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Sylvain Gravier, Jérôme Javelle, Mehdi Mhalla and Simon Perdrix

Systems and Methods for Data and Algorithm Protection . . . . . . . . . . . . . . 65

Marc Groz

Self Developing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Fred Gruau

Equilibriation of information in software systems . . . . . . . . . . . . . . . . . . . . . . 67

Les Hatton

Some constraints on the physical realizability of a mathematical
construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Francisco Hernández-Quiroz and Pablo Padilla-Longoria

Slow and steady wins the race: relationship between accuracy and
speed of Turing pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Ken-Ichi Hiraga, Kota Ikeda and Takashi Miura

Computer Science Through Urn Games: A Unified Framework for a
Hierarchy of Solvable and Unsolvable Problems . . . . . . . . . . . . . . . . . . . . . . . 70

Sorin Istrail

Turing and von Neumanns Brains and their Computers . . . . . . . . . . . . . . . 71

Sorin Istrail and Solomon Marcus

A Model of Computing as a Service for Cost Analysis . . . . . . . . . . . . . . . . . 72

Kenneth Johnson and John V. Tucker

Languages Associated with Crystallographic Structures . . . . . . . . . . . . . . . . 73

Natasha Jonoska, Mile Krajcevski and Gregory McColm

Turing Machines, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Joost Joosten

Uniformly Polynomial-time Computable Operators on Analytic Functions 75

Akitoshi Kawamura, Norbert Müller, Carsten Rösnick and Martin Ziegler
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Collective Reasoning under Uncertainty and Inconsistency

Martin Adamč́ık

School of Mathematics, The University of Manchester, Oxford Road, M13 9PL,

Manchester, martin.adamcik@manchester.ac.uk

In practice probabilistic evidence is incomplete, derived from different sources,
and as a consequence often contradictory. To built an artificial expert system
such as one recognizing diseases from list of symptoms, one classical approach
is to define an inference process which picks the “most rational” probabilistic
belief function which an agent should have, based solely on the given evidence.
For a single incomplete but consistent probabilistic knowledge base satisfying
certain reasonable topological criteria, the Maximum Entropy (ME) inference
process championed by Jaynes was uniquely characterized by an elegant list of
axioms developed by Paris and Vencovská [1]. ME enables a single rational
agent to choose an optimal probabilistic belief function.

If however probabilistic evidence is derived from more than one agent, where
the evidence from each individual agent is consistent, but the evidence from all
agents together is inconsistent, then the question as to how to merge the evidence
in such a manner as to be able to choose a single “most rational” probabilistic
belief function on the basis of the merged evidence from all agents, has been
much less studied from a general theoretical viewpoint.

In this informal presentation we will briefly describe a “social” inference pro-
cess extending ME to the multi-agent context, called the Social Entropy Process
(SEP), based on Kullback-Leibler information distance, and first formulated by
Wilmers in [2],[3]. SEP also turns out to be a generalisation of the well-known
logarithmic pooling operator for pooling the known probabilistic belief functions
of several agents. A new result obtained by us shows that SEP satisfies a natural
variant of the important principle of Irrelevant Information which is known to
be satisfied by ME. We also indicate how the merging process described by SEP
satisfies a suitable interpretation of the set of merging axioms for knowledge
bases formulated by Konieczny and Pino Pérez in [4].

Keywords: Uncertain reasoning, discrete probability function, social inference
process, maximum entropy, merging operators, Kullback-Leibler.
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Facticity as the amount of self-descriptive
information in a data set

Pieter Adriaans
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Abstract. Ever since the seminal papers by Koppel on sophistication
some thirty years ago the idea that the ”interestingness” of a data set
could be measured in terms of its model information has been proposed
by a variety of authors. A Problem with all these proposals was that
it was not clear how the amount of model information in a data set
should be measured exactly. Using the theory of Kolmogorov complexity
the notion of facticity ϕ(x) of a string is defined as the amount of self-
descriptive information it contains. It is proved that (under reasonable
assumptions: the existence of an empty machine and the availability of
a faithful index) facticity is definite, i.e. random strings have facticity 0
and for compressible strings 0 < ϕ(x) < 1/2|x|+O(1). Consequently fac-
ticity measures the tension in a data set between structural and ad-hoc
information objectively. For binary strings there is a so-called facticity
threshold that is dependent on their entropy. Strings with facticty above
this threshold have no optimal stochastic model and are essentially com-
putational. The shape of the facticty versus entropy plot coincides with
the well-known sawtooth curves observed in complex systems. The no-
tion of factic processes is discussed. This approach overcomes problems
with earlier proposals to use two-part code to define the meaningfulness
or usefulness of a data set. Based on these results I develop a theory of
factic processes. These processes are edge-of-chaos phenomena: they are
non-random (maximizing entropy) and non-deterministic (fixed model).
Instead they maximize facticity over time and thus never have a fixed
predictive model. These findings are consistent with empirical data. Fac-
tic processes are abundant in nature (evolution, games, stock markets).

keywords: facticity, factic processes, useful information, sophistication, Kolmogorov
complexity, two-part code optimization, nickname problem, sawtooth curves,
edge of chaos.
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Towards a Type Theory of Predictable Assembly
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Predictable assembly is an approach to the development of component-based
systems in which both functional (correctness) properties and nonfunctional (se-
curity, reliability and performance) properties can be predicted, analysed and
evaluated by virtue of the compositional nature of the component architecture.
The past decade has seen a growth in the design-level treatment of nonfunc-
tional, stochastic properties of components to facilitate the specication, analysis
and eventual implementation of code that meets a desirable quality of service. In
parallel, the formal methods community has developed techniques for architec-
tural specication of component composition, with a focus on treating functional
correctness via compositional analysis. In this work, we bring both these ap-
proaches together, developing a type system for component-based architectures.
The system is based in the Impredicative Calculus of Constructions. Because
this formalism allows dependent product types, by virtue of the Curry-Howard
isomorphism, we can dene interface signatures that involve logical propositions,
and a semantics of component composition that is correct-by-construction: com-
ponents can only be composed if their interfaces are logically equivalent.
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Worst case analysis of non-local games ?
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Faculty of Computing, University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia,
e-mail: andris.ambainis@lu.lv

Non-local games are studied in quantum information because they provide a
simple way for proving the difference between the classical world and the quan-
tum world. A non-local game is a cooperative game played by 2 or more players
against a referee. The players cannot communicate but may share common ran-
dom bits or a common quantum state. A referee sends an input xi to the ith

player who then responds by sending an answer ai to the referee. The players
win if the answers ai satisfy a condition that may depend on the inputs xi.

Typically, non-local games are studied in a framework where the referee picks
the inputs from a known probability distribution. We initiate the study of non-
local games in a worst-case scenario when the referee’s probability distribution
is unknown and study several non-local games in this scenario.

For several commonly studied non-local games, the worst case and the aver-
age case game values are the same. We show that this happens for two well-known
non-local games: classical CHSH game and Mermin-Ardehali game (an n-player
XOR game with the biggest advantage for quantum strategies). We also present
several games for which this is not the case.

EQUAL-EQUAL (EEm) game defined as a two-player XOR game with input
data set {1, . . . ,m} and the winning condition (x1 = x2) ⇔ (a1 = a2). The worst

case winning probability for even m is pclassicalwin = pquantumwin = 2(m−1)
3m−4 and for

odd m is pcwin = 2m
3m−1 and 2m

3m−1 ≤ pqwin ≤ 2m(m−1)+1
(3m−1)(m−1) while the average case

winning probability for m ≥ 4 is pcwin = pqwin = m−1
m .

n-party AND game (nAND), a symmetric XOR game with binary inputs
and the winning condition (

⊕n
i=1 ai =

∧n
i=1 xi). In the average case the winning

probability is close to 1: all players output ai = 0. In the worst case scenario
limn→∞pcwin = limn→∞p

q
win = 2

3
We also consider the question: what can the players do if they are not allowed

to share common randomness (nor common quantum state)? If the probability
distribution on the inputs is fixed, it is equivalent to players sharing common
randomness. In the worst-case setting, we get different results. For many games,
not allowing shared randomness results in players being unable to win with
p > 1/2. We show an example where players can still win with a non-trivial
probability, even if they are not allowed to share randomness.

? Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044, FP7
Marie Curie International Reintegration Grant PIRG02-GA-2007-224886 and FP7
FET-Open project QCS.
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Numerical evaluation of the average number of
successive guesses

Kerstin Andersson

Karlstad University, Department of Computer Science, SE–65187 Karlstad, Sweden,
Kerstin.Andersson@kau.se

Abstract. This work has been inspired by problems addressed in the
field of computer security, where the attacking of, e.g., password systems
is an important issue. In [2] Lundin et al. discuss measures related to
the number of guesses or attemts a supposed attacker needs for reveal-
ing information. Similar problems are considered in [1], [3] and [4]. In
this presentation numerical approaches are discussed for evaluating the
average number of successive guesses required for correctly guessing the
value of a string of independent and identically-distributed random vari-
ables. The guessing strategy used is guessing strings in decreasing order
of probability [1].
The main conclusion is that it is possible to calculate the average num-
ber of successive guesses with moderate requirements concerning both
memory and CPU time. The exact evaluation demands high storage and
CPU time requirements. If n is the size of the alphabet and m is the size
of the word the requirements are of O(nm) and O(nm+1), respectively,
for storage and CPU time. In a first approximation (using quantification)
the high storage demand was removed (to O(m)), but the high CPU time
demands remained (of O(mnm)). In a second approximation (using ran-
dom selection) and a third approximation (using a normal distribution)
also the high CPU time demands were removed and reduced to O(m2)
for both approximations. However, for all probability distributions the
normal distribution is not an accurate approximation.
Considering realistic sizes of alphabets (50) and word lengths (50) both
approximations are able to give an estimate of the average number of
successive guesses within minutes.

Keywords: guess, randomness, algorithm, complexity
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Turing-degree of first-order logic FOL and
reducing FOL to a propositional logic

Hajnal Andréka and István Németi

Alfréd Rényi Institute of Mathematics,
Reáltanoda u. 13-15, Budapest, H-1053 Hungary

Abstract. The set of valid formulas of first-order logic is Turing-equivalent
to the equational theory of Boolean algebras with three commuting com-
plemented closure operators. This is a strong improvement on Tarski’s
result saying that set theory can be formalized in the equational theory
of relation algebras and seems to be best possible in the sense that the
equational theories of weaker classes of algebras get decidable.

Keywords: Turing degree, Boolean algebras with operators, diagonal-
free cylindric algebras, translation functions, first-order logic

By FOL we mean first-order logic with equality and with a decidable set
of relation and function symbols, countably many for each finite rank. BAO3c
denotes the class of Boolean algebras (BA) with 3 commuting complemented
closure operators ci (i < 3), i.e., ci are unary functions on the BA satisfying the
following equations for all i, j < 3: cicjx = cjcix (commuting), ci − cix = −cix
(complemented), x ≤ cix = cicix (closure), ci(x+ y) = cix+ ciy (operators).

Theorem 1. It is just as hard to decide validity of a FOL-formula as to decide
validity of an equation of BAO3c. I.e., the set of valid FOL-formulas is Turing-
equivalent to the set of valid BAO3c-equations. ⊓⊔

The equational theories of BA’s with 2 commuting complemented closure
operators, as well as that of BA’s with 3 (not necessarily commuting) comple-
mented closure operators are decidable. Hence the number 3 and the adjective
“complemented” are important in Thm.1 above. We do not know whether the
equational theory of BA’s with 3 commuting (not necessarily complemented)
closure operators is undecidable or not.

The equational theory of BAO3c is equivalent to a propositional modal logic
with 3 commuting S5 modalities, denoted as [S5,S5,S5] in the literature. Thm.1
is a corollary of Thm.2 below. Let ⊢ denote the provability relation of the propo-
sitional multi-modal logic [S5,S5,S5].

Theorem 2. FOL can be reduced to propositional modal logic [S5,S5,S5], i.e.,
there is a computable Boolean-preserving translation function tr from FOL to
[S5,S5,S5], which means that (i)-(ii) below hold for all sets Th ∪ {ϕ,ψ} of FOL
sentences.

(i) Th |= ϕ if and only if tr(Th) ⊢ tr(ϕ)
(ii) ⊢ tr(ϕ ∨ ψ) ↔ (tr(ϕ) ∨ tr(ψ)) and ⊢ tr(ϕ → ψ) → (tr(ϕ) → tr(ψ)). ⊓⊔
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Computing without a computer: the analytical
calculus by means of formalizing classical

computer operations

Vladimir Aristov1 and Andrey Stroganov2

1 Dorodnicyn Computing Centre of Russian Academy of Sciences,
2 Moscow State Technical University of Radioengineering, Electronics and

Automation
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shifting; nonlinear differential equations

Abstract. The Turing machine is an example of a theoretical model of a
classical computer, and it was the logical basis of constructing electronic
computers. The recent general tendency shows that most researches aim
on developing new computing devices (e.g. quantum computers) and an-
alytical procedures for improving computer software [1]. We propose an
alternative theoretical model of a computer in the framework of which
we introduce a new calculation technique based on the properties of the
digital computer. We refer to this approach as the method of computer
analogy. This model utilizes the following aspects of classical computer:
1) numbers represented as segments of a power series; 2) a procedure of
digit shifting. The method of computer analogy can be used for obtaining
the explicit form of the solutions for problems which can be solved numer-
ically using iterative or finite difference schemes, in particular for solving
nonlinear differential equations [2]. The value of the unknown function
is represented as a segment of the power series in powers of the step τ
of the independent variable. The less significant digits exhibit stochastic
behaviour. This allows us to use probabilistic methods to predict changes
in the internal state of the model of a computer under consideration. In
terms of numerical solution, this leads to excluding intermediate com-
putations in the reccurrent formula. This method does not only reduce
the number of the arithmetical operations in calculations, but it can also
provide a solution in the explicit form (as a classical computer provides
a solution in the numerical form, after executing many intermediate and
”hidden” operations). The final analytical solution is treated as the limit
when τ tends to zero.

References
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In this survey talk we show that the models of GL that is obtained by two different
methods are isomorphic. For that purpose we use modal completeness and the canonical
model of GL.

Definition 1. (i)The modal logic GL is axiomatized by adding the scheme L to the
logic K L : �(�ϕ → ϕ) → �ϕ.
(ii) A Kripke frame for GL is a pair 〈W,R〉 with R a transitive relation such that the
converse of R is well-founded.
(iii) A Kripke model for GL is a triple 〈W,R, V 〉 with 〈W,R〉 a Kripke frame for GL
together with a valuation |= between worlds and propositional variables.

It is known that GL is decidable and complete with respect to the finite, irreflexive
(and therefore conversely well-founded), transitive frames. Completeness theorems are
model existence theorems. The finite Henkin method and the filtration method are
two model building techniques. In both the points of the underlying frames are related
to maximal consistent sets, and the relations and valuation are defined in terms of
membership in such sets. An adequate set is closed under subformulas and contains the
negation of each formula which is not a negation.

Definition 2. The model obtained by finite Henkin method for the modal logic GL
MΦ

GL w.r.t. the finite adequate set Φ is the model 〈WΦ
GL,RΦ

GL, V
Φ
GL〉 with

(i) WΦ
GL = {Γ | Γ is maximal GL-consistent in Φ},

(ii) RΦ
GL = {〈Γ, Γ ′〉 | for all ϕ, if �ϕ ∈ Γ , then ϕ ∈ Γ ′ and �ϕ ∈ Γ ′, and

for at least one �ϕ ∈ Γ ′, not �ϕ ∈ Γ}.
(iii) V Φ

GL(p) = {Γ | p ∈ Γ}.

Now, we give the main result.

Theorem 1. The models obtained for the modal logic GL by the finite Henkin method
are isomorphic to the ones obtained by a filtration of the canonical model for GL if
both are defined w.r.t. the same finite adequate set Φ.

Sketch of the Proof . We construct an isomorphism between the models obtained for
the modal logic GL by the two different methods. Let MGL be the canonical model
of GL. We define a filtration with regard to Φ as follows. First we take a unique final
element F (|Γ |) in each equivalence class |Γ | w.r.t. Φ where Γ ′ is final in |Γ | if for
no Γ ′′ ∈ |Γ |, Γ ′RΓ ′′. Then we take |Γ |Rf |Γ ′| if for all �ϕ ∈ Φ, if MGL, F (|Γ |) |=
�ϕ, then MGL, F (|Γ ′|) |= �ϕ ∧ ϕ and for some �ψ ∈ Φ, MGL, F (|Γ ′|) |= �ψ and
MGL, F (|Γ |) |= ¬�ψ}. The function h(|Γ |) = F (|Γ |) ∩ Φ is an isomorphism.
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Abstract. Using results from the local structure of the enumeration
degrees we show the existence of prime ideals of Π0

2 enumeration de-
grees. We begin by showing that there exists a 1-generic enumeration
degree 0e < a < 0′

e which is noncuppable—and so properly downwards
Σ0

2—and low2. The notion of enumeration 1-genericity appropriate to
positive reducibilities is introduced and a set A is defined to be symmet-
ric enumeration 1-generic if both A and A are enumeration 1-generic.
We show that, if a set is 1-generic then it is symmetric enumeration 1-
generic, and we prove that for any Π0

2 enumeration 1-generic set B the
class { X | ≤e B } is uniform Π0

2 . Thus, picking 1-generic A ∈ a (from
above) and defining b = deg(A) it follows that every x ≤ b only contains
Π0

2 sets. Since a is properly Σ0
2 we deduce that b contains no ∆0

2 sets
and so is itself properly Π0

2 .
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Complexity of complexity and maximal plain versus
prefix-free Kolmogorov complexity
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Peter Gacs showed [2] that for every n there exists a bit string x of length n whose
plain complexity C (x) has almost maximal conditional complexity relative to x, i.e.,
C (C (x)|x)≥ logn− log logn−O(1). Following Elena Kalinina [3], we provide a game-
theoretic proof of this result; modifying her argument, we get a better (and tight) bound
logn−O(1). We also show the same bound for prefix-free complexity.

As an intermezzo we state symmetry of information for plain complexity [1] as:

C (a,b) = K (a|C(a,b))+C (b|a,C (a,b)) ,

which has two interesting known corollaries: Levin’s formula C (a) = K (a|C (a)) (tak-
ing b = C (a)), and every infinitely often C -random real is 2-random.

Finally, we provide a short proof for Solovay’s result [4] (a bit improved) stat-
ing that for some strings plain complexity can be maximal but prefix-free complex-
ity not. More precise: infinitely many strings x have C (x) = |x| −O(1) and K (x) =
|x|+K (|x|)− log log |x|+O(1). The proof only uses symmetry of information of prefix-
free complexity, and Levin’s and Gacs’ results (see above).
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A binary relation ./ on a set X is called apartness relation if for all x, y, z ∈ X
the following holds:

a) ¬(x ./ x)
b) x ./ y ⇒ y ./ x
c) x ./ y ⇒ x ./ z ∨ y ./ z

We work within Bishop’s constructive mathematics. A real number is a sequence
(xn) of rationals such that

∀m,n
(
|xm − xn| ≤ m−1 + n−1

)
.

The real number 0 is represented by the sequence (zn) with zn = 0 for all n. For
two reals x, y we define equality by

x = y
def⇔ ∀n

(
|xn − yn| ≤ 2n−1

)
,

which is equivalent to

∀k∃n0∀n ≥ n0
(
|xn − yn| ≤ k−1

)
.

The negation of equality, the so-called denial inequality is given by

x 6= y
def⇔ ¬ (x = y)

and clearly fulfills a) and b). We present a logical axiom which is equivalent to
the statement: ‘The denial inequality is an apartness relation.’

