Toward a Mathematical
Understanding of the

Malware Problem

CIE 2014
Michael Stephen Fiske
June 25, 2014

mf@aemea.org

http://www.aemea.org

What is a virus?

A virus can be described by a sequence of symbols which is able,
when interpreted 1n a suitable environment (a machine) to
modify other sequences of symbols in that environment by

including a, possibly evolved, copy of itself.

* Fred Cohen. Computer Viruses. Ph.D. Thesis. 1986.

What is a virus?

For every program, there 1s an infected form of that program.
A virusis a map from uninfected programs to infected programs.

Every infected program on every input (data and/or programs)
performs one of the three following functions:

1. [Infection. The program infects some other program(s) after its

original task 1s complete.

2. Injury. The program computes some other function(s) besides its
intended task which solely depends on the virus.
[Intent: Make broader than self-reproducing programs.]

3. Imitation. The program neither infects nor injures;
there are no files to infect.

Len Adelman. An Abstract Theory of Computer Viruses. Advances in Cryptology. 1988.

What i1s malware?

Informal. Any agent which makes one or more changes to a

program or computing machine that defeats its original purpose.

Sometimes bonware might be a more appropriate name.

I know it when I see it

Undefinable?

U.S. Supreme Court Justice Potter Stewart describing his
threshold test for obscenity in Jacobellis vs. Ohio:

| shall not today attempt further to define the kinds of material
| understand to be embraced within that shorthand description

["hard-core pornography"]; and perhaps | could never
succeed in intelligibly doing so.

But | know it when |l see it, . ..

I. This talk is not about any of the following

Kleene’s Recursion Theorem
For any recursive function f: N — N there exists n such that ¢, = ¢/,

Relation of KRT to Self-Reproducing Programs

In anv general purpose programming language, there exists a
Y & purpose prog g languag
program that outputs its own source code:

#include <stdio.h>

int main(){char*s[]={"#include <stdio.h>%cint main(){char*s[]={",
"};printf(s[0],10);int i=0;while(i<3)printf(%c%%C%%S%%C,%%Cc%C,34,%C",
"s[i++],34,10);printf(s[1],34,34,10);printf(s[2],10);return 0;}%c",
};printf(s[0],10);int i=0;while(i<3)printf("%c%s%c,%c",34,
s[i++],34,10);printf(s[1],34,34,10);printf(s[2],10);return 0;}

II. This talk is not about any of the following

Self-Reference
V. Halbach & Albert Visser. Self-Reference in Arithmetic. 2013.

Sam Moelius I1I. Program Self-Reference. 2009.

Incomputable Interpretations

M. S. Fiske. Turing Incomputable Computation. Turing-100, 66-91,
2012.

Research Direction

Rather than the formalization, classification and detection
of malware, our attention is on the question

What makes conventional computation susceptible?

Cybersecurity Motivation

Preserving the purpose of the machine’s computation is
more fundamental than the confidentiality (encryption)
and integrity (authentication) of the data.

Why? The purpose of the machine can be hyjacked, which can
compromise the confidentiality and integrity of the data.

Adi Shamir’s observation

“Cryptography is typically bypassed, not penetrated.” "

* Adi Shamir. Cryptography: State of the Science. ACM. Turing Award Lecture
June 8, 2003. http://amturing.acm.org/vp/shamir_2327856.cfm

http://amturing.acm.org/vp/shamir_2327856.cfm

Cybersecurity Motivation

Current methods of malware detection are inadequate.

Malware (virus) detection is Turing undecidable.”

;;;;;;

Malware 1s using NP hard methods to encrypt and hide.

Seeking an Alternative Approach.
Hide the computational steps of the program computation.

Make it more ditficult to hyjjack program execution.

Fred Cohen. Computer Viruses Theory and Experiments.
Computers and Security. 6(1), 22-35. February (1987).

** Eric Filiol. Malicious Cryptology and Mathematics.
Cryptography and Security in Computing. Intech. 23-50 (2012).

10

“One instruction at a time” vulnerability

Current processors — based on a von Neumann architecture —
execute one machine instruction at a time.

