = 5, and

A = 3
2 . In Fig. 15, η2 is magenta; η3 is the larger pulse.

Fig. 16 shows η2, η3 attacking variables u2, u4,
respectively. Meta operator 2 fails with θ1 = θ2 = 0.2.

Fig. 16. Horizontal axis: u1. Vertical axis: u2.
Meta Operator 2 Fails. Variables u2, u4 attacked.

To address the failure of meta operator 2 when both
u2 and u4 are attacked, an example is extended to six
variables (u1, u2, u3, u4, u5, u6). In equation (4), i =
1, 2, or 3. Similar to section 7, set K1,1 = K2,1 =
K3,1 = 0.6 and K1,2 = K2,2 = K3,2 = −1.5, so the
same constants are used with input I(t).

Define meta variables so that the signal and healing
are decentralized over the variables. Let ω1, ω2, and ω3

be the meta variables with initial conditions ω1(0) =
ω2(0) = ω3(0) = 0. All 3 thresholds are equal, so just
use θ. Meta operator 5 depends upon 3 meta variable

equations:
dω1

dt
=
du4
dt

− du2
dt

;
dω2

dt
=
du6
dt

− du4
dt

;

and
dω3

dt
=
du2
dt

− du6
dt

.

Meta Operator 5. Decentralized Variables
if |ω1(s1)| ≥ θ AND |ω3(s3)| ≥ θ

du2

dt
=

1

2

(du4

dt
+

du6

dt

)
.

if |ω1(s1)| ≥ θ AND |ω2(s2)| ≥ θ

du4

dt
=

1

2

(du2

dt
+

du6

dt

)
.

if |ω2(s2)| ≥ θ AND |ω3(s3)| ≥ θ

du6

dt
=

1

2

(du2

dt
+

du4

dt

)
.

Fig. 17 shows that meta operator 5 successfully heals
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the orbit on the same two pulse (Fig. 15) noise attack
that caused meta operator 2 to fail (Fig. 16).15

Fig. 17. Horizontal axis: u1. Vertical axis: u2.
Meta Operator 5 Succeeds.

Variables u2, u4, and u6 have cyclic interdependen-
cies. In meta operator 5, du2

dt depends upon u4, u6; du4

dt

depends upon u2, u6; and du6

dt depends upon u2, u4.16

Intuitively, when noise η3 attacks u4, u2 and u6
restore u4. When η2 attacks u2, then u4 and u6 still
agree so they can heal u2. Depending upon the time, u2,
u4, and u6 play different roles. This is why six variables
can ameliorate a two pulse attack on u2 and u4.

Keeping η3’s parameters fixed, if δ2 lies in ( 12 ,
3
4 ],

meta operator 5 successfully heals the noise. When δ2 =
0.76 and θ1 = θ2 = 0.2, a bifurcation17 is about to
occur. See Fig. 18. Operator 5 fails at δ2 ≥ 0.77.

Fig. 18. Horizontal axis: u1. Vertical axis: u2.
Meta Operator 5 Succeeds. δ2 = 0.76

The relative timing of noise pulses is also critical.
If pulses η2 and η3 are separated in time, operator 5 is
far more robust: when δ2 = 1, and η2’s time location
l = 37

2 , meta operator 5 successfully heals the noise, as
shown on the left side of Fig. 19.18

As the number of variables n increases beyond 8,
there are more potential variable interdependencies that

15In the simulations of Fig. 16 and Fig. 17, noise constants K1,3 =
K2,3 = 0 and K1,4 = K2,4 = 1.

16If variable y depends upon variable x, write x → y. From the 3
equations, there are six variable 2-cycles: all ui → uj → ui such
that i ̸= j and {i, j} ⊂ {2, 4, 6}. There are six variable 3-cycles: all
ui → uj → uk → ui such that sets {i, j, k} = {2, 4, 6}.

17A bifurcation occurs when the orbit does not cross u2 = u1.
18Per footnote 7, the peak amplitudes of η2, η3 correspond to 9

volts, which is substantially above a typical range of 1.2 to 5 volts for
commercial flip-flops, yet meta operator 5 still heals the orbit.