A formula Φ is called a Π0
1 -formula if there exists a binary sequence α such that

Φ⇔ ∀n (αn = 0) .

Consider the following axioms:

DA The denial inequality is an apartness relation.

Π0
1 -DML For all Π0

1 -formulas Φ and Ψ , ¬ (Φ ∧ Ψ)⇒ ¬Φ ∨ ¬Ψ .

The latter is an instance of the the De Morgan law.

Lemma The axioms Π0
1 -DML and DA are equivalent.
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Logical Agency: consulting instead of collecting

Carolina Blasio1 and João Marcos2?

1 IFCH / UNICAMP, Campinas-SP, Brazil
2 LoLITA and DIMAp, UFRN, Natal-RN, Brazil

A traditional and much explored model of information processing envisions com-
puters as machines collecting reports presented by a variety of (trustworthy)
sources that feed the machines with data on which the latter are to base their in-
ferences. While it is very natural for this model to give support to inconsistencies
and undeterminedness phenomena that often underlie multi-agent systems, it is
not obvious how the model should accommodate consultations with full-blown
agents, who come equipped with their own reasoning apparatus. The present
contribution claims —and illustrates the claim from a logical viewpoint— that a
more natural model for explicating the behavior of societies of agents, and at the
same time for taking their inferential capabilities into account, is one that treats
agents not as sources of unanalysed pieces of information being either asserted
or denied, but as judgmental beings who are consulted upon their inclinations
either to accept or to reject given pieces of information. Some setups of the new
model are then explored at the level of combinations of agents.

Keywords. Reasoning about uncertainty, information sources, combinations of
agents

? Corresponding author.
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Virtual Worlds as Portals for Information
Discovery

Shannon Bohle, MLIS, FRAS

University of Cambridge

Virtual worlds provide immersive environments ideal for education, training
and simulation, artificial intelligence research, engineering and robotic modeling.
Through implementation of increasingly realistic graphics, artificial intelligence,
improved human-computer interfaces, and the mantra of “gamification”, virtual
worlds have become explorative and interactive settings to research informa-
tion seeking patterns and behaviors. This presentation will discuss what I have
learned over the past three years about how organisations, such as NASA, the
US Army, and the IEEE use virtual worlds for serious games, looking specifi-
cally at points of intersection I have had with these groups. Firstly, I will discuss
the information seeking behavior of avatar-based library patrons visiting the
Neil A. Armstrong Library and Archives (2008-2011), where I volunteered as
the founder and director of the first virtual world digital library or archive rec-
ognized by the Library of Congress. A machinima video featuring a patron’s
astrophysics question in the library was shown at the Nobel Museum in Swe-
den. Secondly, virtual worlds are computerized environments where people and
intelligent agents conceptually have a level playing field in which to interact.
Intelligent agents hold the potential to automate multiple actor scenarios other-
wise conducted by human controllers. To attract new ideas in virtual worlds and
artificial intelligence, the White House advertised an international competition
called the Federal Virtual Worlds Challenge. In 2011, 2nd place in the category
“AI Concept Exploration” was awarded to “Curiosity AI”, my virtual 3D simu-
lation of Mars, its rovers, robots, and satellites. LIS literature played a role in my
design of AI functions. The question-answer manner in which librarians interact
with patrons (a “reference interview”) is similar to the structure of a Turing
test, relying upon discourse satisfaction as the primary success measure. Curios-
ity AI took Turing tests farther by employing a humanoid embodied agent that
communicated with facial expressions, gestures, and spatial movement, as well
as controlling other agents using text-based chat. Additional AI areas covered
included: autonomous movement and obstacle avoidance, expert systems, rovers,
swarms, and in-situ data analysis. Also mentioned will be Project MOSES (US
Army), CPMI (DISA affiliated), as well as a virtual world study group for the
“Introduction to AI” course taught by Peter Norvig and Sebastian Thrun. In
short, the key to improving information discovery is changing how we interact
with digital information and the information seeking tools that mine informa-
tion for us, and cutting edge virtual worlds researchers are at the forefront of
the future of AI and HCI. Disclaimer : All opinions expressed are my own and
are not representative of any organization named.
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On Turing Scores

R.J. Booth /clamjet@hotmail.co.uk/

GCHQ (UK)

1 Abstract

This work comes from a declassified version of a 1994 paper internal to GCHQ. It considers the
problem of how best to combine “weights of evidence” when some of this weight – let us call it X
– is not in the form of a log Bayes factor (LBF), this being the standard yardstick shown by the
Neyman-Pearson lemma to be optimal for simple null and alternative hypotheses.

In order to use the information in X, we propose a transformation Ŝ(X), subject to one free
parameter, which approximately satisfies the so-called “Turing Relations” (see Good: Biometrika
66, 393-396, Section 7), though they are not so named there). The Turing relations record the fact
that if Y is an LBF for an alternative H1 against a null H0, which is normally distributed under
both hypotheses with means µi = E[Y |Hi] and variances σ2

i = Var[Y |Hi], then

µ0 = −µ1

σ2
0 = σ2

1 = 2µ1

The Turing relations are important because they hold approximately even in the non-normal case
if H1 is “close” to H0. For example, with binomial distributions H1 : K ∼ B(1, 12 (1 − b)) versus
H0 : K ∼ B(1, 12 ) and small b, the LBF log(1 + (−1)Kb) satisfies the Turing relations with relative
error O(b2).

Therefore, making a statistic approximately satisfy the Turing relations is likely to make it
approximate the true LBF. We coin the verb “to ture” to describe this process or its result, and
hence we may say “Ŝ was derived by turing X”.

The particular method of turing which we propose comes from study of LBFs which arise from
normal distributions, since the Turing relations can be exact for these. In the general normal case
the LBF is quadratic, but the quadratic term disappears when the “equal variance” relation holds,
so we drop it. This gives us the equations

µ̂ = (1− λ)µ0 + λµ1

Ŝ(X) =

(
µ̂− µ0

σ2
0

+
µ1 − µ̂

σ2
1

)
X − µ̂2 − µ2

0

2σ2
0

− µ2
1 − µ̂2

2σ2
1

for a family of tured scores with free parameter λ. In the case where X is drawn from a binomial
distribution B(n, 12 (1− b)) with small b, we show that λ = 2

3 is optimal for matching Ŝ(X) to the
true LBF S(X).

We then study the turing of H1 : X ∼ B(100, 0.55)k v H0 : X ∼ B(100, 0.5)k for each
k ∈ {0.5, 1, 2}. Further, following subsequent work by Bender & Kochman and by Ostapenko, who
proposed alternative methods of turing, we show that for this small set of examples our method
generally outperforms the others – provided we set λ = 1

2 instead of the previously suggested 2
3 .

The author was privileged to start his GCHQ career working alongside Joan Murray, who was
at one time Alan Turing’s fiancee, and during the presentation he will reminisce about Joan and
life at GCHQ at that time.
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NAÏVE UNREVEALABLY SECRET
COMMUNICATION

Selmer Bringsjord

Rensselaer Polytechnic Institute (RPI)

A wishes to communicate to B the proposition φ by sending information through
a computer-mediated network. The communication is näıve because A and B
forego use of cryptographic algorithms. A third agent E eavesdrops on what
A sends to B. A communicates φ to B in unrevealably secret fashion iff E,
despite seeing what A sends B, cannot understand that A communicates φ to
B. E is itself understood to be constrained by elements of a given logic LE .

We distinguish between cognitively immature (c.i.) vs. cognitively ma-
ture (c.m.) logics by (among other things) taking the latter to be those needed
to model cognitive performance shown by psychologists to mark a progression to
abstract reasoning that calls for intensional operators. It has been found for ex-
ample that in false-belief tasks, the drosophila of logico-computational theories
of mind, introduced by Wimmer & Perner (1983), subjects who pass are able to
reason about the beliefs, desires, and intentions of other people.

We give a concrete example (the G#≥4 Protocol; pictured below) of secret
communication between A′ and B′ that is provably unrevealably secret relative
to an eavesdropper E′. Cognitively immature logics are inadequate against the
G#≥4 Protocol because such logics are all exclusively linguistic in nature. The
formal framework for diagrammatic reasoning known as ‘Vivid’ (Arkoudas &
Bringsjord 2009) offers some hope, but we need machine eavesdroppers based on
logics that enable them to not only represent visual content, but to: represent
baseline phenomena for which full first-order logic was invented; capture a full
range of intensional operators, including those central to modeling minds of
malicious agents (e.g., believes, knows, intends); and provide concomitant
automated reasoning technology.

References
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Average Case Complexity of ε-NFA’s?

Sabine Broda, António Machiavelo, Nelma Moreira, Rogério Reis??
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The worst-case complexity of the conversions between different representa-
tions of regular languages is well studied. However, for practical purposes, the
average-case complexity of such conversions is much more relevant than its worst-
case complexity, which is often due to some particular and rarely occuring cases.
Still, the average-case analysis is, in general, a difficult task. One approach is
to consider uniform random generators and to perform statistically significant
experiments. Another approach is the use of asymptotic methods.

In this presentation, we discuss asymptotic average-case results on the size of
non-deterministic finite automata obtained from regular expressions, using the
symbolic method and the framework of analytic combinatorics [1]. The symbolic
method allows the construction of a combinatorial class C in terms of simpler
ones, B1,. . . ,Bn, by means of specific operations, and such that the generating
function C(z) of C is a function of the generating functions Bi(z) of Bi, for
1 ≤ i ≤ n. The methodology of analytic combinatorics used can be summarized
in the following steps:

a) consider an unambiguous context-free grammar for regular expressions;
b) for each measure of a given NFA construction (number of states, number of

transitions, etc.) obtain a generating function;
c) see generating functions as analytic complex functions, and study their be-

haviour around their dominant singularities to obtain an asymptotic approx-
imation of their coefficients.

Among other results, we show, for instance, that the size (number of states plus
transitions) of the Thompson automaton, is on average 3.25 times the size of the
original regular expression. We illustrate how to use a computer algebra system,
in our case the Maple system, to carry out most of the symbolic computations
involved in such a study.

References

1. Sedgewick, R., Flajolet, P.: Analysis of Algorithms. Addison Wesley (1996)

? This work was partially funded by the European Regional Development Fund
through the programme COMPETE and by the Portuguese Government through
the FCT under projects PEst-C/MAT/UI0144/2011 and CANTE-PTDC/EIA-
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?? Corresponding author.
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Cavity motion affects entanglement

David Edward Bruschi

School of Mathematical Sciences, University of Nottingham

We propose a scheme to analyze how relativistic motion of cavities affects entanglement
between modes of bosonic or fermionic quantum fields contained within. A cavity is modeled
by suitable boundary conditions depending on the quantum field being bosonic or fermionic.
We can address motion of a cavity when the walls undergo (different) uniform acceleration or
coast at constant speed. When there has been at least one period of acceleration, all field modes
inside of a cavity become mixed and the transformation between the initial region modes and
final region modes is called Bogoliubov transformation. We work in a perturbative regime where
the parameter h � 1 is the product of the proper acceleration of the center of the cavity and
the length of the box.

We consider scenarios with two cavities, one of which undergoes some “general” trajectory;
in this case we analyze the effects of motion on the entanglement initially present between
modes in the two boxes and find that in general entanglement is degraded [1,2]. We find that
the effective mass, which accounts for transverse momenta and the mass of the field, increases
the degradation effect in a dramatic way. All these effects occur to second order in h. In this
case, entanglement degradation between modes in two different ∼ 10m cavities can become
observable for massless tranverse photons of optical wavelength at accelerations of ∼ 1g. Our
results indicate that gravity might affect quantum information tasks.

We also consider scenarios where one cavity follows some general trajectory and in this case
we analyze the entanglement between different modes of the field contained inside: we find that
entanglement is created [3]. Surprisingly, we find that there is entanglement created at order h
and we also find that, given special trajectories, entanglement generation can be enhanced by
repeating any travel scenario [4].
Motion of one cavity can produce linear increase of entanglement under suitable conditions. In
particular, if any travel scenario is repeated, total proper times of travel can be chosen to have
linear increase with the number of repetitions. The final state is a two mode squeezed state.
We aim at understanding which types of quantum gates can be performed by just “shaking”
the cavity. Last, we notice that initial single mode squeezing can enhance the final results.
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Heuristics and Intelligence: Turing’s Vision

Cameron Buckner

University of Houston, USA and Ruhr-University Bochum, Germany
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Towards the end of his life, Alan Turing made several comments that reflected
a new attitude towards the relationship between computation and intelligence.
Turing had been considering the limits of computation and the ability of the
human mind to solve apparently incomputable problems through intuition and
”bursts of insight”. In earlier works, he often appealed to a conceptual tool called
an ’oracle,’ which could compute an incomputable step “as if by magic.” As one
version of the story goes, Turing became increasingly dissatisfied with oracles as
too mysterious to be useful in the study of creativity and insight. However instead
of capitulating to these challenges, Turing renewed his renewed his conviction
that the processes performed by the human brain must be computable and began
to focus on methods of reducing incomputable problems to more manageable
ones by abandoning what he called the “pretense of infallibility.” Tragically,
Turing died before he was able to pursue this research program to fruition.

Many may suppose that these insights have adequately been pursued by
Turing’s intellectual descendants in the field of heuristic search. Heuristic search
algorithms speed up search by ordering search space exploration using heuristic
functions. Heuristic functions estimate the cost or distance between any node and
a solution (e.g. the Manhattan Distance function), often by exploiting domain-
specific heuristic knowledge derived from a simplified domain model (sometimes
alternatively called heuristic information). This approach to heuristics reached
a zenith in the 1984 work by Judea Pearl, Heuristics[1]. Pearl notes that search
heuristics order the search space by appealing to simplified domain models.
Heuristic search orderings, however, are typically considered admissible only
if they are still guaranteed to find a solution, thus not exploring Turing’s idea
that “if a machine is expected to be infallible, it cannot also be intelligent”[2]. A
persistant challenge for heuristic search has been to automate the generation of
simplified domain models. In this talk, I question whether Turing’s insights have
been adequately explored in the field of heuristic search, arguing that attention
to the ways that humans and animals form simplified domain models can provide
new directions for research in the area of heuristic search.
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Notes on Spiking Neural P systems and Petri
nets

Francis George C. Cabarle, Henry N. Adorna
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E-mail: fccabarle@up.edu.ph, ha@dcs.upd.edu.ph

Abstract. Spiking Neural P systems (in short, SNP systems) are bio-
logically inspired computing devices whereas Peri nets are graphical and
mathematical modeling and analysis tools. It has been pointed out by
Păun in 2007, about a year after SNP systems were introduced, that the
two share a common ‘look and feel’. Several recent work have investi-
gated mostly the translation of SNP systems to Petri nets. In this work
we further investigate Petri nets and their properties, translating them
into SNP systems, while maintaining Petri net semantics. In particular
we observe how behaviors and structures fundamental to Petri net theory
such as (among others) parallel or decision routing, deadlock, free-choice,
and well-handledness translate into SNP systems. The insights from our
investigations provide precise additional details and ideas on how closely
associated SNP systems and Petri nets are, allowing for further future
results for both.

Keywords: Natural Computing, Membrane Computing, Spiking Neural P sys-
tems, Petri nets
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Interweavings of Alan Turing’s Mathematics and
Sociology of Knowledge?
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We start from the analysis of how Alan Turing proceeded to build the no-
tion of computability in his famous 1936 text ‘On computable numbers, with an
application to the Entscheidungsproblem’. Turing’s stepwise construction starts
from the materialities of a human computer, that is, the human body, pencil and
inscriptions on paper. He then proceeds by justifying each step of abstraction
based on meticulous observations about that materiality. We identify a strong
conformity of his way of doing math to methodologies developed by anthro-
pologists and propose a ‘translation’ of an anthropological concept, that is, an
ethnography of mathematical knowledge. Here ‘translation’ indicates not only a
resemblance but also an inevitable difference that results from transposition and
use of a concept from an area onto another (traduttori traditori). Turing did not
configure collective entities, as is now done in the anthropology of knowledge
(Bruno Latour). We claim, however, that in aiming to characterize the com-
putable, Turing acted as an ethnographer. Borrowing the words of one of the
founders of ethnography, Franz Boas, he acted ‘considering every phenomenon as
worthy of being studied for its own sake’ (Boas, The Study of Geography,Science,
feb, 1887,p.210), working on the elicitation of the links between the abstract
thinking and the world where one lives. We demonstrate how Turing’s way of
doing mathematics was one that constructs mathematical knowledge by evading
a definite separation between matter and form; in this way, making the world
and language come together. Following the same line of reasoning, the abstract
and the concrete, the deduction and the induction, the technical and the social
as well as the objective and the subjective are unthinkable as pure entities. By
considering the controversies and discussions from the mid-nineteenth century
until now, we can indicate local (social) elements that necessarily participate in
what is usually considered ‘technical content’ or ‘objectivity’. While Alan Turing
was a precursor of what today might be said to be an ‘anthropological approach
to mathematical culture’, unveiling and reviving approaches that enable the axis
of authority for mathematics, logic and computing to be shifted, he also opened
different paths for the construction of a variety of mathematical knowledge as
well.

? We thank Fundação Euclides da Cunha for the partial funding of this work and Kay
Shipton for her kind assistance in reviewing the English.
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The Legacy of Turing Reducibility

William C. Calhoun
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Abstract. Soare [4] has written an extensive paper on oracle Turing ma-
chines, tracing their origins from a brief passage in Turing’s Ph.D. thesis
through their development by Post and Kleene to the central role they
play in computability theory. Oracle Turing machines provide a natural
way to define relative computability, the key concept in computability
theory. Here we consider the continuing importance of oracles in areas
of research that have grown out of computability theory such as com-
putational complexity and algorithmic randomness. The use of oracles
in computational complexity is quite natural in analogy to computabil-
ity theory. Just as oracle Turing machines can be used to define Tur-
ing reducibility, polynomial-time oracle machines can be used to define
polynomial-time Turing reducibility. A striking use of oracles in compu-
tational complexity is the Baker, Gill, Solovay [1] result that the truth
of PA = NPA depends on the oracle A. The usefulness of oracles in al-
gorithmic randomness is not so obvious. It seems particularly surprising
that the definition A is low-for-random coincides with the definition A
is K-trivial. The first indicates that A is weak as an oracle, the second
is defined without reference to oracles. Neverless, the remarkable equiv-
alence of these definitions was shown by Nies [3]. We will also discuss
some new results concerning the Turing degrees of Km-trivial sets [2]
and almost-K-trivial sets (a set A such that K(A � n) ≤+ aK(n) for
some real number a).

Keywords: Turing reducibility; oracles; computational complexity; al-
gorithmic randomness
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3. Nies, André: Lowness properties and randomness, Advances in Mathematics
197, 274-305 (2005).

4. Soare, Robert I.: Turing oracle machines, online computing, and three dis-
placements in computability theory, Annals of Pure and Applied Logic 160,
369-399 (2009).