Input and

CPU Memory o

I A I A A I A A
Control bus §
v v
Address bus GE)
v v y %
Data bus A

To initiate execution of malignant code, an agent need only
change, add or delete one machine instruction.

11

Two Bits Flipped in One Instruction

#include <stdio.h> #include <stdlib.h> #include <string.h>

#define NUM_BITS 16

int powers_of_2[NUM_BITS] = {0x8000, 0x4000, 0x2000, 0x1000, 0x800, 0x400, 0x200, 0x100,
0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, Ox1};

int greater_than(int pl, int p2) { return (pl > p2); }
int less_than(int pl, int p2) { return (pl < p2); }

void slow_sort(int* v, int n, int (*op) (int, int)) {
int i, k, x;
for(i = 0; i < n; i++)
for(k = 0; k < i; k++) |
if (op(vlil, v[k1)) { x =vl[il; vl[i]l = v[k]l; vlk] =x; }

}
+
void display_numbers(int* v, int n) {
int k; for(k = 0; k < n; k++) printf("/%d ", vlk]);
}
void print_binary(unsigned int v) {
int k;
for(k = 0; k < NUM_BITS; k++) <
if (v / powers_of_2[k]) printf ("1 "); else printf("0 ");

v %= powers_of_2[k];

}
printf ("\n");

12

Sort Order Reversal

void sort_print(int* numbers, int n, char* fn_name, int (*op) (int, int)) {
slow_sort (numbers, n, op);

display_numbers (numbers, n); printf (" address of instruction Y%s " fn_name);
print_binary((unsigned int) op);

}

f#tdefine N 4

int main(int argc, charx argv[]) {
int numbers[N] = {6, 9, 7, 8};
display_numbers (numbers, N); printf("\n");
sort_print (numbers, N, "less_than " less_than);

sort_print(numbers, N, "greater_than", greater_than);
return O;

sort — bash 122x37
acBook-Air:sort michael_fiske$./sort

address of instruction less_than
address of instruction greater_than

cnoooﬁ

Machine instruction less_than

is only 2 bits away from instruction greater_than.
13

Apple goto fail;

static 0SStatus SSLVerifySignedServerKeyExchange
(SSLContext *ctx, bool isRsa, SSLBuffer signedParams, uint8_t #*signature, UIntl16 signaturelen)

{
0OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1l.final (&hashCtx, &hashOut)) !'= 0)
goto fail;

fail:
SSLFreeBuffer (&signedHashes) ;
SSLFreeBuffer (¥hashCtx) ;
return err;

SSL signature verification never fails.

Variable err contains a successful value.
https://www.imperialviolet.org/2014/02/22/applebug.html

14

https://www.imperialviolet.org/2014/02/22/applebug.html

Frequency of Control Flow Instructions

[] Floating-point average [l Integer average

Call / return ™"

Jump

0
Conditional Branch mf ”

0% 23% 45% 68% 90%

Constructed from statistics on an Alpha architecture for SPEC CPU2000

showing the average of integer programs CINT2000 and average of
floating-point programs CFP 2000."

*John Hennessy and David Patterson. Computer Architecture. 5th Edition. 2012

15

Conditional Branch is not Necessary

Universal von Neumann machine without Conditional Branch”

Uses LOAD, STORE, INC and GOTO instructions and
Self-Moditying Programs

GOTO is an unconditional branch instruction

"Raiil Rojas. Conditional Branching is not Necessary for Universal Computation in

von Neumann Computers. Journal of Universal Computer Science. Vol 2, No. 11,

766-768, 1996.

16

Branching Creates a Single Point of Failure

If a branching instruction has been altered, even if there is a
routine to check if the program is behaving properly, this

friendly routine may never get executed.

The sequential execution of register machine instructions

cripples the program from protecting itself.

17

Formal Roadmap

Turing Machine as a dynamical system of finite set of affine maps
Topological Conjugacy

Structural Stability

Universal Turing Machine Encoding

An Encoding Metric on the Space of these Machines

A Theorem that shows some structural instability for this encoding
Matching Steps Metric

Non-Isolated Metrics

Some Unanswered Questions

18

Turing Machine: A Discrete Dynamical System

Map ¢ creates a 1-to-1 correspondence from program 7 to a finite set of affine

functions in the a-y plane.