Fig. 19. Meta Operator 5 Succeeds. δ2 = δ3 = 1

can create robust healing. If n ≥ 8, noise attacks require
more pulses on multiple variables.19 Also, it is far more
challenging for Mallory to inject noise pulses so that on
multiple variables their time locations overlap.

9. A Hardware Gedankenexperiment

A gedankenexperiment is proposed that tests feasi-
bility of building meta operator 2. 20 Imagine two copies
C1 and C2 of the flip-flop circuit in Fig. 1. Data input
lines D(t) and clock inputs CLK are the same for C1

and C2. Let Qi(t) and Qi(t) be the two outputs of Ci,
i in {1, 2}. There is an additional circuit S that receives
D(t), CLK, Q1(t), Q1(t), Q2(t), and Q2(t) as inputs.
Q1(t) and Q1(t) correspond to signal variables u1 and
u2. Q2(t) and Q2(t) correspond to healing variables u3
and u4. C1 also receives outputs from S.

Meta operator 2’s definition describes how S
should behave. For i in {1, 2}, S should compute
dωi

dt
=
dui+2

dt
− dui

dt
. If thresholds θ1 or θ2 are

exceeded, then S sends output that self-modifies circuit
C1. The final part of a gedankenexperiment tests under
what conditions S can self-modify C1 so that a noise
injection doesn’t disrupt C1’s orbit, per section 7.

10. Summary & Research Questions

A previously proposed differential equation model
of a D flip-flop was our starting point. A noise attack
was demonstrated that can disrupt a flip-flop orbit. Meta
variables and meta operators were introduced as a math-
ematical tool for building self-modifiable differential
equations. We showed how meta operators can heal
a flip-flop orbit, disrupted by a noise injection, and
identified that signal functionality and healing should
be decentralized over standard and meta variables. A
gedankenexperiment was proposed on how to build a
meta operator that can self-modify a circuit.

19This means Mallory requires more energy.
20If meta operator 2 is feasible in hardware, then we predict that the

implementation can be extended to more elaborate meta operators.
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In digital hardware design and theoretical computer
science, the final result of a computation is a fixed point.
After a Turing machine halts [22], the final result is
the machine’s state and symbols stored on the tape. A
Turing machine’s halting configuration is represented by
a fixed point. (See pages 390–392 in [11].)

Fixed points are simpler objects in dynamical
systems theory. Besides fixed points, nonlinear systems
can have periodic orbits, limit cycles, dense orbits, and
chaotic attractors. It is unknown whether chaotic attrac-
tors can help build self-modifiability that is resistant to
attacks. It is also unknown what role quantum physics
can play in building self-modifiable dynamical systems.

Future research should explore these questions:
• Can self-modifiable differential equations be imple-
mented in electronics? Can a hardware flip-flop be built
that self-modifies to hinder noise attacks?
• Can a chaotic attractor decentralize signal and
healing among multiple variables?
• Can bifurcation theory provide insight on how to
design new meta operators?
• Can quantum entanglement help self-modify a
quantum dynamical system?
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Appendix

The appendix describes self-modifiable differential
equations that can add new variables and new equations.
Two notions are fundamental:
1. A formal language specifies how to self-modify a
differential equation with meta operators.
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2. A meta variable helps detect an event. A detectable
event triggers an execution of a meta operator. A
meta operator alone is not sufficient for defining self-
modifiability. A self-modifiable dynamical system must
also know at what time a meta operator executes.

10.1. Meta Variables

A meta variable, a physically detectable event, and
a meta execution time are defined. Standard vari-
ables are variables that occur in an ordinary or partial
differential equation. x and t are standard variables in

iℏ
∂Ψ(x, t)

∂t
=

[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t).