21



On the distribution of recognizable reals

Merlin Carl
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Abstract. Infinite Time Register Machines (ITRMs) are a machine
model for infinitary computations generalizing classical register machines
by allowing infinite ordinals as running times, established e.g. in [1], [2],
[5], [6]. Let us call a real x ⊂ ω ITRM -computable iff there is an ITRM -
program P that stops with output 1 on input i ∈ x and with output 0
otherwise. Furthermore, let us call r ⊂ ω recognizable iff there is an
ITRM -program P x using a real oracle x that stops on the empty input
with output 1 iff x = r, and otherwise with output 0. In [2] it is shown
that, similar to Infinite Time Turing Machines (see [3]), ITRMs satisfy
a Lost Melody Theorem: Namely there are ITRM -incomputable, recog-
nizable reals. The ITRM -computable reals are proved in [5] to coincide
with the reals in Lµ, where µ is the limit of the first ω many admissible
ordinals. In particular, the ITRM -computable ordinals form an initial
segment of the constructible ordinals in the constructible well-ordering
<L of the constructible hierarchy. Considering the class RECOG of rec-
ognizable reals, we show that RECOG has gaps in <L, i.e. there are
r1, r2, r3 ∈ L ∩ω 2 such that r1 <L r2 <L r3 with r1, r3 ∈ RECOG and
r2 /∈ RECOG. Furthermore, we show that the ordertype of such a gap
(with respect to <L) can be larger than any ordinal below the limit of
the first ω many admissibles.
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Eigenforms, Natural Computing and
Morphogenesis

Arturo Carsetti
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Decades later, Scott’s basic intuition, that computability could be interpreted
as continuity, continues to exert a decisive influence. In accordance with this
seminal intuition, it is possible to identify the features characterizing a reflexive
domain, a development language, that is, able to express and reflect within itself
the structure of the ”ideas” and the performances which constitute its texture, as
well as to express, still within itself, its own truth predicate. In a reflexive domain
every entity has an eigenform, i.e. fixed points of transformations are present for
all transformations of the reflexive domain. With respect to a reflexive model
and according to von Foerster and L. Kauffman, the objects of our experience
appear as the fixed points of specific operators, these operators, in turn, consti-
tute the structures of our perception. The classical reflexive models cannot lead,
however, to true creativity and real metamorphosis if they do not loosen the
knot of the intricate relationships between invariance and morphogenesis as it
arises with respect to the actual realization of a specific embodiment. Hence the
necessity of making reference to theoretical tools more complex and variegated
(as, for instance, the tools offered by non-standard mathematics and epistemic
complexity theory) in order to provide an adequate basis for a meaningful the-
oretical extension of these very models. Let us resort to an exemplification: the
von Koch curve is an eigenform, but it is also a fractal. However, it can also be
designed and explored utilizing the sophisticated mechanisms of non-standard
analysis. In this last case, we have the possibility (but at the level of a coupled
system and in the presence of specific co-evolutionary processes) to enter a uni-
verse of replication, which may also open to the reasons of real emergence. At
this level, the growth of the linguistic domain and the correlated introduction of
ever-new individuals appear strictly linked to the opening up of meaning and to
a continuous unfolding of hidden potentialities with respect to this very opening.
Hence the very necessity to bring back the inner articulation of the eigenforms
not only to the structures of ”simple” perception but also to the motifs of inten-
tionality. This line of analysis permits to revisit some original ideas by Turing
about morphogenesis, it permits, in particular, to understand that to go beyond
Turing (but in accordance with his seminal ideas) we have to simulate, explore
and prime (within the fuzzy boundaries of a coupled universe) the possible paths
of morphogenesis by means of models that should be objectively identified with
reference to a continuous (and self-organizing) remodeling of our neural system.
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Bounded Primitive Recursive Randomness
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There are three interesting versions of algorithmic randomness for real num-
bers which have been intensely studied in recent years. LetX = (X(0), X(1), . . . )
be an element of {0, 1}N. First, we may say that X is random if it is incompress-
ible, that is, the initial segments (X(0), X(1), . . . , X(n)) have high Kolmogorov
or Levin-Chaitin complexity. Second, we say that X is random if it is typical,
that is, X belongs to all effective sets of measure zero, in the sense of Martin-
Löf. Third, we say that X is random if it is unpredictable, that is, there is no
effective martingale which one can use to successfully bet on the values of X.
The usual notion of algorithmic randomness is that of 1- randomness, where
definitions have been given in all three versions and been shown by Schnorr to
be equivalent. Many other notions of algorithmic randomness have been studied
and it is often difficult to find equivalent formulations of all three sorts.

There are some important properties of Martin-Löf randomness which are
need for applications. First, there is van Lambalgen’s theorem, which states
that the join A ⊕ B of two random sets is random iff A is random relative to
B and B is random. Second, there is Ville’s theorem, which states that any
effective subsequence of a random sequence is also random.

In this paper, we present three equivalent formulations of the notion of
bounded primitive recursive algorithmic randomness, as well as relativized ver-
sions, and prove Ville’s theorem and van Lambalgen’s theorem for this notion.

Here are the three equivalent notions of bounded randomness.

Version I: Let CM (τ) be the length |σ| of the shortest string σ such that
M(σ) = τ . An infinite sequence X is bounded primitively recursively (b.p.)
random if there do not exist primitive recursive M and f such that, for every c,
CM (X � f(c)) ≤ f(c)−c, that is, X cannot be primitive recursively compressed.

Version II: A bounded primitive recursive test is a primitive recursive
sequence {Un : n ∈ N} of clopen sets such that, for each n, µ(Un) < 2−n. X
passes this test if there is some n such that X /∈ Un. X is b.p. random if X
passes every bounded primitive recursive test.

Version III: A martingale is a function d : {0, 1}∗ → Q ∩ [0,∞] such
that, for all σ, d(σ) = 1

2 (d(σ_0)+d(σ_1)). The martingale d succeeds primitive
recursively on X if there is a primitive recursive function f such that, for all
n, d(X � f(n)) ≥ 2n. Then X is b.p. random if there is no primitive recursive
martingale which succeeds primitive recursively on X.

1
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For Classical, Intuitionistic and Minimal (Johansson’s) propositional logics
(CPL, IPL and MPL) we introduce the family of resolution systems with full
substitution rule and with restricted substitution rule.

For CPL we use the well-known notions of literal, clause, resolution rule and
definition of resolution system RC. Let C be a set of clauses. We introduce the
substitution rule allows one to derive from the set of clauses C the results of
substitution of some formula instead of a variable everywhere in the clauses
of the set C, and generalized resolution rule, resolving on either some literal
or in any steps substituted formula. By SRC we denote the system RC with
substitution rule and generalized resolution rule. If the number of connectives of
substituted formulas is bounded by `, then the corresponding system is denoted
by S`RC. The analogous systems SRI, SlRI, SRM, SRlM for IPL and MPL are
constructed also.

We use the known definitions of Frege systems F , (FI, FM) for CPL (IPL,
MPL), cut-free sequent system LK− for CPL and cut-free multi-succedent se-
quent systems LI−mc for IPL and LM−

mc for MPL. By LKl (LIlmc, LM
l
mc) we denote

the system LK− (LI−mc, LM
−
mc) augmented with cut-rule, where the number of

connectives of every cut formula is bounded by l, and by LK (LImc, LMmc) -
the corresponding system with unrestricted cut rule.

We use also the notions of p-equivalence and exponential speed-up.
The main results are:

Theorem 1.
1) ∀` ≥ 0 S`+1RC has exponential speed-up over the S`RC (in tree form).
2) SRC, F , LK are p-equivalent.

Theorem 2.
1. For every ` ≥ 0 LI`+1

mc (LM `+1
mc ) has exponential speed-up over LI`mc (LM `

mc)
in tree form.
2. For every ` ≥ 0 S`+1RI (S`+1RM) has exponential speed-up over S`RI
(S`RM) in tree form.
3. The system SRI (SRM), FI (FM) and LI−mc (LM−

mc) are p-equivalent.

For proving this theorems we use the results of N.Arai about speed-up be-
tween LKl+1 and LKl and method of transformation of resolution refutation into
cut-free sequent proof, described by first author of this abstract.

? Supported by grant 11-1b023 of Government of RA
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Let us have a propositional Hilbert-style proof system containing axioms (strictly
speaking schemata of axioms) B (prefixing) and B′ (suffixing)

(B) (ϕ→ ψ) → ((χ→ ϕ) → (χ→ ψ))
(B′) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

with implicit substitution and modus ponens as the only rule. We prove that
any proof in such a proof system can be transformed into a linear proof. A proof
is linear if it uses only a modified version of modus ponens: from ϕ and ϕ → ψ
derive ψ, where ϕ can only be an instance of an axiom or assumption.

As prefixing and suffixing are provable in many propositional logics we can
obtain similar property for many sets of axioms by adding B and B′. However,
a new linear proof can be significantly longer than the original proof. It means
that this result is unlikely to be used for the actual proof search, but it can be
used for some metamathematical considerations.

? The author was supported by grant P202/10/1826 of the Czech Science Foundation.
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Imperfect Information in

Logic and Concurrent Games

Pierre Clairambault, Julian Gutierrez, Glynn Winskel
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Concurrent games on event structures were introduced in [1] as a new basis
for the formal semantics of concurrent systems and programming languages;
these games allow for the explicit representation of causal dependencies between
the events of a system. Recently, the concurrent games model was extended in
[2] by winning conditions, in order to specify objectives for the players of the
game—a useful tool for expressing and solving problems in logic and verification.

The games studied in [2] are of perfect information and determined (a prop-
erty of games that ensures the existence of winning strategies) whenever re-
stricted to games that are well-founded and satisfy a structural property, ‘race-
freedom’, which prevents one player from interfering with the available moves
to the other. This games model was used in [2] to provide a concurrent-game
semantics for the predicate calculus, where nondeterministic winning strategies
can be effectively built and deconstructed in a compositional manner.

We have now extended further the work in [2] by (i) defining a bicategory of
concurrent games and nondeterministic strategies which allows imperfect infor-
mation within the games and (ii) providing an imperfect-information concurrent-
game semantics for a variant of Hintikka and Sandu’s Independence-Friendly
(IF) logic; we call Λ-IF this new logic since it introduces an explicit preorder Λ
on variables. Such a preorder can be used to represent independence of formulae
as well as “access levels” of information which restrict the allowable strategies
of the semantic evaluation games for Λ-IF. The concurrent-game semantics in
this work generalises the denotational model for the predicate calculus in [2].

Although strongly related to IF, the logic Λ-IF has a different evaluation
game: a formula ψ ∨ ¬ψ is always a tautology within Λ-IF (since the co-called
‘copy-cat strategy’ is winning there), whereas it is not in IF when ψ is undeter-
mined. Nevertheless, IF can be encoded into Λ-IF via its representation using
Henkin quantifiers—a partial order generalization of those in classical logic.

The introduction of imperfect information, in particular, allows for a more
accurate representation of the independent behaviour of the processes within a
concurrent system. Although these games are no longer determined, nondeter-
ministic winning strategies can still be constructed following a compositional
approach. This feature of our games model may be the basis of a general frame-
work for defining game-based reasoning tools and techniques for logics of inde-
pendence. In fact, our results allow for the possibility of giving a proof theory
for Λ-IF since the ‘axiom rule’ holds, which was not the case for IF.

1. Rideau, S., Winskel, G.: Concurrent strategies. In LICS, pp. 409–418, 2011.
2. Clairambault, P., Gutierrez, J., Winskel, G.: The winning ways of concurrent

games. In LICS, 2012.
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The paper examines how as time passes the results of a famous scientists
work are given a stylised standard interpretation that is frequently somewhat
less complex than what they actually said. Far more computer scientists have
read accounts of the Turing Machine in textbooks than have read his original
description, and as a result a number of misconceptions have taken hold. In this
paper, we explore two misconceptions about properties of Turing machine tapes,
that is that they are infinite and that they may not be subject to external change
during computations.

There is a widespread notion that Turing machines have infinite tapes. How-
ever, in Turing’s original paper[5] there is no mention of the tape having to
be infinite; since he is concerned with finite computation, it is clear that any
terminating programme will have only modified a finite portion of the tape, so
what he was assuming was effectively a finite but unbounded tape. We review
the differing accounts given in the literature of the finity or infinity of the tape.

A more recent stylisation is the idea that, according to Turing, universal
computers are not allowed to perform I/O. We examine and refute such claims
by Wegner[7,1], arguing that the tape in Turing’s model is both a store and an
input output device. We argue that the key computational innovation Turing
was concerned with in [5] was the Universal Computer, the computer that could
emulate any other computer, and thus perform any computation. Special purpose
computing machines were well known prior to Turing[2,3]. What was new, or at
least a recovery of Babbage[4], in [5] was the idea of the Universal Computer.
We further argue that in his mature conception of the universal computer[6],
Turing allows for more convienient I/O devices like interactive terminals.
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We seem to be on the threshold of understanding the physiological basis for learning and for 
memory storage. But how would knowledge of events on the molecular and cellular level relate 
to human thought? Is complex mental behavior a large system property of the enormous 
numbers of units that are the brain? How is it that consciousness arises as a property of a very 
complex physical system? Undoubtedly, these questions are fundamental for a theory of the 
mind. On the other hand, there are questions of basic importance, pioneered by Turing, for his 
theory of the “human computer,” that is, discrete state machines that “imitate” perfectly the 
mental processes achievable by his “human computer”; we will refer to it, although the name is 
only partially true to his vision, as his theory of “computational intelligence.” Finding even a 
level of commonality to discuss both a theory of the mind with a theory of computational 
intelligence has been one of the grand challenges for mathematical, computational and physical 
sciences. The large volume of literature, following Turing’s seminal work, about the computer 
and the brain and involving some of the greatest scientists of all time is a testimony to his 
genius.  
 
In this paper we discuss, in the context of the Turing test, recent developments in physics, 
computer science, and molecular biology at the confluence of the above two theories, inspired 
by two seminal questions asked by Turing. First, about the physical not reducible to 
computation: “Are there components of the brain mechanism not reducible to computation?” 
or more specifically, “Is the physical space-time of quantum mechanical process, with its so 
called Heisenberg uncertainty principle, compatible with a [Turing] machine model?” Second, 
about computing time: “[in the Turing test] To my mind this time factor is the one question 
which will involve all the real technical difficulty.” We relate the above questions to our work, 
respectively, on superconductivity and quantum mechanics, and the Ising model and the proof 
of its computational intractability (NP-completeness) in every 3D model, and share lessons 
learned to discourage, under high and long-term frustration of failure, the retreat under the 
cover of the positivist philosophy or other evasions.   
  

Inspired by von Neumann, we relate the Turing’s questions and his test difficulties to von 
Neumann’s thesis about the “peculiar duplicity” of mathematics with respect to the empirical 
sciences. As von Neumann put it: “This double face is the face of mathematics.” With a non-a 
priori concept of truth “the very concept of ‘absolute’ mathematical rigor is not immutable. The 
variability of the concept of rigor shows that something else besides mathematical abstraction 
must enter into the makeup of mathematics... something nonmathematical, somehow 
connected with the empirical sciences or with philosophy or both, does enter essentially…” 
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The logic of the metabolism could be framed as a Turing Machine; this pro-
viding an analogy between the von Neumann architecture and a bacterium. We
introduce an effective formalism that enables to describe the behaviour of the
bacterial cells in terms of the von Neumann architecture. One can think of the
genome sequence as an executable code specified by a set of commands in a sort
of ad-hoc low-level programming language. In our work, each combination of
genes is coded as a string of bits y ∈ {0, 1}L , each of which represents a gene
set. By turning off a gene set, we turn off the chemical reaction associated with
it. The bacterium takes as input chemicals (substrates) necessary for his growth
and duplication, and thanks to its biochemical network (coded by the genes of its
genome), produces small metabolites as output The string y is a program stored
in the memory unit. The control unit is a function gΦ that defines a partition
of the string, and is uniquely determined by the pathway-based subdivision of
the chemical reaction network. The processing unit of the bacterium could be
modelled as the collection of all its chemical reactions. In this regard, a Turing
Machine can be associated with the chemical reaction network of bacteria. By
investigating the whole metabolism of bacteria considering pathways of many
proteins, we extend the Bray’s idea, i.e. thinking of a protein as a computational
element. The cell receives, processes, and responds to inputs from the environ-
ment. However, since the question ‘what does this cell do?’ has often more than
one correct answer, we program molecular machines using a novel algorithm
called Genetic Design through Multi-Objective (GDMO) optimisation. GDMO
acts on the genetic level of the organism to find which are the genetic strategies in
order to obey control signals; then, it executes the optimisation of multiple bio-
logical functions. GDMO explores effectively the whole space of gene knockouts.
We optimise acetate and succinate, as well as other multiple biological functions
in E. coli, iAF1260, and we compare our method with state-of-the-art ones, e.g.
GDLS, OptFlux, OptGene, OptKnock. We use the Pareto optimal solu-
tions with the aim of producing useful metabolites and effective drugs. Each
point of the Pareto Front is a molecular machine able to accomplish a particular
task. Pareto optimality is important to obtain not only a wide range of Pareto
optimal solutions, but also the best trade-off design. Finally, we propose a solu-
tion for the problem of making the sensitivity analysis pathway-dedicated, and
we call it Pathway oriented Sensitivity Analysis (PoSA). This method interro-
gates the functional components of the molecular machine, and reveals the most
sensitive ones. To sum up, are bacteria unconventional computing architectures?
Our work suggests we may answer in the affirmative.
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In the framework of algorithmic information theory [1], complexity of an ob-

ject (a bit-string codifying a set of data, a function, etc.) is expressed in terms
of the length of the shortest program computing it. Shortening implies searching
for regularities: if you find a recurrent pattern in a string of symbols, you can
provide a receipt generating it which is significantly shorter than the string itself.
Now, regular patterns, in a sequence of phenomena are, in the Humean-empiricist
tradition, the only evidence of the existence of causal correlations. The Stuart
Mill’s famous theory of induction [2], expressly investigating the epistemological
aspect of causality, is based on this assumption. When Solomonoff [3], indepen-
dently from Kolmogorov, proposed the idea of (the length of) minimal programs
as measure of complexity he was arguing for a theory of inductive methods. In
his model, a theory is conceived as a program generating data to be explained.
The shorter is the program, the more general is the theory. The transition from
description to explanation is related to the real possibility of shortening. Hence,
we can plausibly argue that minimization procedures can be generally consid-
ered as models of the inferential process from a set of (positive and negative)
samples to a general law asserting cause-effect patterns. The plausibility of this
hypothesis can be shown by means of a theoretical argument: Briefly, the rarity
of non-random strings means that they are extremely unlikely. So, the presence
of some regular pattern that is purely casual is highly unlikely. The detection
of regularities is a sign that some kind of causal correlations must be active.
This hypothesis is corroborated by some researches in machine learning such as
decision tree induction. Tree induction algorithms [4] can be interpreted as a
paradigmatic example of induction as minimization. I will show that in these
algorithms an important role is played by entropy minimization. Entropy gain
involves the discovery of parameters that induce order, by reducing entropy, in a
set of samples structured as a matrix N × M , where the N -th component is the
target predicate and the other N −1 components are parameters supposed to be
relevant. Inducing order means establishing a hierarchy in the causal relevance
of parameters. To sum up, the theory of inductive reasoning known as decision
tree induction could be a good candidate to formalize the reasoning inferring
cause-effect patterns. There is a strong analogy in the characterization of in-
ductive inference between tree induction methods and the Stuart Mill’s canons
for inferring causal relations. Making explicit this analogy could be a promising
direction to argue in favour of this hypothesis.
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The standard theory of computational complexity is concerned with studying the
intrinsic difficulty of problems (or functions). These may be seen as processes whose
interactive behavior is trivial,i.e., is limited to the question/answer pattern. We set out
to provide grounds for a revised theory of computational complexity that is capable of
gauging the difficulty of genuinely interactive behaviors.

Following standard lore of concurrency theory, we formallydefine behaviors as
equivalence classes oflabelled transition systems (LTS), which in turn are usually spec-
ified using process calculi, such as Milner’sCCS [1]. Usual functions are recovered as
a particularly simple form of behavior, calledfunctional.