Base B = |4l + |0l + 1. Define value function v: {f/} UQU A —> N

v(ih) =0 v(a)=(... v(g) =(+1Al and v(q,0) = 0l + |Al.

oo | Ihs | Do | Tny | Iy | Ty | Thin | - e

19

Computational Steps Mapped to Affine Functions

¢ maps computational step #(g, 7\) = (r, a, +1) to athne function

fx,v) = (Bx+m, By +n) wherem = —BQV(Tk) and n = Bv(r) + v(ev) - v(q)

¢ maps step 7(g, Tx) = (r, &, —1) to affine function f(x, y) = (B-'x + m, By + n)

where m = Bv(T}._;) + v(cw) - v(T\) and n = Bv(r) - B2V(q) - Bv(Tiy).

¢ maps configuration (¢, &, 1) €E Q@ x Z x A% to (x(q9, k, T), y(¢, k, T)) in x-y plane

x(g, k&, T) =T T\.1 - Tx.oTr 53T\ .qs ... baselD
v, k&, T)=q9g T\, - ThoTh 5Ty ... base B

20

Example: A Turing Machine as a discrete, dynamical system

Alphabet 4 = {#, a, b} Program | # a b
q (l", ao—l—l) (qa a, '1) (q9 b: '1)

States Q= {q, r, s}
r (g, b, -1) (r,a,+1) (r, b, +1)

s | (h#F]) | (ha+l) | (h b+l)

Base B=14l + 10l +1=7.
vih) =0, vi#) =1, v(a) =2, v(b) =3, v(g) =4, v(r) =5, v(s) = 6.

#| # | # | # # | ... | Imtial machine configuration

il

q

The nitial point p = (P, py) where
pPx=Bv#H) + v#) /(1 -1/7)=7+7/6 =8 1/6
py=Bv(q) + v#) /(1 -1/7)=28+7/6=291/6

Example: Turing Machine as a discrete, dynamical system 11

#

a

b

(r,a, +1)

(qs a, '1)

(qa bs '1)

(qa bs '1)

(r,a,+1)

(r, b, +1)

Apply atfine function f;(x,y) = (7x — 49, %y +33) to p= (8%, 29)

(h, #,+1)

(h,a+1)

(h, b,+1)

#

#

a

#

#

Apply athne function fi5(x,y) = (%x +16,7y —231) to p= (86’375)

i

r

#

#

b

#

1

1

Halting Problem from a Dynamical System Perspective

Does the orbit of point p —w.r.t. this discrete autonomous,

dynamical system — remain in the attractor?

If configuration (g, &, 7)) halts after » computational steps, the orbit
of p=¢(¢, k, T) exits one of the unit squares on the nth iteration.

If configuration (r, /, §) 1s immortal, then the orbit of ¢(r, /, §)
remains in these unit squares (the attractor) forever.

23

Topological Conjugacy

f:X—>Xand g:Y— Y are topologically conjugate if there exists a

homeomorphism / : X — Y that satisfies the commutative diagram.

X%

.}

/") =p it g'(h(p)) = hp). y >

The halting configurations of a TM characterize what the TM can compute

and correspond to fixed points.

24

Structural Stability
(X, d) is a compact, metric space. C’ distance between f, g: X — X is

u(f, g =sup{ d(f (x), g(x)) : x m X}. f:X— X isstructurally stable if there exist

€ > 0 such that whenever u(f, g) <& then g is topologically conjugate to f.

Stable | Unstable Stable
0 fixed points 1 fixed point 2 fixed points

Universal Turing Machine encoding

A={#,0,1} Or=1{q1,..., qx} Before UTM execution starts
#1111 |1 (1|1 |1 (#1000 |01 #
Unary n 1’s encode machine Mj 4 Input for M,
q
M, n # 0 1 Mi729 n # 0 1
q1 ((h,0,-1) ((h,0,-1) ((h,0,-1) q1| (h,0,-1) | (h,0,-1) | (h, 0,-1)
g | (h,0-1) | (h,0-1) | (h,0,-1)

M5 n # 0 1
qr | (h, 0.+1) | (q1, #,+1) | (h, #,+1) M19°.18%.1 n # 0 1
qi | (h,0-1) | (h,0-1) | (h,0,-1)
Mi798 n # 0 1 q | (h,0,-1) | (h,0,-1) | (h,0,-1)
q1 | (qu, #+1) [(q1, #,+1) | (q1, #.+1) g | (h,0-1) | (h,0,-1) | (h,0,-1)

For a fixed |Q|, number of distinct programs 7 = (2|4 |Q] + 2|A|)|A| Y
26

Encoding Metric

Set v(h) =0, v@# =1, v(0) =2, v(1)=3. Set B = 4.