ω1, . . . ωn represent meta variables, and u1, . . . , un

are standard variables.21 dωi

dt
= fi(u1, . . . , un) is a

meta equation, where each fi is a function.
Let X be a measurable [23], topological space [24],

where derivatives exist. At time t, a standard variable’s
value ui(t) and a meta variable’s value ωi(t) both lie
in X . Let f : X × X × [0,∞) → X be a function,
where f ’s arguments are ω(t), dω

dt and t, respectively.
Call C ⊆ X a detectable set. A physically detectable
event occurs if
t=s∫
t=0

f
(
ω(t),

dω

dt
, t

)
dt lies in C at time s. (***)

Define meta execution time τω as the infimum22 of all
times s that satisfy (***). A meta operator Mω , bound
to meta variable ω, executes at time τω .

10.2. Meta Operators

Meta operators help build self-modifiable differen-
tial equations. A system is a set of differential equa-
tions, e.g., S = {du1

dt = 0, du2

dt = 0, du3

dt = u1 + u2 −
u1u2−u3}. Create operator C creates an empty system,
and assigns a name with syntax C(time, name). C(0,S)
creates an empty system S = {} at time 0.

Initialize operator I declares a variable with a
name and its type; assigns an initial value; and places
the variable in a system. I’s syntax is I(time,
variable_name, variable_type, initial_value,
system_name). For example, I(0, ui, standard, 0,
S) creates ui at time 0; defines ui as a standard variable;
and assigns ui the initial value of 0 (i.e., ui(0) = 0).
Argument S places variable ui in system S.

Adjoin operator A adjoins a new differential equa-
tion to a system. A’s syntax is A(time, equation,

21Variables have type standard or type meta.
22The infimum of a set of real numbers is the greatest lower bound.

system_name). A is executed at a time specified by the
first argument. In some cases, time is explicitly stated.
In other cases, time is the greatest lower bound of all
times s which satisfy condition (***) in section 10.1.
For example, execute 7 meta operators shown below:
C(−1, S) I(0, u1, standard, 0, S)
A(0, du1

dt = 0,S) I(0, u2, standard, 0, S)
A(0, du2

dt = 0,S) I(0, u3, standard, 0, S)
A(0, du3

dt = u1+u2−u1u2−u3,S).Afterward, system

S = {du1

dt = 0, du2

dt = 0, du3

dt = u1+u2−u1u2−u3}.
Replace operator R replaces a variable with an

equation or variable, or R replaces an equation with
another equation. R’s syntax is R(time, old_exp,
new_exp, grammar, system_name). The argument
time behaves the same as time in the adjoin operator.
Sometimes the 2nd argument old_exp represents the
current variable that will be replaced by a new variable
or equation, indicated by the 3rd argument new_exp.
Sometimes old_exp represents an equation that will be
replaced by a new equation new_exp. The 4th argument
grammar is a pattern matching scheme. For replacement
to occur, an expression in old_exp, must be accepted
by a grammar, specified in grammar. It may be a semi-
Thue grammar [25].23 If grammar is ∅ or omitted, a
replacement occurs at time specified by time.

10.3. Variable Spaces

Meta operators can remove and add variables to
equations. Variables spaces specify how meta opera-
tors add new variables or remove variables. Variable
spaces are useful when they create a new variable, by
measuring a quantum random event [26], which can
help self-modifiable differential equations evolve and
increase their complexity as time proceeds.

Let N, R and R≥0 be the counting, real numbers and
non-negative reals, respectively. Define variable space
V = {u1, u2, . . . , un, . . . } in order to add a new stan-
dard variable ui to a differential equation. Define dual
variable space V = {ui : i ∈ N} to remove an existing
standard variable uj in V from an equation. λ is the
empty variable.24 Set W = {λ} ∪ V ∪ V .

Define a variable operator Φ : R≥0 → W that adds
or removes variables from a system S. If Φ(ti) = ui,
then meta operator I(ti,Φ(ti), standard, 0, S) adds
standard variable ui to system S if ui doesn’t already
exist in S. For our purposes, a system is a set of ordinary
or partial differential equations. For some systems that
represent a physical model, a restriction can be placed
on Φ: e.g., {r ∈ R≥0 : Φ(r) ∈ V ∪ V} is countable.

23Also, see pages 220-223 in [27].
24λ is an analog of empty string ϵ in formal language theory [27].
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