The next step is the development of an abstract cost model forinteractive compu-
tation. In the functional case, a cost model is just a measureof the resources (time,
space) required to compute the answer as a function of the size of the question. In
the interactive case, we propose to measure costs usingweighted asynchronous LTS (or
WALTS): asynchrony is a standard feature that is added to transition systems to represent
causal dependencies [2], which we need to generalize the trivial dependency between
questions and answers; weights are used to specify additional quantitative information
about space and time consumption.

Finally, we introduce a computational model, theprocess machine, which imple-
ments behaviors (just as Turing machines implement functions) by executing concur-
rent programs written in aCCS-based language. The process machine admits a natural
semantics in terms ofWALTSs and thus provides us with a non-trivial, paradigmatic
instance of our abstract framework for measuring the complexity of behaviors.

Complexity classes are then defined as sets of behaviors thatcan be implemented
by a process running within given time and space bounds on theprocess machine. We
conclude by showing that if we restrict to functional behaviors we obtain several stan-
dard complexity classes; thus, at least in many paradigmatic cases, we have in fact a
consistent extension of complexity theory into the realm ofinteractive computation.
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Abstract. Turing’s involvement with computer building was popular-
ized in the 1970s and later. Most notable are the books by Brian Ran-
dell (1973), Andrew Hodges (1983), and Martin Davis (2000). A central
question is whether John von Neumann was influenced by Turing’s 1936
paper when he helped build the EDVAC machine, even though he never
cited Turing’s work. This question remains unsettled up till this day.
As remarked by Charles Petzold, one standard history barely mentions
Turing, while the other, written by a logician, makes Turing a key player.

Contrast these observations then with the fact that Turing’s 1936 paper
was cited and heavily discussed in 1959 among computer programmers.
An historical investigation of Turing’s influence on computing shows that
Turing’s 1936 notion of universality became increasingly relevant among
computer programmers during the 1950s. In 1966, the first Turing award
was given to a computer programmer, not a computer builder, as were
several subsequent Turing awards. In short, Turing had already acquired
fame and recognition in the emerging field of software, well before his
alleged role in the advent of the ‘first universal computer’ was publicized.

The aforementioned historical investigation is described in my book The
Dawn of Software Engineering: from Turing to Dijkstra, published by
Lonely Scholar in Spring 2012 (www.lonelyscholar.com). My central the-
sis is that Turing’s influence was felt more in programming after
his death than in computer building during the 1940s. Moreover,
Turing’s influence only emerged gradually and often without full com-
prehension. Many first-generation programmers did not read Turing’s
1936 paper, let alone understand it. Those computer practitioners who
did become acquainted with Turing’s 1936 work during the 1950s–1960s
received it in at least one of the following three ways:
1. The ‘Turing machine’ was viewed as a model for a computer. Some

researchers tried to build ‘Turing machines’ during the 1950s, i.e.
after the first all-purpose physical computers were already available.

2. Turing’s notion of universality helped lay the foundations of pro-
gramming.

3. The unsolvability of the Halting Problem helped researchers lay bare
certain limitations in programming. The 1972 Turing award winner,
Edsger W. Dijkstra, was definitely one of the first to do so.
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One of the most valuable and discussed contributions made by Alan Turing in
the field of Artificial Intelligence was the famous test that takes his name. The
standard interpretation presents the test as an effective criterion for determining
if we are interacting with an intelligent entity or not. Turing was a man of his
times, and his approach fell within the tradition of behaviorism : passing the
test was supposed to be sufficient to justify ascriptions of mentality. In our
contribution, we wonder about how Turing would have shaped his ideas if he
had lived today and knew other approaches such as the embodied cognition and
the enactive social cognition ones, which assume that recognizing other person
is not a simulation process and that deducing the other’s experience means is
not always achieved through theoretical inference. Nowadays, in the light of
scientific findings from disciplines such as cognitive and social sciences, a more
sophisticated approach is proposed as to model how people act together and
understand each other in interactive situations.

The main aim of the first part of this contribution is to show how the role of
interactive elements in social cognition can be considered in order to motivate a
re-evaluation of the foundations and limits of the Turing test. A review of Tur-
ing’s use of the notion of time in the interaction and concepts such as interactive
coupling will also be addressed. In the second part, these ideas are presented
in mathematical terms under the scope of Computable Analysis. Rather than
making an inference from what the other person does, we formalize the way to
incorporate other people’s actions in terms of own goals/values within contex-
tualized situations. In this regard, the notion of intelligent project is introduced.
It is obviously assumed that the human capacity to recognize other humans is
rooted in strategies as the observation and reflection on others’ actions. How-
ever, the objective of this article is to determine the way to include the coupling
role involved in a social process in a formal framework based on Computable
Analysis such as to provide feasible applications of it within Computer Science.
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“This operation is so simple that it becomes laborious to apply” (Lehmer, 1933)

One of the most famous results of Alan M. Turing is the so-called universal Tur-
ing machine (UTM). Its influence on (theoretical) computer science can hardly
be overestimated. The operations of this machine are of a most elementary na-
ture but nonetheless considered to capture all the (human) processes that can
be carried out in computing a number. This kind of elementary machine fits into
a tradition of ‘logical minimalism’ that looks for simplest sets of operations or
axioms. It is part of the more general research programme into the foundations
of mathematics and logic that was carried out in the beginning of the 20th cen-
tury. In the 1940s and 1950s, however, this tradition was redefined in the context
of ‘computer science’ when computer engineers, logicians and mathematicians
re-considered the problem of small(est) and/or simple(st) machines in the con-
text of actual engineering practices. This paper looks into this early history of
research on small symbolic and physical machines and tie it to this older tradi-
tion of logical minimalism. Focus will be on how the transition and translation
of symbolic machines into real computers integrates minimalist philosophies as
parts of more complex computer design strategies. This contextualizes Turing’s
machines at the turn from logic to machines.

? Postdoctoral Fellow of the Fund for Scientific Research – Flanders (FWO)
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Abstract. In the edge searching problem, searchers move from vertex to
vertex in a graph to capture an invisible, fast intruder that may occupy
either vertices or edges. Fast searching is a monotonic internal model in
which, at every move, a new edge of the graph G must be guaranteed
to be free of the intruder. That is, once all searchers are placed the
graph G is cleared in exactly |E(G)| moves. Such a restriction obviously
necessitates a larger number of searchers. We examine this model, and
characterize graphs for which 2 or 3 searchers are sufficient. We prove
that the corresponding decision problem is NP-Hard. This is achieved
by reducing the problem of node search to fast search (via a third game,
called weak node-search). This result also shows a relation between the
node search game and the fast search game. This is independent from
the proof of B. Yang (2011).
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Andrew Hodges describes Turing as a Natural philosopher: “He thought and
lived a generation ahead of his time, and yet the features of his thought that
burst the boundaries of the 1940s are better described by the antique words:
natural philosophy.” Turing’s natural philosophy differs from Galileo’s view that
the book of nature is written in the language of mathematics (The Assayer,
1623). Computing differs from mathematics in that computers not only calcu-
late numbers, but more importantly produce real time behaviors. Turing studied
a variety of natural phenomena and proposed their computational modeling. He
made a pioneering contribution in the elucidation of connections between com-
putation and intelligence and his work on morphogenesis provides evidence for
natural philosophers approach. Turing’s 1952 paper on morphogenesis proposed
a chemical model as the basis of the development of biological patterns such as
the spots and stripes that appear on animal skin.

Turing did not originally claim that the physical system producing patterns
actually performs computation through morphogenesis. Nevertheless, from the
perspective of info-computationalism we can argue that morphogenesis is a pro-
cess of morphological computing. Physical process, though not computational in
the traditional sense, presents natural (unconventional), physical, morphologi-
cal computation. An essential element in this process is the interplay between
the informational structure and the computational process information self-
structuring. The process of computation implements physical laws which act on
informational structures. Through the process of computation, structures change
their forms. All computation on some level of abstraction is morphological com-
putation; a form-changing/form-generating process.

In this article, info-computationalism is identified as a contemporary philoso-
phy of nature providing the basis for the unification of knowledge from currently
disparate fields of natural sciences, philosophy, and computing. An on-going
development in bioinformatics, computational biology, neuroscience, cognitive
science and related fields shows that in practice biological systems are currently
already studied as information processing and are modeled using computation-
theoretical tools, according to Rozenberg and Kari. 1

1 The full article: http://www.mrtc.mdh.se/~gdc/work/cie-2012-dodig-8.pdf.
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Applicative systems are a formalisation of the lambda calculus and form the base
theory of Feferman’s explicit mathematics. For many linear and polynomial complexity
classes corresponding applicative systems have already been developed by authors as
Kahle, Oitavem, and Strahm. In contrast to the setting of bounded arithmetic, this
setting allows very explicit and straightforward lower bound proofs because no coding
of graphs of functions is necessary.

We present natural applicative theories for the logarithmic hierarchy, alternating
logarithmical time, and logarithmic space. For the first two algebras, we formalize
function algebras having concatenation recursion as main principle. For logarithmical
space, we formalize an algebra with safe and normal inputs and outputs. This algebra
allows to shift small safe inputs to the normal side.

The mentioned theories all contain predicates for normal, respectively safe words.
The set of safe words intuitively collects stored but not fully accessible words. The
interplay between normal words, being fully accessible, and safe words allows an elegant
formulation of induction principles justifying concatenation - and sharply bounded
recursion.
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As stated by Gödel’s second incompleteness theorem, any reasonable consis-
tent formal system has an unprovable Π0

2 -sentence that is true in the standard
model of arithmetic. This means that the total computable functions whose to-
tality is provable in a consistent system, which are known as provably (total)
computable functions, form a proper subclass of total computable functions. It is
natural to ask how we can describe the provably computable functions of a given
system. We present a simplified and streamlined characterisation of provably
computable functions of the system ID1 of non-iterated inductive definitions.
The idea is to employ the method of operator-controlled derivations that was
originally introduced by Wilfried Buchholz ([1]) and afterwards applied by the
second author to a characterisation of provably computable functions of Peano
arithmetic PA([3]). This work aims to lift up the characterisation in [3] to ID1.
We introduce an ordinal notation system O(Ω) and define a computable function
fα for a starting number-theoretic function f : N → N by transfinite recursion
on α ∈ O(Ω). The transfinite definition of fα stems from [3]. We show that a
function is provably computable in ID1 if and only if it is a Kalmar elementary
function in {sα | α ∈ O(Ω) and α < Ω}, where s denotes the successor function
and Ω denotes the least non-recursive ordinal. The proof can be found in [2].
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In the Theorema system (www.theorema.org), we prove automatically the
soundness of a verification method handling abruptly terminating while loops in
imperative programs. The method is based on path-sensitive symbolic execution
and functional semantics. Our main aim is the identification of the minimal
logical apparatus necessary for formulating and proving (in a computer-assisted
manner) a correct collection of methods for program verification. The distinctive
features of our approach are:

– Loop correctness is expressed in predicate logic, without using any additional
theoretical model for program semantics or for program execution, but only
using the object theory (the theory of the objects handled by the program).

– The semantics of a loop is the implicit definition, at object level, of the
function implemented by the loop.

– Termination is formulated as an induction principle corresponding to the
structure of the while loop.

As usual, the verification conditions consist in invariant preservation and ter-
mination. We prove automatically that these imply the existence, the uniqueness,
and the correctness of the function implemented by the loop. The knowledge
necessary for our proofs contains basic axioms of natural numbers (including
induction) and are performed using mainly first-order inferences (exception is
Skolemization). One advantage of computer automation is that all axioms and
all inference rules are explicit (no intuitive knowledge is used).

The main idea of the proof is inspired from the Scott fixpoint semantics,
however our approach does not need set theory.

Our computer-aided formalization may open the possibility of reflection of
the method on itself (treatment of the meta-functions as programs whose cor-
rectness can be studied by the same method). Because the formal specification
and the verification of the method are performed in the same framework one
could reason at object- and meta-level in the same system.

⋆ Recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences
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In his “Aufbau” Rudolf Carnap (1891-1970) proposed that logical operations
are differentiation from the entire manifold of sense and proposed “recollection
of similarity” as the basic relation. This view fundamentally differs from the
conventional mechanics of Alan Turing (1912-1954), that treats computable logic
as the mechanical integration of logical atoms. This view, that logic be founded
upon manifolds and not discrete logical atoms, was not uncommon before Alan
Turing’s Universal Machine model of computation became pervasive, popularized
during the critical period founding mathematical logic by the work of Ernst
Schröder (1841-1902) and Charles Sanders Peirce (1839-1914).

A common argument against the manifold view is that it makes no difference
to computed results. This is refuted when confronted by the challenges of general
recognition and locality in large scale parallel computation.

We present work toward the development of realizable mechanisms for com-
putable logic based upon a re-conception of logic as operations of differentia-
tion upon closed manifolds. This approach requires a unification of conceptions
in logic with natural geometric transformations of closed manifolds, combining
symbol processing with response potential.

Confirmation of these mechanisms may exist in nature. Our investigation is
founded upon the premise that it is the structure of closed manifolds in dy-
namic biophysical architectures that characterize sense and closely bind sense to
directed response potential.

The presented exploration is experimental and purely mathematical. The
approach argues that the effects we seek to characterize have a natural mathe-
matical basis and that by the elimination of naive assumptions concerning appre-
hension from geometry a characterization of Carnap’s basic relation will suggest
itself. We take this approach because it is the action of such apprehension that
is the subject of our inquiry.

The resulting mechanics suggests the design and physical realization of a new
model of computation; one in which structure and the concurrency of action are
a first-order consideration. By this model symbolic processing is storage free
and closely bound to response potentials, the capacity of symbol representation
is combinatorial across these dynamic manifolds, suggesting general engineering
principles that offer a symbolic processing capability in biophysical architectures
greater than previously considered.
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In classical logic, cut-elimination has a critical pair that trivializes the iden-
tity of proofs. Through restriction of the cut-elimination rules involved, two
dual sub-systems are generated that correspond to call-by-name (CBN) and
call-by-value (CBV) computation. We re-evaluate this situation in the case of
intuitionistic logic.

We need some proof-theoretical apparatus. Following the author’s previous
work1, sequent calculus is considered along with an isomorphic natural deduc-
tion system. We define in the sequent calculus permutative conversions T and
Q, whose normal forms constitute the well-known focused fragments for CBN
and CBV, respectively; and by isomorphism we equip natural deduction with
corresponding rules. In fact, in order to avoid using meta-theoretical devices like
contexts, T (resp. Q) is best given in natural deduction (resp. sequent calculus)2:

(T) letx = EN inP → [ap(EN)/x]P (P 6= x)
(Q) (tk) :: k′ → (x)t(k@((y)x(y :: k′))) (x, y fresh)

The intuitionistic asymmetry between hypothesis and conclusion already gen-
erates a formal bias towards CBN that resolves the CBN/CBV critical pair. But
the formal resolution can be naturally expressed in terms of permutative con-
versions: T solves the critical pair, while Q fails to do so. Therefore, for CBN
we consider cut-elimination rules supplemented with T3; whereas for CBV we
resort to constraining one of the cut-elimination rules.

It turns out that the obtained CBV system is in equational correspondence
with Moggi’s computational λ-calculus, and is therefore complete for CPS se-
mantics, while being included in the CBN system (in the manner of Plotkin’s
CBV λ-calculus), since cut-elimination is not constrained in the CBN system.

Moreover, nothing forces us to consider the focused fragment of T-normal
forms; but T-normalization contributes to an interesting syntactic collapse: the
reflection of the whole syntax into a simple CBN fragment; in addition, if seen
from the natural deduction side, the collapse explains why CBN can be defined
by local reduction rules and without let-expressions.

?? The author acknowledges financial support by Fundação para a Ciência e Tecnologia.
1 “The λ-calculus and the unity of structural proof theory”, Theory of Computing

Systems, 45:963-994, 2009
2 Here the notation of op.cit. is followed, except that the primitive substitution oper-

ator of natural deduction is written as a let-expression.
3 Curiously, supplementing cut-elimination with T and Q breaks termination.
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Abstract. Domain theory has been used with great success in providing a se-
mantic framework for Turing computability, over both discrete and continuous
spaces. On the other hand, classical approximation theory provides a rich set of
tools for computations over real functions with (mainly) polynomial and rational
function approximations.
We present a semantic framework for computations over real functions based on
polynomial enclosures. As an important case study, we analyse the convergence
and complexity of Picard’s method of initial value problem solving in our frame-
work. We obtain a geometric rate of convergence over Lipschitz fields and then,
by using Chebyshev truncations, we modify Picard’s algorithm into one which
runs in polynomial time over polynomial space representable fields, a reduction
in complexity which is impossible to achieve in the previous step-function based
domain models.

Keywords: computable analysis, computational complexity, initial value prob-
lem, Picard’s method, approximation theory, Chebyshev series
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Palindromes are sequences which read the same starting from either end.
Several operations on words were introduced which are either directly mo-

tivated by the biological phenomenon called stem-loop completion, or are very
similar in nature to it. The mathematical hairpin concept is a word in which
some suffix is the mirrored complement of a middle factor of the word. The
hairpin completion operation, which extends such a word into a pseudopalin-
drome with a non-matching part in the middle was thoroughly investigated and
most basic algorithmic questions about hairpin completion have been answered
with a noteworthy exception: given a word, can we decide whether the iterated
application of the operation leads to a regular language?

The operation studied here, is palindromic completion, which requires the
word to have a palindromic prefix or suffix in order to be completed by adding
symbols to the other side of the word such that the new obtained word is a
palindrome. The (iterated) palindromic closure considers all possible extensions
which complete the starting word into a palindrome. This notion represents a
particular type of hairpin completion, where the length of the hairpin is at most
one and the binding occurs only among identical symbols.

An important observation in the case of palindromic completion is that right
and the left completion of every palindrome coincide. We show that, just as in the
case of the hairpin operation, even the iterated completion of a word can stand
outside the regular language class. However, in this case, we are able to produce
starting from a regular language a non-regular languages that is context-free.
Furthermore, making use of an existing characterization of regular palindromic
languages we give a characterization of all languages that remain regular after
applying palindromic completion iteratively.

Due to this characterization, we are able to show that regularity of the it-
erated palindromic completion of regular languages is decidable. We also give
techniques of efficiently answering algorithmic questions regarding the comple-
tion of single strings (membership problem, palindromic completion distance
between two words).

? Work supported by Japanese Society for the Promotion of Science under no. P10827
?? Work supported by Alexander von Humboldt Foundation
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Consider the following problem: Given a Boolean n × n matrix, A, what is
the size of the smallest linear circuit computing A? Here linear circuit means
a circuit consisting of XOR gates each having two inputs, and size denotes the
number of gates. It is known that O

(
n2

logn

)
XOR gates is sufficient, and that this

is asymptotically tight. In fact, it holds for the vast majority of n× n matrices
that Ω

(
n2

logn

)
gates are needed. Despite this fact, there exists no concrete family

of matrices proven to require more than a linear number of gates. We continue
the study of cancellation-free linear circuits. A circuit C is cancellation-free if
for every pair of vertices v1, v2 in C, there do not exist two disjoint paths in C
from v1 to v2.

We use a theorem by Lupanov to prove that almost all matrices can be
computed by a cancellation-free circuit, whic is at most a constant factor larger
than the optimal linear circuit that computes the matrix. We also provide an
infinite family of matrices showing that optimal cancellation-free linear circuits
can have twice the size of optimal linear circuits.