For m < n, define the distance between machine M;; and Mj

oM M) = [S v()B7 + S v)BT — S v()B — 3 w(#)B]
j=0 j=n j=0 j=m

(T, p) is a metric space where T = {M, :n e N}

THEOREM: This UTM has unstable computation in the following sense.

For any € >0, there exists two distinct Turing machines closer than € and

their respective dynamical systems are not topologically conjugate.

27

Outline of Proof

n

Oc=1{q1, ... q}. |Od =k Define f(n)=1+» (6k+6)*". A1) =1729.

k=1

Machine My, has only halting configurations.

Consider machine My, satistying f(n) < k(n) < f(n+1) and having no halting

configurations.
n # 0 1
q1 | (q2,0,+41) | (q2,1,-1) | (q2, #,-1)
gk | (g1, 0,+1) | (g1, 1,-1) | (qrn1, #,-1)
.q.l; (qla 0>+1) (qla 1’_1) (qla #7_1)
Machine My
2B _
P(Myny, Min)) < 5 1B Fm)

For all n, Mgy and My are not topologically conjugate.

28

Matching Steps Metric

Intuition: This metric measures the distance between two machines based

on how many computational steps match.

Let My, M, . . . be an enumeration. 1), is the program of M,.

Initial machine configuration: I = (qg,7,7) where 1 <i<mn

Tape T(j) = a; € {0,1,#} where 1< j <n.Otherwise, T(j) = #
Sequence of inputs (@,m)»a,m)) - - (@km)> Ce,m))s (Akt1,m)» A(k+1,m)) for Mm
Sequence of inputs (q(1,n), @(1.n)) - - - (Ak,n)» Ck,n)) > (Qk+1,n)s Ak+1,n)) for Nn
If it exists, k(I, M,,, M,,,) is the 1st step where 7:(q(k,n)s k,n)) 7 Tm(Ak,m)» Ak,m))
For this 7, the distance between M,, and M, is u(I, M, M,,) =27 **1

w(I, My, My,) =0 whenever for all &, 7n(q(k,n)s (k.n)) = Mm Ak, m)> Ok, m))

29

Matching Steps Metric Disconnects the Space of Machines

I': the set of all tapes 7" where T'(7) € {0,1,#} whenever 1 < j <mn
and otherwise, T(il) = #

Define p(My,, M) = sup{p(l, My, My,): 1 € Q x{1,...,n} xI'}

When m # n, there is an instruction where 7, (g, a) # 7n(q, @)
Initial configuration I = (q,1,T) with 7(1) = a implies u(I, M,,, M) =271
Thus, p(M,,, M,) =1

When m = n, p(M,,, M,) =0

The matching steps metric disconnects the space
T ={M, :n €N}

30

Non-Isolated Metrics

Metric space (X, d). Open ball Ba(p, 1) = {xeX: d(x, p) < p}.

Version 1. Metric d is non-wolated if for any € > 0 there exists point peX
such that Ba(p, €) is an infinite set.

Version 2. Metric d 1s non-wolated if for any point peX and any € > 0
Ba(p, €) 1s an infinite set.

Matching steps metric is an isolated metric.

Isolated metrics do not provide a useful method for measuring a small

Change to a machine.
31

Some Unanswered Questions

Can these 1initial results be generalized to non-isolated metrics and any

Universal Turing machine encoding?

Limited programmability: Do conditions exist for stable non-Universal

register machines?

Do conditions exist for executing stable computation with unconventional

machines that can simultaneously execute multiple instructions?”

"M. S. Fiske. The Active Element Machine. Studies in Computational
Intelligence. Developments and Trends. 391, 69-96, Springer, 2012.

32