It appears to be easier to prove statements about the structure of cancellation-
free linear circuits than about linear circuits in general. We prove two nontrivial
superlinear lower bounds. First, we show that any cancellation-free linear circuit
computing the n × n Sierpinski gasket matrix has size at least 1

2n log n. This
supports a conjecture by Aaronson. The proof is based on gate elimination. This
makes it the first, to the authors’ knowledge, superlinear lower bound using gate
elimination. Furthermore we show that a proof strategy due to Mehlhorn for
proving lower bounds on monotone circuits can be almost directly converted to
prove lower bounds on cancellation-free linear circuits. We use this together with
a result from extremal graph theory due to Andreev to prove a lower bound of
Ω(n2−ε) for infinitely many n× n matrices for every ε > 0. These lower bounds
for concrete matrices are almost optimal since all matrices can be computed with
O
(

n2

logn

)
gates.

? Partially supported by the Danish Council for Independent Research, Natural Sci-
ences.
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An ω-language is a set of infinite words over a finite alphabet X . We consider the class
of recursive ω-languages, i.e. the class of ω-languages accepted by Turing machines
with a Büchi acceptance condition, which is also the class Σ1

1 of (effective) analytic
subsets of Xω for some finite alphabet X . We investigate the notion of ambiguity for
recursive ω-languages with regard to acceptance by Büchi Turing machines. We first
show that the class of unambiguous recursive ω-languages is the class ∆1

1 of hyper-
arithmetical sets. We obtain also that the ∆1

1-subsets of Xω are the subsets of Xω

which are accepted by strictly recursive unambiguous finitely branching Büchi tran-
sition systems; this provides an effective analogue to a theorem of Arnold on Büchi
transition systems [Arn83]. Moreover, using some effective descriptive set theory, we
prove that recursive ω-languages satisfy the following remarkable dichotomy property.
A recursive ω-language L ⊆ Xω is either unambiguous or has a great degree of am-
biguity in the following sense: for every Büchi Turing machine T accepting L, there
exist infinitely many ω-words which have 2ℵ0 accepting runs by T . We also show that
if L ⊆ Xω is accepted by a Büchi Turing machine T and L is an analytic but non
Borel set, then the set of ω-words, which have 2ℵ0 accepting runs by T , has cardinality
2ℵ0 . Moreover, using some results of set theory, we prove that it is consistent with the
axiomatic system ZFC that there exists a recursive ω-language in the Borel class Π0

2,
hence of low Borel rank, which has also this maximum degree of ambiguity.
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Recent cyberattacks have demonstrated that current approaches to the malware problem (e.g., detection)
are inadequate. This is not surprising as virus detection is Turing undecidable. 1 Further, some recent malware
implementations use NP problems to encrypt and hide the malware. 2 Two goals guide an alternative
approach: (a) Program execution should hide computational steps in order to hinder “reverse engineering”
efforts by malware hackers; (b) New computational models should be explored that make it more difficult
to hijack the purpose of program execution. The methods explained here pertain to (a) implemented with a
new computational model, called the active element machine (AEM). 3

An AEM is composed of computational primitives called active elements that simultaneously transmit
and receive pulses to and from other active elements. Each pulse has an amplitude and a width, representing
how long the pulse amplitude lasts as input to the active element receiving the pulse. If active element Ei

simultaneously receives pulses with amplitudes summing to a value greater than Ei’s threshold and Ei’s
refractory period has expired, then Ei fires. When Ei fires, it sends pulses to other active elements. If Ei

fires at time t, a pulse reaches element Ek at time t+ τik where τik is the transmission time from Ei to Ek.
The AEM language uses five commands – Element, Connection, Fire, Program and Meta – to write

AEM programs, where time is explicitly specified and multiple commands may simultaneously execute. An
Element command creates, at the time specified in the command, an active element with a threshold value,
a refractory period and a most recent firing time. A Connection command sets, at the time specified in the
command, a pulse amplitude, a pulse width and a transmission time from element Ei to element Ek. The
Fire command fires an input element at a particular time. The Program command defines the execution
of multiple commands with a single command. Element and Connection commands establish the AEM
architecture and firing activity. The Meta command can change the AEM architecture during AEM program
execution.

This model uses quantum random input to generate random firing patterns that deterministically execute
a universal Turing machine (UTM) program η. Random firing interpretations are constructed with dynamic
level sets on boolean functions that compute η. The quantum randomness is an essential component for
building the random firing patterns that are Turing incomputable. 4 It is assumed that the following are all
kept perfectly secret: the state and tape of the UTM, represented by the active elements and connections;
the quantum random bits determining how η is computed for each computational step; and the dynamic
connections in the AEM.

Formally, let f1j , f2j , . . . fmj represent the random firing pattern computing η during the jth compu-
tational step and assume an adversary can eavesdrop on f1j , f2j , . . . fmj . Let q denote the current state
of the UTM, ak a UTM alphabet symbol and qk a UTM state. Perfect secrecy means that probabilities
P (q = qk|f1j = b1 . . . fmj = bm) = P (q = qk) and P (Tk = ak|f1j = b1 . . . fmj = bm) = P (Tk = ak) for
each bi ∈ {0, 1} and each Tk which is the contents of the kth tape square. If these secrecy conditions hold,
then there doesn’t exist a “reverse engineer” Turing machine that can map the random firing patterns back
to an unbounded sequence of UTM instructions. For an unbounded number of computational steps, define
function g : N→ {0, 1} where g((j − 1)m+ r) = f(r+1)j and 0 ≤ r < m. Then g is incomputable.

Proposed methods of hypercomputation currently have no physical realization. 5 The methods described
here can be physically realized using an off-the-shelf quantum random generator device with a USB plug
connected to a laptop computer executing a finite AEM program.

1 Fred Cohen. Computer Viruses Theory and Experiments. Computers and Security. 6(1), 22–35, February (1987).
2 Eric Filiol. Malicious Cryptology and Mathematics. Cryptography and Security in Computing. Intech. 23–50 (2012).
3 Michael Fiske. The Active Element Machine. Proceedings of Computational Intelligence. 391 Springer. 69–96

(2011). http://www.aemea.org/AEM
4 Cristian Calude, Karl Svozil. Quantum randomness and value indefiniteness. Adv. Sci. Lett. 1(2), 165–168 (2008).
5 Martin Davis. Why there is no such discipline as hypercomputation. Applied Mathematics and Computation.
178(1), 4–7, July (2006).
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Let E1, . . . , En be of events of interest. De Finetti’s betting problem is the
choice that an idealised agent called bookmaker must make when publishing a
book, i.e. when making the assignment B = {(Ei, βi) : i = 1, . . . , n} such that
each Ei is given value βi ∈ [0, 1]. Once a book has been published, a gambler
can place bets on event Ei by paying αiβi to the bookmaker. In return for this
payment, the gambler will receive αi, if Ei obtains and nothing otherwise. De
Finetti constructs the betting problem in such a way as to force the bookmaker
to publish fair betting odds for book B. To this end, two modelling assumptions
are built into the problem, namely that (i) the bookmaker is forced to accept
any number of bets on B and (ii) when betting on Ei, gamblers can choose the
sign, as well as the magnitude of (monetary) stakes αi. Conditions (i-ii) force
the bookmaker to publish books with zero-expectation, for doing otherwise may
offer the gambler the possibility of making a sure profit, possibily by choosing
negative stakes thereby unilaterally imposing a payoff swap to the bookmaker. As
the game is zero-sum, this is equivalent to forcing the bookmaker into sure loss.
In this context, de Finetti proves that the axioms of probability are necessary
and sufficient to secure the bookmaker against this possibility.

The crux of the Dutch book argument is the identification of the agent’s
degrees of belief with the price they are willing to pay for an uncertain reward
which depends on the future truth value of some presently unknown proposi-
tions – the events on which the agents are betting. This clearly suggests that
the semantics of events, which bears directly on the definition of probability,
is implicitly endowed with an epistemic structure. The purpose of this paper is
to give this structure an explicit formal characterisation and to show how the
resulting framework helps us making de Finetti’s elusive notion of event much
clearer. In particular we shall be able to give a formal setting to the following
remark:

[T]he characteristic feature of what I refer to as an “event” is that the
circumstances under which the event will turn out to be “verified” or
“disproved” have been fixed in advance.
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Abstract. Ramsey’s theorem states that each coloring has an infinite
homogeneous set, but these sets can be arbitrarily spread out. Paul Erdős
and Fred Galvin proved that for each coloring f , there is an infinite set
that is “packed together” which is given “a small number” of colors by
f . In this talk, we will give the precise statement of this packed Ram-
sey’s theorem, and discuss its computational and reverse mathematical
strength. In reverse mathematics, this theorem is equivalent to Ramsey’s
theorem for each exponent n 6= 2. For n = 2, it implies Ramsey’s theo-
rem and does not imply ACA0. For each exponent, we will also discuss
the arithmetical complexity of solutions to computable instances of this
packed Ramsey’s theorem.
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We consider only countable structures in a finite relational language. Com-
putable structures have the universe and the basic functions and relations recog-
nizable by Turing machines. Considering structures with universes and basic rela-
tions recognizable by synchronous finite automata, we get an important and well
studied subclass of computable structures — that of automatic structures [1].
One of the most important algorithmic properties of automatic structures is that
they always have a decidable presentation, i.e., a presentation with the complete
diagram being decidable.

One can also define intermediate subclasses of structures presentable by other
types of automata. In particular, an asynchronously automatic structures has a
regular set as its domain, and its basic relations are recognizable by asynchronous
multi-tape automata [1]. Asynchronously automatic structures need not be de-
cidable [2] but various interesting structures without an automatic presentation
have an asynchronous automatic presentation.

An even wider class would be a class of structures presentable by pushdown
automata. In the talk we will give possible approaches to define such structures.

We will discuss motivation, some examples, open problems that arise in the
field. Some parts of this work are new to us and several open question are rather
basic.
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Absolute value of rational number x is called trivial if it equals 0 for the
number 0, and eqals 1 for all the other numbers.

For a prime number p, the p-adic absolute value on Q is defined as follows:

any non-zero rational x, can be written uniquely as x = pn
a

b
with a, b and p

pairwise coprime and n ∈ Z some integer; so we define

|x|p :=

{
0, if x = 0

p−n, if x 6= 0.

In 1916 Alexander Ostrowski proved that any non-trivial absolute value on the
rational numbers Q is equivalent to either the usual real absolute value or a
p-adic absolute value.

Distances using the usual absolute value are called Archimedean, and the
distances using p-adic absolute values are called ultrametric. P.Turakainen [2]
proved that probabilistic automata can be generalized using arbitrary real num-
bers instead of probabilities and the languages recognized by these Archimedean
automata are the same stochastic languages.

We generalize probabilistic automata in the same way, only we use arbitrary
p-adic numbers numbers instead of probabilities. Complexity of ultrametric au-
tomata defined this way can differ from complexity of probabilistic automata
essentially. For arbitrary prime p there is a language Lp such that there is a
p-ultrametric automaton with 2p states recognizing Lp but every deterministic
finite automaton for Lp needs at least cp log p states. M.O.Rabin proved in [1] that
error-bounded probabilistic automata with k can be simulated by deterministic
automata with ck states.
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Abstract. It is common in cognitive science to equate digital computation with information 
processing, for information processing is (supposedly) what digital computers do. This second 
statement is put to the test in this paper, which deals with digital computation as it is actualised in 
physical systems. I shall examine in what sense information processing is equivalent to digital 
computation and whether nontrivial digital computing systems can be distinguished from non-
computing systems by virtue of information-processing features. The answers depend on what we 
take ‘information’ to be and what the processing of information is. 

Information may be interpreted non-semantically (e.g., as either Shannon information or 
algorithmic information) or semantically (e.g., as either factual information or instructional 
information). Undoubtedly, other interpretations of information exist, but they are not discussed in 
this paper. To set the stage, the processing of information is characterised here as the production of 
new information, its modification and the removal thereof. I argue elsewhere that whilst 
algorithmic information fares much better than Shannon information as a candidate for a plausible 
information processing account of computation, the resulting account still faces problems. The 
focus of this paper is on semantic information and more specifically on instructional information.  

Arguably, an instructional information processing account can adequately explain concrete 
digital computation. According to this account, concrete digital computation is the processing of 
digital data in accordance with finite instructional information for some purpose. The instructional 
information processing account has the suitable conceptual backbone to explain the essential 
features of digital computing systems in information-processing terms. It also does not have the 
problematic implication, which factual information carries, that digital computing systems can 
either evaluate or ensure the truthfulness of the information that they process. Further, it is 
evaluated favourably against the criteria for assessing the adequacy of accounts of concrete 
computation. 

Keywords: Instructional Information, Factual Information, Concrete Digital Computation, Turing 
Machines, Cognitive Science, Digital Computers 
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Abstract. Countable marriage theorem (Hall, 1948) asserts that a count-
able bipartite graph (B, G; R) satisfying B-locally finiteness (each vertex
in B has a finite degree) and Hall condition (for all finite subset X ⊂ B,
the number of vertices which are adjacent to X is more than or equal to
|X|) has a solution (injection M ⊂ R from B to G). However it does not
hold recursively, namely, even if a bipartite graph (B, G; R) satisfying
B-locally finiteness and Hall condition is recursive, it does not have a
recursive solution. Reverse mathematics reveals how far each theorem
is from holding recursively. By a previous research, it has been known
that countable marriage theorem is equivalent to ACA over RCA0, and if
the recursiveness is added to B-locally finiteness in its assumption, the
assertion weakens to be equivalent to WKL over RCA0 (Hirst, 1990).
On the other hand, Kierstead introduced expanding Hall condition which
is a combinatorial expansion of Hall condition, and showed that a recur-
sive bipartite graph (B, G; R) satisfying recursive B, G-locally finiteness
and recursive expanding Hall condition, has a recursive solution [1]. This
suggests that a restricted marriage theorem with recursive B, G-locally
finiteness and recursive expanding Hall condition as assumption, is prov-
able in RCA0. (Indeed this is the case.) Then we consider all possible
marriage theorems with various levels of B-locally finiteness, G-locally
finiteness and Hall condition as assumption, and classify them into ACA0,
WKL0 and RCA0(+Σ0

3-IND) in the context of reverse mathematics. By
this exhaustive investigation, we can see how the strength of marriage
theorem varies by strengthening its assumption step by step, and conse-
quently find that recursive G-locally finiteness and recursive expanding
Hall condition are essential for a recursive bipartite graph to have a
recursive solution. Moreover we also carry out the same investigation
for the symmetric variation of countable marriage theorem, and clas-
sify restricted symmetric marriage theorems into ACA0, WKL0 and RCA0

completely.

Keywords: Reverse mathematics, Recursive graph theory, Marriage the-
orem.
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Abstract. We discuss a (relatively) new method of providing models of λ-reduction
by which we are able to interpret λ-terms compositionally on possible world
structures with a ternary accessibility relation. The simplicity of the structures
is striking, moreover, they provide us with a surprising richness of interpretations
of function abstraction and application.
We show how the models can differentiate between ‘extensional’ λ-reduction,
which supports β-contraction and η-expansion, and ‘intensional’ reduction which
supports only β-contraction. We state semantic characterisation (i.e. complete-
ness) theorems for both.
We then show how to extend the method to provide a sound and complete class
of models for reduction relations that additionally support β-expansion and η-
contraction (i.e. they are models of β-equality and η-equality). The class of mod-
els is complete in the sense that exactly the derivably equal λ-terms receive the
same denotation in every model.
The models we present differ from the familiar models of the λ-calculus as they
can distinguish, semantically, between intensional and extensional λ-equality.
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The pairs of sets, Kallimulin [2] used for showing the definability of the jump
operation in the structure of the enumeration degrees, are a generalization of
Jockusch’s notion of semi-recursive sets [1].

In this talk we shall investigate the properties of the enumeration degrees of
the semi-recursive sets. We shall give an alternative first order defininition of the
jump operation in the enumeration degrees. Further we shall generalize the result
by Giorgi, Sorbi and Yang [3] by proving that every non-low Σ0

2 enumeration
bounds a downwards properly Σ0

2 degree.
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DNA code words arose in the attempt to avoid unwanted hybridizations of
DNA strands for DNA based computations. Given a set of constraints, gener-
ating a large set of DNA strands that satisfy the constraints is a difficult and
important problem in DNA computing. On the other hand, motivated by the
non-determinism of molecular reactions, A. Ehrenfeucht and G. Rozenberg intro-
duced forbidding and enforcing systems (fe-systems) as a model of computation
that defines classes of languages based on two sets of constraints. We connect
these two areas of research in natural computing by proposing a new way of
generating DNA codes using the theory of forbidding and enforcing systems.
Using fe-systems, we show how families of DNA codes that avoid unwanted
cross hybridizations can be generated. Since fe-systems impose restrictions on
the subwords or words of a language, they can be used to model the restrictions
imposed by unwanted hybridizations and thus, provide a natural framework to
study DNA codes.

One of the benefits of studying DNA codes with fe-systems defining families
of languages is that one fe-system can define an entire class of DNA codes as
opposed to just one DNA code that has been the norm in constructing/studying
DNA code words using the classical formal language theoretic approach. We
characterize θ-subword-k-m, θ-subword-k, θ-strict, θ-prefix, θ-suffix, θ-bifix, θ-
infix, θ-intercode, θ-comma-free and θ-k codes for a morphic or an antinmorphic
involution θ by fe-systems. Examples of generating specific DNA codes over the
DNA alphabet by fe-systems are presented.

We confirm some properties of DNA codes using fe-systems, which exhibits
the potential of the fe-systems approach to DNA codes for discovering new prop-
erties of DNA codes using forbidding-enforcing theory.

Finally, we show how some known methods for generating good DNA codes,
which have been tested experimentally, can be generalized using fe-systems. This
shows that fe-systems can be used to extend these methods and to generate large
families of codes with a desired property, as opposed to just one code.
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Complexity of the Continued Fractions of Some
Subrecursive Real Numbers
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Abstract. A theorem, proven in my master’s thesis [1] states that a
real number is E2-computable, whenever its continued fraction is in E2

(the third Grzegorczyk class). The aim of this presentation is to settle
the matter with the converse of this theorem. It turns out that there
exists a real number, which is E2-computable, but its continued fraction
is not primitive recursive, let alone E2. A question arises, whether some
other natural condition on the real number can be combined with E2-
computability, so that its continued fraction has low complexity. Such a
condition is, for example, E2-irrationality. A close scrutiny of a theorem
of R. S. Lehman [6] shows that if a real number is E2-computable and
E2-irrational, then its continued fraction is in E3 (elementary). Using
some strong results on irrationality measures, we conclude that all real
algebraic numbers and the number π have continued fractions in E3.

Keywords: Grzegorczyk’s classes E2 and E3, E2-computable real num-
ber, E2-irrationality, continued fractions
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Abstract. The digitisation of historical texts provides an access to a
huge amount of the human knowledge and experience of our ancestors.
However the spelling variations and the lack of norms make it difficult
for practical usage, e.g. information retrieval and information extraction.
The comprehension is also hindered for non-experts.
In this talk we address the problem of normalisation of historical texts.
Specifically we focus on determining the modern equivalent m of a given
historical word h. The approach we present is based on a modern dictio-
nary D, i.e. list of modern words, and a list of instances I = {〈hi,mi〉}Ni=1

which specifies the modern equivalent mi of the historical word hi. Given
this input data, our objectives are:
1. to determine a set of patterns P = {〈χ, µ〉} and p : P → (0; 1], so

that p(χ, µ) expresses how probable it is that an infix χ of a historical
word is transformed into an infix µ of a modern word.

2. for an arbitrary historical word h provide a sorted list of candidates
C(h) of its possible modern equivalents.

Once the first problem is solved, the second one is modelled via a Leven-
shtein edit-distance with edit-operations P and cost function p. So the
challenging problem seems to be the first one. Our idea is to retrieve the
desired information by embedding the structure of the historical words
H = {hi}Ni=1 into the structure of the modern words D. We use the
structure introduced by Blumer and Blumer et al. in 1984, 1987:

SH = {χ |χ is a prefix of H or there are characters a 6= b(aχ and bχ are infixes of H)}.
Similarly we define the structure SD. Intuitively SH captures the inter-
esting regularities in the set of historical words H and SD represents the
regularities in the modern language and the task is to determine how
the regularities from the first structure are transformed into the second.
Thus we search P as a subset of SH×SD. For each historical word hi ∈ H
we define a binary tree TH(hi) which encodes the decomposition of hi

into smaller subwords with respect to the structure SH. An augmented
binary tree AT D(mi) is assigned to each modern word. Then using a
somewhat modified Levenshtein edit-distance allows us to find the best
way to embed the structure TH(hi) into the structure AT D(mi) for each
instance 〈hi,mi〉 ∈ I. Based on these embeddings we determine the set
P and gather statistics in order to define the probability measure p.
We conclude by presenting some experimental results in favour of this
approach and discussing further challenges in this area.
Key Words: Edit-distance, Approximate search, Alignments of struc-
tures.

? The work on this presentation was granted by FP7 CULTURA project, no. 269973.

59



Sequent calculus with algorithmic properties for
logic of correlated knowledge

Haroldas Giedra and Jūratė Sakalauskaitė
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Abstract. Logic of correlated knowledge is epistemic logic enriched by
observational capabilities of agents. This allows to formalize and reason
about correlations between information carried by systems in different
states. As an example of such information is quantum information carried
by physical system composed of atomic particles. Sequent calculus is one
type of deduction systems used to mechanically prove the truth of state-
ments related to corresponding knowledge base. We presented sequent
calculus for logic of correlated knowledge, proved soundness, complete-
ness, admissibility of cut rule and analysed the termination of the system
in this paper. As a method, we used internalization of semantics to rules
and axioms of deduction system.

Keywords: Logic of correlated knowledge, sequent calculus, soundness,
completeness, admisibility of cut rule, termination.
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The fastest known exact algorithm for the Traveling Salesman Problem (TSP)
uses O∗(2n) time and space [Held, Karp] (here, O∗(·) suppresses polynomial fac-
tors of the input length that is poly(n, logM), where n is the number of vertices
in the input graph and M is the maximal edge weight). If we allow a polyno-
mial space only, then the best known algorithm has running time O∗(4nnlogn)
[Björklund, Husfeldt]. For TSP with bounded weights there is an algorithm with
O∗(1.657n · M) [Björklund] running time. It is a big challenge to develop an
algorithm with O∗(2n) time and polynomial space.

In this short note we propose a very simple algorithm that, for any ε >
0, finds (1 + ε)-approximation to directed metric TSP in O∗(2nε−1) time and
O∗(ε−1) = ε−1 · poly(n, logM) space. Thereby, for any fixed ε, the algorithm
needs O∗(2n) steps and polynomial space to compute (1 + ε)-approximation.

Our algorithm is inspired by FPTAS for the Knapsack problem due to Ibarra
and Kim. They use the fact that Knapsack can be solved by a simple pseudopoly-
nomial algorithm working in time O(nW ) where n is the number of items and
W is the total weight. FPTAS for Knapsack first divides all input weights by
some α(ε, n,W ) and then invokes the pseudopolynomial algorithm. The result-
ing answer might not be optimal as the weights are not just divided by α, but
also rounded after that. However a simple analysis shows that rounding does not
affect the result too much.

We use the same idea. By OPT we denote the cost of an optimal solution.
To get a polynomial-space approximation algorithm for directed Metric TSP we
first divide all edge weights by a big enough number α and then use an algorithm
based on inclusion-exclusion. Then the running time of inclusion-exclusion algo-
rithm is 2n · OPT/α and the length of the resulting cycle is at most OPT + αn.

So, we choose α s.t. α ≥ OPT
poly(n)

and α ≤ εOPT
n . Metric TSP can be approxi-

mated in polynomial time, therefore we can find β s.t. OPT ≤ β ≤ OPT · log n
and take α = β·ε

n logn . Then the algorithm has O∗(2nε−1) time and O∗(ε−1) space
complexity, respectively.
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Given the huge rise in casual gaming in the last decade and the amount of human-hours put into gaming,

quite a few researchers have sought to harness gaming labor for computationally hard tasks, for example,
labelling images. So far all such tasks fall into the Turing-solvable realm. In this talk, a game which reduces
to, and is reducible from, a Turing-unsolvable problem will be presented.

Fig. 1. An Instance of the Robot Devolution
Game

At the start

Door
only a body-less robot can pass through

Chemical/fuel 
bricks available in 

plenty:

Robots imprisoned!

Friday, February 24, 12

There are a bunch of robots imprisoned in a room by a horrible blob.  The 
room has a small door to the outside.  None of the robots are small enough 
to use the door. Only a body-less robot with just the head can go through the 
door! Robots can reproduce and download their minds to any child’s body (or 
any other robot). Reproduction has certain rules. Help them escape by 
breeding them in a fashion so as to produce to produce a body-less robot . 

Many important computational problems which arise in
science and technology are computationally hard. For exam-
ple, computational abstractions of the protein folding problem
are known to be NP-complete, which renders the problem in-
tractable by existing means if NP 6= P. Certain other problems
are still harder, as they are Turing-unsolvable. First-order for-
malizations of problems such as formal verification of circuits,
software correctness checking, theorem-proving, type inference
etc. fall into this realm (in the general case). Some of these
problems have immediate and wide-ranging economic conse-
quences; for example, estimates of costs to the global economy
due to detrimental effects of software bugs range in the tens to
hundreds of billions of dollars annually. This problem does not
have a straightforward solution, as formal verification of soft-
ware is a very labor-intensive task. Exacerbating the situation
is the lack of skilled labor: DARPA estimates that there are
only about 1000 formal-verification experts in the US. Most
instances of uncomputable problems, including formal verification of software, seem to require insight into
the structure of the problem. This insight is possessed mostly by the experts of that domain. This leads to
the question of whether such hard problems can be cast into a form, for example a natural game, which
removes the need for domain knowledge by completely abstracting away from the original domain. Ideally,
such a game should be able to exploit a human player’s insight into the structure of the game. This insight
should then be automatically transferrable into solving the problem. Some definitions are in order:

Game Define a game G to be a quadruple 〈G, γ : G 7→ 2G, I, F 〉 composed of a set of game states G, an operation γ
specifying valid moves in the game, a set of initial game states I, and a set of final game states F .1 The player
starts with an initial game state i ∈ I. Initial game states are also called game instances. The player produces a
sequence of game states i, g1, g2, . . .. If there is a finite sequence starting with i ∈ I and ending with an f ∈ F ,
the game instance i is said to be completable; if there is no such sequence for i, then the game instance is said to
be uncompletable.

Uncomputable Game A game G = 〈G, γ : G 7→ 2G, I, F 〉 is said to be an uncomputable game if there is no Turing
machine m which decides for any arbitrary game instance i ∈ G whether it is completable or uncompletable.

In CiE 2012, we will present the Robot Devolution Game (see Figure 1), an uncomputable game, which
was designed to abstract first-order resolution theorem proving. The mapping from resolution, initial results,
and videos from subjects playing the game will be presented during the talk.2 A small instance of the game
will be given to the audience to play live during the presentation.

1 Note: G, I and F need not be finite.
2 Thanks to Selmer Bringsjord for invaluable discussions, Konstantine Arkoudas and Marc Destafano for their

comments, and Spencer Posson for helping with the implementation of the Robot Devolution game in the iOS
platform. See http://www.cs.rpi.edu/~govinn/papers/RobotDevolution.pdf for the mapping.
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Structures consisting of components with part and connections between them
occur frequently in science and engineering. The graphical syntax of SysML pro-
vides a well-developed language for specifying descriptions of structures with
part and connection properties. An abstraction of structure diagrams are defined
in which each property within a structure diagram has a domain and range. Ax-
ioms are given for part properties within a structure diagram which ensure that
the part properties have a strict partial order. The axioms for part properties in
a structure digram are syntactically checkable. An orthogonality axiom is used
to ensure that in an implementation parts of the same type do not get reused.
The decidability of the consistency of a structure diagram is established.

While Description Logics (DLs)have been used to model structure diagrams,
there is no known DL corresponding to a structure diagram or a DL generated
by a structure diagram. Further, the structure diagrams in engineering languages
use operations, variables, behavior constructions, as well as parts. A structure
diagram is embedded as an axiom set within a variant of type theory, called
Algos. Algos is based directly on topos axioms. The embedding makes use of the
fact that type theory contains a representation of Description Logic concept and
role constructions. Type theory provides a direct inference semantics for the DL
constructions. Type theory significantly extends the language constructions of
DL and other type theory constructions, such as an equalizer type construction,
are used to represent structure diagrams.

The decidability of the consistency is established using type theory properties to
eliminate quantifiers to reduce the formula representation for a structure diagram
to one which uses only a single universally quantified formula with monadic pred-
icates. In type theory a functional property can be replaced with a map term
which whose value for each argument satisfies the functional property. Since
there are only a finite number of connection equations each connection equation
can be replaced by a finite number of unary predicates. Conditions are given on
structure diagrams which ensure that each structure satisfying the axioms has
a unique part decomposition, i.e., all minimal models are isomorphic.

Keywords: Description Logic, SysML, OWL, Type Theory, Structure Dia-
grams
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A threshold ((k, n)) quantum secret sharing protocol [6, 2, 3] is a protocol by which a dealer
distributes shares of a quantum secret to n players such that any subset of at least k players can
access the secret, while any set of less than k players has no information about it. We investigate a
particular family of quantum secret sharing protocols parametrized by a graph which represents the
quantum state, called graph state, shared by the players [8, 7]. We show that the graph theoretical
notion of weak odd domination can be used to characterize the sets of players that can access the
secret.

Only few threshold quantum secret sharing schemes have been proved in the literature to be
achievable using graph states: ((3, 5)) can be done using a C5 graph (cycle with 5 vertices) [8], and
for any n, an ((n, n)) protocol using the complete graph can be done, up to some constraints on
the quantum secret [9]. Independently [1] introduced an ((n, n)) protocol for any n. This protocol
is based on the GHZ state which is locally equivalent to a complete graph state [5].

Using a construction based on lexicographic product of graphs, we introduce a family of graphs
which can achieve any ((k, n)) protocol when k > n− n0.68. Moreover, we prove that for any graph
the corresponding secret sharing protocol has a threshold greater than 79

156n where n is the number
of players of the protocol. Using probabilistic methods we prove the existence of graphs which
threshold is smaller than 0.811n. More precisely, we show that a random graph of order n has a
threshold smaller than 0.811n with high probability. However, one cannot easily double check that
the threshold of the protocol associated with a particular (randomly generated) graph is actually
smaller than 0.811n since we prove that the corresponding decision problem is NP-complete.

The presentation will be mainly based on the results presented in [7] and [4].
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Abstract. Systems and methods for the protection of sensitive data and/or algorithms are presented. One such system makes 
use of rotation of coordinates by a random vector, allowing for the protection of the input vectors associated with the 
calculation of a correlation coefficient. This system may be used to protect multiple such calculations, as for example, may 
be associated with a correlation matrix. Applications to financial systems, systemic risk, and cloud computing are explored.
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Résumé We present a work in two parts : [1] and [2]. The first part
presents a formal system called “Self Developing Networks of agents” or
SDN. It attempts to reproduce the quality of parallelism present in cel-
lular biological development : development, communication, distribution
and decentralized execution. Finite-state agents execute local graph re-
writing rules that create other agents and links. An initial ancestor agent
can thus progressively develop a network of agents. An obstacle to achieve
a decentralized and distributed execution, happens when two neighbors
try to simultaneously create new nodes connecting to each other. a first
definition of SDNs called “basic SDNs” solve the problem by avoiding
it : it imposes that when an agent can rewrite, its neighbors cannot, and
can thus be used as stable gluing points. It is the programmer’s task to
prove mutual neighbor-exclusion.

We then extend the definition to a more general concept of higher order
SDNs that alleviates this task : They are are node-replacement parallel
graph grammars, endowed with the additional property that they can be
simulated by basic SDNs. We illustrate those two definitions with graph
grammar on undirected and directed graph, the simulation works like a
software layer which incorporates the neighbor exclusion constraint at
the syntactic level.

In the second part, Self Developing agents are programmed using a Finite
State Automaton with output actions (Mealy machine). The FSA embo-
dies the pure computational part, while the actions which are primitive
node-replacement rule, encapsulate the pure development part and de-
fine the instructions of a Self Developing Machine (SDM). We present
an example of SDM called the graph-machine using ten instructions,
and prove that for any SDN, there exists a graph machine that simulates
it. We introduce a natural model of complexity where an agent does a
bounded processing in one unit of time. We prove an intrinsic universa-
lity result in linear time, while a simulation by a Turing Machine needs
exponential time. This illustrates the parallel power of development.
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Abstract. This paper strengthens a recent result concerning the con-
servation of information in software systems. Using statistical mechanical
arguments, a previous paper proved that subject only to the constraints
of constant size and constant Shannon information, all software systems
are overwhelmingly likely to evolve such that the probability of appear-
ance of a component of n programming tokens obeys a power-law in
the unique alphabet of tokens used, asymptoting to a constant for small
components. Furthermore, this result is independent of application area,
programming language or implementation details. In this paper, the re-
sult will be further strengthened and quantified using measurements on
over 40 million lines of mixed open and commercial source code in seven
programming languages. In addition, the rate at which equilibriation to
the underlying distribution takes place will be demonstrated using ani-
mations on this corpus.

This result will then be generalised to consider the possible forms that
defect distributions are most likely to take in software systems. This is of
considerable importance because previous studies have only attempted to
fit various assumed reasonable functions to existing data such as polyno-
mial, logarithmic and hybrid schemes. However in order to understand
the rate at which systems mature in defect terms, i.e. how and where
defects appear with increasing usage, it is important to understand if
there is any underlying natural functional form for this derivable from
a mathematical model. Here a defect distribution derived directly from
the power-law behaviour of component sizes is tested on real data.

Finally, these results will be used to explore the frequently observed
phenomenon that defects in software systems cluster. This provides in-
sights into the conditional probability of finding the (i+1)th defect in a
component given that (i) defects have been found already, whatever kind
of system is being built, whoever builds it and however it is built. It also
throws a little light on the ’zero-defect’ conundrum.

Keywords: Information content, conditional defect distribution,

zero defect, Power-law, Equilibriation
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Consider the question: given a mathematical construction and a particular phys-
ical system, is the latter adequate to “implement” the former? By implementa-
tion we mean an actual physical device that (a) has structural properties that
correspond to components of the mathematical entity (some have talked about
an isomorphism between physical and mathematical structures, but a weaker
notion may also do); (b) a physical procedure that can produce experimental
results which reflect accurately corresponding properties of the mathematical
construction.

These are very intricate and hard questions to be answered definitely in a
general case. Our aim is more modest, namely to explore a specific instance of
this problem: we take the classical Cantor’s diagonalization for the enumeration
of the rational numbers and how it can be implemented by an Ising system.
We provide a specific implementation and show its limitations deriving from
properties of the physical system itself.

This leads us to think that some clearly defined mathematical questions
cannot always be posed and answered within the context of a particular physical
system. Of course, the more general question of the existence of a physical system
realizing a particular mathematical construction is beyond the limits of this
work but we hope our example helps to stimulate discussions on this line of
thought. The standard interpretation of quantum mechanics regarding physically
meaningful questions is that it should be possible to pose them in such a way
that they can be answered experimentally.

The reciprocal question is also interesting: to what extent mathematical con-
structions should be considered valid? One possible approach, would imply that
only those mathematical constructions that can actually be implemented by
means of a physical system can in fact be used, at least in terms of computation.

keywords: Cantor’s diagonalization, implementation, Ising system.
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Slow and steady wins the race: relationship between
accuracy and speed of Turing pattern formation
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Abstract. Turing instability is extensively studied in the context of biological pattern for-
mation [2]. However, several arguments against the application of Turing model has been
raised. Here we examined one of these issues, the accuracy of pattern, and search for a con-
dition to accurately generate periodic pattern in a linear regime. Firstly we showed that the
system used by key reference by [1] is not within the diffusion-driven instability range. Next
we showed the relationship between precision of pattern and shape of dispersion relation. The
precision of pattern is partly determined by the range of unstable wavenumber Kmax/Kmin.
We also showed the relationship between speed of pattern appearance λmax and region of un-
stable mode. Possible strategy to generate accurate pattern and application to experimental
results are discussed.c
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  Introduction

Turing 不安定性は、生物のパターン形成を説明する際によく用いられる (Kondo & Miura, 2010)。 Turing  不安定性では、ある程度以上の個数のパターンを一定領域上
に作ろうとすると、個数にバラツキが生じるため、信頼性が低いという J. Bard  の有名な仕事がある (Bard & Lauder, 1974)。この個数のバラツキは、線形分散関係の不安
定な領域の長さによって決まることがわかっている。

(図 1 ) のような activator と inhibitor の反応拡散系を考える。この系を行列とベクトルを用いて表すと、

u′=Au +DΔu ( u は activator の濃度、 vは inhibitor の濃度、   u= u
v ,    A= fu fv

gu gv
,    D= du 0

0 dv
, Δu = ୳

୴ ) となる。この反応拡散方程式の解は  u∝e୲ sinkx

という形で表される。これをもとの拡散方程式に代入すると、 λu = A  u− kଶDuとなる。整理すると (λI −  A+kଶD)u=0が成り立つ。  det λI − A +kଶ D = 0より、

λ = ଵ
ଶ
f୳ + g୴ − d୳kଶ − d୴kଶ + −f୳ − g୴ + d୳kଶ + d୴kଶ ଶ − 4 −f୴g୳ + f୳g୴ − d୴f୳kଶ − d୳g୴kଶ + d୳d୴kସ ・・・①

という特定の周波数成分の成長速度 λ  と波数 kの関係を表す
線形分散関係が得られる ( 図 2 )。 λ=0となる正の数 k のうち
大きい方を K୫ୟ୶ 、小さい方を  K୫୧୬ 、 λ  の最大値を  λ୫ୟ୶と

したとき、 Turing パターンの精度は   K୫ୟ୶/K୫୧୬で見積もること

ができる。 λ=0  となる正の数 k を求めると、
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である。また、
ୢ
ୢ୩

= 0となる k を求め、①に代入することにより

λ୫ୟ୶ =
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となる。

Miura＆Maini,2004
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λ୫ୟ୶とK୫ୟ୶/K୫୧୬の関係

Turing instability を生じるパラメータ条件 (※)を満たす
パラメータのセットをランダムに多数作製し、それらのパ
ラメータでのパターンの精度と生成速度の関係を見ると、
λ୫ୟ୶ と K୫ୟ୶/K୫୧୬には正の相関があることがわかった
( 図 4 ) 。

(※) この系において Turing instability が生じるパラメータ
条件は、
f୳ + g୴ < 0
f୳g୴ − f୴g୳ > 0
d୴f୳ + d୳g୴ > 0
(d୴f୳ + d୳g୴)ଶ−4d୳d୴(f୳g୴ − f୴g୳)>0
であることが知られている (Murray,1993)。

f୳ > 0：activator は自身の作用を促進する
f୴ < 0：inhibitor は activator の作用を阻害する

g୳ > 0：activator は inhibitor の作用を促進する
g୴ < 0：inhibitor の減衰。
d୴ > d୳：inhibitor は activator よりも速く拡散する。
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各線形パラメータと K୫ୟ୶/K୫୧୬の関係

線形パラメータの種類 不安定化幅 (K୫ୟ୶/K୫୧୬) の増減
f୳ +
f୴ +
g୳ −
g୴ −

K୫ୟ୶/K୫୧୬を各線形パラメータで偏微分することによっ

て解析的に導出した。この増減は、 λmaxの増減と同
一である (Miura & Maini, 2004)。

実験による検証

胎生 10 日目のマウス胚の肢芽を酵素処理で細胞レベルまで分離
してから再度高密度で培養すると、軟骨を形成する部位と未分化な
間葉のままでとどまる領域がストライプ状の構造を形成する．経験的
に、培養に使用する培地は CMRL1066 がよいとされ、他の培地
（DMEM/F12） を用いるとあまりきれいな周期構造が形成されない．
上記の予測から、 DMEM/F12 を用いた場合、パターン形成が実際に
は早期に起こるのではないかと考え、それぞれの培地での軟骨分化
の時系列を (図 5 ) のような手順で実験を行い、観察している。

(図 6 ) は、培地 CMRL1066を用いた場合 (control) と、培地
DMEM/F12 を用いた場合に実際に観察された構造である。

control DMEM/F12 

図 5 

図 6 

不安定幅とばらつきの関係の検証

一次元の Turing 系の数値計算を多数行い、f୳の値と選
択される波数 kのばらつき (標準偏差) の関係を調べたと
ころ (図 3 ) のようになった。

これにより、f୳の値と波数 kのばらつきの間には正の
相関があることが分かった。また、 f୳ と K୫ୟ୶/K୫୧୬の間

には正の相関があることから K୫ୟ୶/K୫୧୬ と波数 kのばら
つきの間には正の相関があることが確認される。
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Conclusion
Turing pattern の生成速度が速いほど、選ばれる波数がばらつく傾向にある。
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に作ろうとすると、個数にバラツキが生じるため、信頼性が低いという J. Bard  の有名な仕事がある (Bard & Lauder, 1974)。この個数のバラツキは、線形分散関係の不安
定な領域の長さによって決まることがわかっている。
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実験による検証
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してから再度高密度で培養すると、軟骨を形成する部位と未分化な
間葉のままでとどまる領域がストライプ状の構造を形成する．経験的
に、培養に使用する培地は CMRL1066 がよいとされ、他の培地
（DMEM/F12） を用いるとあまりきれいな周期構造が形成されない．
上記の予測から、 DMEM/F12 を用いた場合、パターン形成が実際に
は早期に起こるのではないかと考え、それぞれの培地での軟骨分化
の時系列を (図 5 ) のような手順で実験を行い、観察している。
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DMEM/F12 を用いた場合に実際に観察された構造である。
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一次元の Turing 系の数値計算を多数行い、f୳の値と選
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ころ (図 3 ) のようになった。
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つきの間には正の相関があることが確認される。
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  Introduction

Turing 不安定性は、生物のパターン形成を説明する際によく用いられる (Kondo & Miura, 2010)。 Turing  不安定性では、ある程度以上の個数のパターンを一定領域上
に作ろうとすると、個数にバラツキが生じるため、信頼性が低いという J. Bard  の有名な仕事がある (Bard & Lauder, 1974)。この個数のバラツキは、線形分散関係の不安
定な領域の長さによって決まることがわかっている。
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 Turing パターンにおけるパターンの精度と生成速度の関係 

平賀顕一 ( 京都大学医学部 ) ・ 三浦岳 ( 京都大学大学院医学研究科 ) 
 
 
  Introduction

Turing 不安定性は、生物のパターン形成を説明する際によく用いられる (Kondo & Miura, 2010)。 Turing  不安定性では、ある程度以上の個数のパターンを一定領域上
に作ろうとすると、個数にバラツキが生じるため、信頼性が低いという J. Bard  の有名な仕事がある (Bard & Lauder, 1974)。この個数のバラツキは、線形分散関係の不安
定な領域の長さによって決まることがわかっている。

(図 1 ) のような activator と inhibitor の反応拡散系を考える。この系を行列とベクトルを用いて表すと、

u′=Au +DΔu ( u は activator の濃度、 vは inhibitor の濃度、   u= u
v ,    A= fu fv

gu gv
,    D= du 0

0 dv
, Δu = ୳

୴ ) となる。この反応拡散方程式の解は  u∝e୲ sinkx

という形で表される。これをもとの拡散方程式に代入すると、 λu = A  u− kଶDuとなる。整理すると (λI −  A+kଶD)u=0が成り立つ。  det λI − A +kଶ D = 0より、

λ = ଵ
ଶ
f୳ + g୴ − d୳kଶ − d୴kଶ + −f୳ − g୴ + d୳kଶ + d୴kଶ ଶ − 4 −f୴g୳ + f୳g୴ − d୴f୳kଶ − d୳g୴kଶ + d୳d୴kସ ・・・①

という特定の周波数成分の成長速度 λ  と波数 kの関係を表す
線形分散関係が得られる ( 図 2 )。 λ=0となる正の数 k のうち
大きい方を K୫ୟ୶ 、小さい方を  K୫୧୬ 、 λ  の最大値を  λ୫ୟ୶と

したとき、 Turing パターンの精度は   K୫ୟ୶/K୫୧୬で見積もること

ができる。 λ=0  となる正の数 k を求めると、

K୫ୟ୶ =
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である。また、
ୢ
ୢ୩

= 0となる k を求め、①に代入することにより

λ୫ୟ୶ =
ୢ౬౫ିୢ౫౬ିଶ ିୢ౫ୢ౬౬౫

ୢ౬ିୢ౫
となる。

Miura＆Maini,2004
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λ୫ୟ୶とK୫ୟ୶/K୫୧୬の関係

Turing instability を生じるパラメータ条件 (※)を満たす
パラメータのセットをランダムに多数作製し、それらのパ
ラメータでのパターンの精度と生成速度の関係を見ると、
λ୫ୟ୶ と K୫ୟ୶/K୫୧୬には正の相関があることがわかった
( 図 4 ) 。

(※) この系において Turing instability が生じるパラメータ
条件は、
f୳ + g୴ < 0
f୳g୴ − f୴g୳ > 0
d୴f୳ + d୳g୴ > 0
(d୴f୳ + d୳g୴)ଶ−4d୳d୴(f୳g୴ − f୴g୳)>0
であることが知られている (Murray,1993)。

f୳ > 0：activator は自身の作用を促進する
f୴ < 0：inhibitor は activator の作用を阻害する

g୳ > 0：activator は inhibitor の作用を促進する
g୴ < 0：inhibitor の減衰。
d୴ > d୳：inhibitor は activator よりも速く拡散する。
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各線形パラメータと K୫ୟ୶/K୫୧୬の関係

線形パラメータの種類 不安定化幅 (K୫ୟ୶/K୫୧୬) の増減
f୳ +
f୴ +
g୳ −
g୴ −

K୫ୟ୶/K୫୧୬を各線形パラメータで偏微分することによっ

て解析的に導出した。この増減は、 λmaxの増減と同
一である (Miura & Maini, 2004)。

実験による検証

胎生 10 日目のマウス胚の肢芽を酵素処理で細胞レベルまで分離
してから再度高密度で培養すると、軟骨を形成する部位と未分化な
間葉のままでとどまる領域がストライプ状の構造を形成する．経験的
に、培養に使用する培地は CMRL1066 がよいとされ、他の培地
（DMEM/F12） を用いるとあまりきれいな周期構造が形成されない．
上記の予測から、 DMEM/F12 を用いた場合、パターン形成が実際に
は早期に起こるのではないかと考え、それぞれの培地での軟骨分化
の時系列を (図 5 ) のような手順で実験を行い、観察している。

(図 6 ) は、培地 CMRL1066を用いた場合 (control) と、培地
DMEM/F12 を用いた場合に実際に観察された構造である。

control DMEM/F12 

図 5 
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不安定幅とばらつきの関係の検証

一次元の Turing 系の数値計算を多数行い、f୳の値と選
択される波数 kのばらつき (標準偏差) の関係を調べたと
ころ (図 3 ) のようになった。

これにより、f୳の値と波数 kのばらつきの間には正の
相関があることが分かった。また、 f୳ と K୫ୟ୶/K୫୧୬の間

には正の相関があることから K୫ୟ୶/K୫୧୬ と波数 kのばら
つきの間には正の相関があることが確認される。
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In his last published paper, “Solvable and Unsolvable Problems,” printed in 1954 in the popular 
journal Science News, Alan Turing presented several elegant puzzles aiming at explaining and 
popularizing problems for which there are algorithms for solutions -- “the solvable” -- as well as 
some for which no such algorithmic solution exists -- “the unsolvable.” This paper could be seen 
as a continuation of his paper to popularize through puzzles a set of computational problems of 
various computational difficulties. Similar to his paper, where all his puzzles are unified as 
“substitution puzzles,” our set of puzzles offers instances of a unified approach based on “urn 
games.” Our (m, n1, n2) games have urns of two types: set urns and linear urns. E.g., the urns 
contain balls of m colors; in a move, a number n1 of balls are extracted and a number n2 of balls 
are returned to the urn; the solitary player performs moves, one after another, based on the 
rules of the game until no rule can be applied. Our urn games include the Turing substitutions 
puzzles, but defined with different goals. The class of computational problems obtained by 
varying the urn game parameters (m, n1, n2) turns out to form a hierarchy of complete 
problems, one for each of the complexity classes NL, P, NP, PSPACE, EXPSPACE, and “the 
unsolvable.”  

The urn games are generalizations of a “silly” game E.W. Dijkstra presented in his paper “Why 
correctness must be a mathematical concern” *Inaugural Lecture for the “Chaire Internationale 
d’Informatique” at the Universite de Liege, Belgium, 1979 (EWD720)+. His game is a (2,2,1) urn 
game in our framework. The generalizations are inspired by exciting correspondence I had with 
Professor Dijkstra in the wake of my somewhat critical comments of his game. [See my articles 
“Criticizing Professor Dijkstra Considered Harmless” and the followup,  “When Professor Dijkstra 
Slapped Me in the Quest for Beautiful Code”. http://www.cs.brown.edu/~sorin/non-tech-
writing.htm. Dijkstra's silly game is shown to have a certain incompleteness property. This 
incompleteness relates to the apparent inseperability of two problems: (a) demonstrate how to 
predict the final outcome, and (b) demonstrate that the final outcome is completely predictable. 
It turns out that predictability is equivalent to associativity and to the existence of logical 
invariants for correctness proofs. We analyze the game and some natural variants inspired by 
the quest for understanding its incompleteness. It will turn out that a complementary problem, 
the \textit{Unpredictability of a given instance}, offers a pure combinatorial, (i.e., machine-
independent) introduction of computational complexity classes. The game and its variants are 
disguises of decision problems of generic computational difficulty: Directed graph accessibility, 
Context-free grammar membership, Satisfiability of propositional Boolean formulas, Context-
sensitive grammar membership, Uniform word problem for commutative semigroups, and 
Recursive-enumerable grammar membership. Indeed, the unpredictability problem for the 
game and its generalizations, turns out to provide us with a hierarchy of complete problem for 
the complexity classes NL, P, NP, PSPACE, EXPSPACE. The last mentioned disguise brings the 
complexity status of the problem to unsolvable. 
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In this paper we discuss the lives and works of Alan Turing and John von Neumann that 
intertwined and inspired each other, focusing on their work on the brain. Our aim is to comment 
and to situate historically and conceptually an unfinished research program of John von 
Neumann, namely, towards the unification of discrete and continuous mathematics via a 
concept of thermodynamic error; he wanted a new information and computation theory for 
biological systems, especially the brain. Turing’s work contains parallels to this program as well.  
We try to take into account the level of knowledge at the time these works were conceived 
while also taking into account developments after von Neumann’s death. Our paper is a call for 
the continuation of von Neumann’s research program, to metaphorically put meat, or more 
decisively, muscle, on the skeleton of biological systems theory of today.  

In the historical context, an evolutionary trajectory of theories from Leibniz, Boole, Bohr and 
Turing to Shannon, McCullogh-Pitts, Wiener and von Neumann powered the emergence of the 
new Information Paradigm. As both Turing and von Neumann were interested in automata, and 
with their herculean zest for the hardest problems there are, they were mesmerized by one in 
particular: the brain.  Von Neumann confessed: “In trying to understand the function of the 
automata and the general principles governing them, we selected for prompt action the most 
complicated object under the sun – literally.”   

Turing’s research was done in the context of the important achievements in logic: formalism, 
logicism, intuitionism, constructivism, Hilbert’s formal systems, S.C. Kleene’s recursive functions 
and Kurt Gödel’s incompleteness theorem. Turing’s machine, exclusively built on the paper, as 
an abstract computing device, has been the preliminary theoretical step towards the 
programmable electronic computer. Turing’s 1937 seminal paper, one of the most important 
papers in computer science, prepared the way for von Neumann’s 1948 programmable 
computer.   
 
Von Neumann’s unfinished research program was outlined in his seminal articles “The general 
and logical theory of automata” (1951) and “Probabilistic logics and the synthesis of reliable 
organisms from unreliable components” (1956), his posthumous book The Computer and the 
Brain (1958) and the unfinished book The Theory of Self-Reproducing Automata, completed and 
published by A. Burks (1966).  He proved in 1948, inspired by Turing’s universal machine, part of 
his theory of self-reproduction of automata, five years before Watson and Crick, the structure of 
the DNA copying mechanism for biological self-reproduction.  Biologist and Nobel Laureate 
Sydney Brenner, in his memoirs, acknowledges von Neumann’s prophetic theorem: “You would 
certainly say that Watson and Crick depended on von Neumann, because von Neumann 
essentially tells you how it’s done.” 
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Abstract. Cloud computing can be succinctly described as computing
as a service in which software, platforms and infrastructure are avail-
able from providers on a subscription basis such as pay-on-demand and
pay-as-you-go. At the infrastructure level, infrastructure services are vir-
tualised servers and storage devices purchased by the customer to host
data and applications at the provider’s data-centre.

The most attractive feature of cloud computing is its elastic nature,
which enables customers to adapt service usage to suit variations in
their computing requirements. A prominent factor of a customer’s re-
quirements is the monetary costs of the services, determined by the time
duration the service is available (service deployment), and the volume of
data handled by the service (service usage).

We present a model of computing as a service focused on quantifying
monetary costs based on availability and usage and formulated as a func-
tion

Cost(π, t) = CostD(π, t) + CostU (π, t)

of the interaction π between provider and customer, where CostD(π, t) is
the cost of service deployment at the customer’s request and CostU (π, t)
is the sum of costs of data handling across all services as scheduled by π
over time t.

We develop an algebraic framework which models the virtual hardware
infrastructure available for rental as abstract register machines, with
memory and storage for any form of data and programs that define a
non-terminating computation processing data in time. At the centre of
our framework is a model of the customer’s account enabling services to
be chosen and made available over a time period. A model of the cost
of these services is developed and we use computing service offers from
Amazon Web Services to guide and illustrate the construction of the cost
model.

The resulting framework is provider-independent and extendable to other
forms of services. A special technical feature is the use of explicit clocks
to model infrastructure offerings, index events and to measure time. The
clocks are explicitly compared in different ways but the whole process
of using a computing service is ultimately relative to physical real-world
time as measured by a discrete clock TW .

72



Languages Associated with Crystallographic
Structures

N. Jonoska⋆, M. Krajcevski and G. McColm

Department of Mathematics and Statistics,
University of South Florida, Tampa FL, 33620 USA
jonoska,mile@mail.usf.edu, mccolm@usf.edu

Crystals (periodic structures) can be associated with connected graphs em-
bedded in Euclidean spaces. We model molecules by vertices in the graph, and
bonds linking the molecules by non-oriented edges. The set of walks and the set
of cycles uniquely determine the periodic graph up to isomorphism [3].

A graph is periodic if its automorphism group has a normal free abelian
subgroup of finite index. Using this subgroup, we consider the quotient graph of
the periodic graph by taking the orbits of the free abelian subgroup as vertices.
The quotient graph is then used to form a finite state automaton that recognizes
the language corresponding to the walks in the periodic graph. This regular
language is known as strictly locally testable of order 2 [1].

If the finite state automaton is “decorated” with counters, then the set of
all cycles in the periodic graph corresponds to an intersection of d context free
languages, where d is the rank of the free abelian subgroup - we embed this
graph in a d-dimensional Euclidean space so that the abelian group consists of
translations. These machines are modeled after the PDA-like counter machines
of [2], which employ counters rather than stacks. Following [4], we conclude that
the set of words representing cyclic walks on a periodic graph in a d-dimensional
Euclidean space is not the intersection of d − 1 context free languages, so the
languages of cyclic walks on periodic graphs provide examples of languages in this
intersection hierarchy of context free languages. We believe that these counter
machines more precisely capture the complexity of these languages.
Left: A 2-periodic (Eu-
clidean) graph, with a
translation subgroup gen-
erated by the translations
t1 and t2. Right: Transi-
tion digraph of a DFA,
with integers representing
counter trnsitions, accept-
ing the language of walks. 1

2
t

t

a, 1, 0

a, -1, 0

b, 0, 1

b, 0, -1c, 0, 0

c, 0, 0

_

_

_
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This informal presentation presents joint work with Hector Zenil and Fer-
nando Soler Toscano. The content may best be described by the term experi-
mental logic. We look at Turing machines (TMs) with a one-way infinite tape
with just two tape-symbols and look at the fine-structure present is small Turing
machines with for example, two, three or four states. There turns out to be sur-
prisingly rich patterns in whatever aspect of what we call the universe of small
Turing machines.

Fig. 1. A function computed by various Turing Machines with 2, 3 or 4 states.

In particular we will present and explain pictures like above. The upper
square represents from top-row down, the tape-outputs by feeding a TM a tape
with input just one black cell, two consecutive black cells, three, etc. So, effec-
tively the TMs that compute this function just erase the right-most cell.

In the squares below we plot the runtimes (the τs) runtimes and space-usage
(the σs) and some averages of TMs that compute this function. We do this for
TMs with 2 colors and 2, 3 and 4 states respectively.

We will present our latest findings including a relation between the asymp-
totic Hausdorff dimension of the consecutive tape configurations on the one hand
and asymptotic time complexity of the TM computation on the other hand.
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Recursive analysis as initiated by Turing (1937) explores the in-/ computability
of problems involving real numbers and functions by approximation up to pre-
scribable absolute error 2−n. Weihrauch’s Type-2 Theory of Effectivity (TTE)
extends this to mappings from/to the Cantor space of infinite binary strings en-
coding continuous universes in terms of so-called representations. Refining mere
computability, classical complexity theory has successfully been transferred from
the discrete to the real realm; cmp. e.g. Ker-I Ko (1991). However the common
setting only covers real numbers x and (continuous) real functions f ; operators O
could be investigated merely in the non-uniform sense of mapping polytime com-
putable functions to polytime ones — yielding strong lower bounds but weakly
meaningful upper bounds for actual implementations of exact real number com-
putation like iRRAM. As a major obstacle towards a uniform complexity theory
for operators, the computable evaluation of a ‘steep’ function f : x 7→ f(x) re-
quires more precision on x to approximate y = f(x) than a ‘shallow’ one. More
precisely as quantitative refinement of the sometimes so-called Main Theorem of
recursive analysis, the (optimal) modulus of continuity of f constitutes a lower
bound on its complexity — hence the evaluation operator cannot be computable
on entire C[0, 1] in time bounded by the output precision n only.

In Proc. 42nd Ann. ACM Symp. on Theory of Computing (STOC 2010) one
of the authors and his advisor have proposed and exemplified a structural com-
plexity theory for operatorsO from/to continuous functions f on Cantor space —
given by approximations as so-called regular string functions, that is, mappings
ϕ :⊆ {0, 1}∗ → {0, 1}∗ whose output length |ϕ(~σ)| depends only, and monoton-
ically, on the input length |~σ|. They consider Turing machines converting such
ϕ (given as a function oracle) and ~τ ∈ {0, 1}∗ to O

(
ϕ
)
(~τ) in time uniformly

bounded by a second-order polynomial in the sense of Kapron&Cook (1996)
depending on both |~τ | and |ϕ|. For real operators, a reasonable (second-order)
representation of functions f ∈ C[0, 1] as regular string functions ϕ amounts to
|ϕ| upper bounding f ’s modulus of continuity and renders evaluation (second-
order) polynomial-time computable.

We further flesh out this theory by devising and comparing second-order rep-
resentations and investigating the computational complexity of common (possi-
bly multivalued) operators in analysis. Specifically, two rather different (multi-
)representations are suggested for the space

{
(U,C, f |C) : U ⊆ C open, C ⊆

U compact convex, f : U → C analytic
}

and shown polytime equivalent. We
then present second-order polytime algorithms computing some of the opera-
tors on this space that in (Ko 1991) had been shown non-uniformly polytime
computable.
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In Computable Analysis, not only encodings of real numbers, functions and op-
erators are considered, but also representations of subsets of, say, Rd for fixed
dimension d. Although, in theory, the characteristic function χS uniquely rep-
resents a set S, it is a discontinuous function and therefore (using TTE [3])
non-computable for non-trivial S [3, Thm. 5.1.5]. However, using the topological
properties of the metric space under consideration (X, for say), one can devise
set-representations f :⊆ {0, 1}ω → A := {S ⊆ X closed}:
ω Asserts either ball(a, r) ∩ S 6= ∅, or ball(a, r) 6⊆ S — [1, Def. 2.1.14];

ψdist [ρdR → ρR∪{∞}]–representation of S’ distance function dS — [3, Def. 5.1.6];
κG Enumerates for each n ∈ N vectors (an,i)i ⊂ Dd

n s. t. the Hausdorff-distance
between S and

⋃
i ball(an,i, 2

−n) is ≤ 2−n — [3, Def. 7.4.1(3)], [4, Def. 2.2].

Those are essentially (but ‘only’ proven to be) computationally equivalent (cf. [3,
Sec. 5], [5]), In [2], Kawamura and Cook introduced second-order representations
f̃ :⊆ ({0, 1}∗ → {0, 1}∗) → A (such f̃ can be constructed from a ‘classical’
representation f). In addition to ω̃, ψ̃dist and κ̃G, consider:

ψ� Asserts either ball(a, 2r) ∩ S 6= ∅, or ball(a, r) ∩ S = ∅ — [2, Sec. 4.2.1].

This notion of representation allows us to study mutual second-order polytime
translations (i. e., (effective plus uniform) translations from one representation
to another) of the above representations. For X := [0, 1]d we get:

I. κ̃G ≡poly ψ� w. r. t. any fixed polytime computable norm;
II. ψ̃dist (≡poly δ� in this setting; [2, Sec. 4.3.1]) and ψ� are (restricted to convex

sets) polytime equivalent w. r. t. the maximum-norm (I. plus [4, Lem. 3.3]);
III. There is a polytime reduction from ψ� to ω̃ w. r. t. any fixed norm; but
IV. when restricting ω̃ to convex sets and enriching ω̃ with the center and radius

of a ball(a, r) ⊆ S, then there also is a polytime translation from ω̃ to ψ�.
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It is generally accepted presently thatΣ-definability (generalized computabil-
ity) in admissible sets is an important generalization of the concept of com-
putability.

A crucial result of classical computability theory is the existence of an uni-
versal partially computable function. It is known (see [1]) that an universal
Σ-predicate exists in every admissible set, but this is false for Σ-functions. It
is proved in [1] that if M is an algebraic system of a solvable model complete
theory then an universal Σ-function exists in HF(M). In [2] we constructed a
torsion-free abelian group A such that no universal Σ-function exists in HF(A).
In [3, 4] we introduced the concept of Σ-bounded algebraic system and obtained
a necessary and sufficient condition for the existence of an universal Σ-function
in the hereditarily finite admissible set over that system. We proved that every
linear order, every Boolean algebra, and every abelian p-group are Σ-bounded
systems, and that universal Σ-functions in the hereditarily finite admissible sets
over them exist.

In this talk we introduce the notion of a Σ-complete structure. Using this
notion we obtain the following results.

Theorem 1. Let M is a Σ-complete structure. Then in the hereditarily finite
admissible set HF(M) over M there exists an universal Σ-function.

Theorem 2. If a structure M is an abelian group of finite period or an almost
bounded tree, then M is Σ-complete structure.
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Abstract. We show that a real number is computable by an Infinite
Time Blum Shub Smale Machine iff it is an element of Lωω .

In [1], Infinite Time Blum Shub Smale Machines (ITBM) have been intro-
duced. These machines generalize the standard Blum Shub Smale Machines
(BSM) [2] over the real numbers into transfinite time. At successor times, register
contents are determined from previous register contents by rational functions.
At limit times, registers are set to ordinary limits of previous register contents
in the classical real continuum R. In a legitimate computation those limits must
always exist.

It was shown in [1] that the Turing halting problem and certain power series
are ITBM–computable and that all ITBM–computable reals are elements of Lωω ,
i.e., the ωω-th level of Gödel’s constructive hierarchy.

We are able to show that this bound is exact.

Theorem A real number x is ITBM–computable iff x ∈ Lωω .

The proof is based on the methods of transforming given ITBM programs
into programs computing Turing jumps and iterations.

We are currently working on a natural description of ITBM–computable real
functions and of ITBM–computable sets of reals.
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Following [1] we treat a projective plane as partial algebraic system A =
〈A, (A0, 0A), ·〉 with a disjunction of A into two subsets A0∪ 0A = A, A0∩ 0A = ∅
and commutative partial operation “·” which satisfy certain axioms.

In the present paper we investigate the existence problem of computable
lists for familiar classes of projective planes. Let K be a class of projective
planes, closed under isomorphism. A computable list for K (up to computable
isomorphism) is a uniformly computable sequence (An)n∈ω of structures in K
such that every computable B ∈ K is computably isomorphic to An for some n.
We obtain the following results:

Theorem 1. There is no computable list (up to computable isomorphism) for
each of the following classes of projective planes:

(1) freely generated projective planes;
(2) desarguesian projective planes;
(3) pappian projective planes;
(4) all projective planes.

This work was supported by RFBR (grant 11-01-00236) and by the Grants
Council under RF President for State Aid of Leading Scientific Schools (grant
NSh-276.2012.1).
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A pascal-like function is defined as a function computable by a Pascal pro-
gram using integers with unbounded number of digits as data.

Lists of elements of the traditional value type integer, or files, or constant
terms of a special type (i.e. without variables) in a not interpreted signature are
examples of data for the programming languages from the family of languages
Prolog.

The number of steps for a pascal-like function is defined as the number of
fulfilled statements, computed expressions, sub-expressions (boolean and arith-
metic) and executed calls to functions.

The run memory size for a pascal-like function is defined as the used mem-
ory (including the length of stacks used for all actual parameters of a function
or a procedure or a predicate call) during the run of a program (according to
the rules of operational semantics).

Similar but simpler definitions are used for the other concided programming
languages.

Let the definition of a pascal-like function not contain pointers, sets, records
as well as procedures and functions as parameters.

Let any condition for a rule application in the definition of a Refal-5 function
does not contain a recursive call of the defined function.

A pascal-like function or query of Turbo or Visual Prolog or Refal-5 function
is called double polynomial if both the number of steps and the run memory
size are less than a polynomial under the record length of input data.

Theorem 1. The class of all double polynomial pascal-like functions and two
classes of all double polynomial functions computable by queries situated in the
goal section of a Turbo or Visual Prolog program and the class of all double
polynomial Refal-5 functions equal to the class FP.

Such a result essentially simplifies the proof of function belonging to the class
FP.

So we have the following modification of Church-Turing thesis:
”A function computable in polynomial time in any reasonable computational
model using a reasonable time complexity measure is computable by a double-
polynomial pascal-like function without pointers, sets and records as well as pro-
cedures and functions as parameters and by a double-polynomial query from the
goal section of a Turbo or Visual Prolog program and by a double-polynomial
Refal-5 function without recursive calls in conditions of rule executions”.
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Abstract. The concept of pattern avoidance (and, closely related, pat-
tern matching) in permutations arose in the late 1960ies. It was in an
exercise of his Fundamental algorithms that Knuth asked which permu-
tations could be sorted using a single stack. The answer is simple: These
are exactly the permutations that do not contain the pattern 231. A
permutation T contains a permutation P as a pattern if there exists
a subsequence of T that is order-isomorphic to P . Questions regarding
permutations containing (or avoiding) certain patterns have been studied
intensively within the field of enumerative combinatorics.
In this talk I will take the viewpoint of computational complexity. Com-
putational aspects of pattern avoidance, in particular the analysis of the
Permutation Pattern Matching (PPM) problem, have received far
less attention than enumerative questions. This problem is defined as
follows: Given permutations P and T , does T contain P as a pattern?
I will present first results obtained together with Marie-Louise Bruner to-
wards a more fine-grained, parameterized complexity analysis of PPM1.
We study the question how structural properties of permutations, so-
called permutation statistics, influence the complexity of PPM. Permu-
tation statistics have extensively been studied in combinatorics but their
impact on computational questions regarding PPM is unexplored. In
this talk I will focus on the permutation statistic “alternating runs”.
This statistic denotes the number of ups and downs in a permutation.
We were able to show that PPM can be solved in time O∗(1.79run(T )),
where run(T ) denotes the number of alternating runs in T . Since run(T )
is less than n, the length of T , this algorithm also solves PPM in time
O∗(1.79n). This is the fastest known algorithm for PPM.
I will conclude this talk by pointing out how such a parameterized
complexity analysis can shed light on the relation between permutation
statistics and computational questions concerning PPM.

Keywords: Algorithms, parameterized complexity analysis, permuta-
tion patterns, permutation statistics

1 Bruner, M.L., Lackner, M.: A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs. ArXiv e-prints (2012). To appear in Proc. of SWAT’12
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From the discovery of the effective topos around 1980, we know that the cat-
egory of sets is its least (non-degenerate) subtopos, and that the Turing degrees
embed (order-reversingly) into the lattice of subtoposes. Our knowledge of subto-
poses of the effective topos has not much extended since, and there were only
two particular subtoposes (the Lifschitz subtopos and an example by Andrew
Pitts) apart from the Turing degrees that we were aware of.

What makes the study of subtoposes so difficult? We have a standard rep-
resentation of subtoposes by functions P(N) → P(N) with certain realizability-
theoretic closure properties, and it is these functions which we work with when
trying to make concrete calculations. Now, the crucial problem is that we lack
general understanding of these representing objects:

Question. Given a function j : P(N) → P(N) representing a subtopos
and a set p ∈ P(N), what does it mean for a number to belong the set
j(p)?

The work [1] answers this question as follows, building upon Pitts’ description
of subtoposes that arise from making subobjects in the effective topos dense and
Van Oosten’s perspective that subtoposes are meets of sequences of a class of
‘basic’ subtoposes (in a sense internal to the effective topos).

Answer (the method of sights). A number in j(p) is a computable
function that acts on some kind of well-founded tree (on some ‘sight’)
and takes values inside p.

This observation proves effective, facilitating the establishment of an infinite
family of new (basic) subtoposes as well as comparisons (inequalities and non-
inequalities) in between these new examples and known ones such as the Turing
degrees. The most of our new examples are “finite” in nature, and the calcu-
lations made with them (therefore) have combinatorial flavour, also interlinked
with the involvement of trees as above.

The talk will outline this method of sights, demonstrate example calculations,
comment on results obtained so far and discuss remaining questions.
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Boolean algebras are classical object that appears in different parts of math-
ematics and performs to be popular subject of investigation for many mathe-
maticians for more then one and a half century.

This talk is going to arise within computability theory concerning Boolean
algebras and primarily the existence of their strongly computable representations
in terms of computable sequence of predicates on Boolean algebra introduced
by Yurii Ershov in 1964. By strongly computable structure we understand a
computable structure with computable first order diagram.

If P0, P1, ... is the mentioned sequence of predicates then we consider the fol-
lowing problem: if S ⊆ {P0, ..., Pn} is a subset of initial segment of the sequence,
B is computable, and all predicates from S are computable in B, then can we
assert that B has strongly computable copy?

The important notion in theory of Boolean algebras is elementary charac-
teristic. It is a triple of elements (ch1(B), ch2(B), ch3(B)) from ω ∪ {∞} which
fully describes elementary theory of Boolean algebra.

At Logic Colloquium 2010 we presented the complete answer for the stated
problem if ch1(B) 6= ∞. The following question is what do we have in the case
of ch1(B) = ∞? At Logic Colloquium 2011 we delivered some partial results for
ω-pure Boolean Algebras B with ch1(B) = ∞. This time we are going to discuss
what this problem turns out to be in general case.

Acknowledgements. Supported by the Grants Council (under RF President)
for State Aid of Leading Scientific Schools (grant NSh-276.2012.1).
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This talk reports on recent applications of proof mining in nonlinear ergodic
theory [1, 2]. By proof mining we mean the use of tools from proof theory to
extract effective quantitative information from ineffective proofs in analysis. This
line of research, developed by the first author in the 90’s, has its roots in Georg
Kreisel’s program on unwinding of proofs, put forward in the 50’s.

We present effective and highly uniform rates of metastability (in the sense
of Tao [5, 6]) on nonlinear generalizations of the classical von Neumann mean
ergodic theorem, due to Saejung [3] for CAT(0) spaces and Shioji-Takahashi [4]
for Banach spaces with a uniformly Gateaux differentiable norm.

These results are obtained by developing a method to eliminate the use of
Banach limits from Saejung’s and Shioji-Takahashi convergence proofs. In this
way we get more elementary proofs to which general logical metatheorems can
be applied to guarantee the extractability of effective bounds. The techniques of
proof mining are applied for the first time to proofs that are based on the axiom
of choice, required to prove the existence of Banach limits.
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When we developed a notion for type-2 computation using the Oracle Tur-
ing Machine (OTM), we justified our model by arguing that many standard
complexity theorems were sustained under our computing model. However, the
difference between type-1 and type-2 computation is not trivial. Do those type-1
theorems bear the same intuitive meanings as their type-1 counterparts? For
example, in classical complexity theory, the gap theorem, the compression the-
orem, and the honesty theorem form a famous trilogy in the field of abstract
computational complexity theory. Do we have an equivalent trilogy under our
notion of type-2 computation? In this presentation, I will try to partially answer
this question.

We have defined a class of functions (T2TB) as time bounds for clocking
OTM. It is easy to argue that an analog type-2 honesty theorem can be proven
under our clocked OTM model. However, the corresponding compression theo-
rem and gap theorem seem falling apart due to the power of type-2 computation
where we do not have a type-2 analog of Church-Turing Thesis. For example,
while we have a weak analogs of gap theorem and compression, we can construct
a rather strong effective operator to have an anti-gap theorem. We state these
theorems as follows:

– Type-2 Honesty Theorem: There exists a recursive function g such that
{αg(i)|i ∈ N} is a measured set, and for all β ∈ T2TB, if β = ϕi, then
C(β) = C(αg(i)).

– Weak Type-2 Gap Theorem: Given any strictly increasing recursive function
g, there exists β ∈ T2TB such that, C(β) = C(g ◦ β).

– Weak Compression Theorem: There is a recursive function r such that, for
every i ∈ N, if ϕi ∈ T2TB, then ϕr(i) 6∈ C(ϕi).

– Anti-Gap Theorem: There is a recursive operator, Θ : T2TB→ T2TB such
that, for each β ∈ T2TB, we have Θ(β) ∈ T2TB and C(β) ⊂ C(Θ(β)).

The honesty theorem promises that we can construct a measured set with-
out losing any complexity class, where being measurable is required to remove
the gap phenomena at type-1. At type-2, on the other hand, we do not need
the complexity class to be measurable in order to uniformly increase the com-
plexity class. In this regard, we may conclude that the type-2 analog of the
honesty theorem is no longer needed, hence the classical trilogy does not share
the same significance. Having said that, however, the type-2 honesty theorem is
still appreciated in the sense that the family of our type-2 complexity classes is
recursive.
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Abstract. An algorithm over an algebraic structure

S = (D; f0, . . . , fn, R0, . . . , Rk),

where each fi is a function onD and Ri is a predicate onD, can be viewed
as a sequence of instructions that use the operations and predicates of the
structure. We introduce a finite automata model for performing certain
algorithms over an arbitrary algebraic structure S. Such an automaton is
a finite state machine equipped with a finite number of registers, which
are able to store elements in the domain D of the structure S. The
automaton processes finite strings where each position is labeled by an
element of S. During the computation, the automaton is able to test
the input elements and the register values on relations R0, . . . , Rk, and
perform basic operations f0, . . . , fn on the input and the register values.
Our main motivation is that our model is the finite automata analogue
of BSS machines over arbitrary structures. In this talk I will present
some initial results such as the closure properties, validation problem
and emptiness problem. In particular, the validation problem is closely
related to the existential first-order logic of the structure S, and the
decidability of the emptiness problem depends on the number of registers
of the automaton.

This work is joint with Bakhadyr Khoussainov and Aniruddh Gandhi.
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Moschovakis’ type theory Lλar [3] is a proper extension of Gallin’s TY2 [1],
and thus, of Montague’s IL, [4]. The language of Lλar has two kinds of variables
— recursion variables (alternatively called locations) and pure variables — and
an additional set of recursion terms. The recursion terms are formed by using
a designated recursion operator. We present the syntax and semantics of the
language of Lλar. The denotational semantics of Lλar is compositional on the
structure of the Lλar terms. The notion of intension in Lλar, entirely different
from Carnap intension in TY2 and IL, is the algorithmic sense of language.

We present the potentials of Lλar for computational syntax-semantics interface
of human language (commonly denoted by NL) and semantic underspecification
at the object level of Lλar. We define the relation render between NL and Lλar for
passive forms in NL, by Constraint-Based Lexicalized Grammar (CBLG) appa-
ratus (extending the technique in [2]) that covers a varieties of approaches, e.g.,
HPSG, LFG, and the grammatical framework GF. This work on Lλar is contribu-
tion to formalization of Minimal Recursion Semantics (MRS) used in HPSG, by
higher-order type theory, and broadly, to CBLG approach for inclusion of seman-
tic representations. E.g., GF has a prominent placement in the computational
applications of logic for language processing and is open for syntax-semantics
development.
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Categorical Universal Logic relativizes the logic of topos to monads, with the purpose of reaching a
universal conception of logic, and of providing foundations of categorical semantics for various logical
systems, including intuitionistic logic, substructural logics, quantum logics, (topological and convex)
geometric logics, and many others.

For a topos E, the subobject functor SubE(-) : Eop → HeytAlg essentially provides the logic of the
topos E. It is a (higher order) hyperdoctrine in William Lawvere’s terms, a tripos in Hyland-Johnstone-
Pitts’ terms, and a (higher order) fibration in Bart Jacobs’ terms. We aim at placing such a concept in
a much broader context, providing categorical semantics for different logics in a uniform manner, and
clarifying a universal form of logic which does not rely on syntactic or semantic details; from this point
of view, what we pursue is not really semantics for logic, but the very conception of logic, which we think
is what the idea of hyperdoctrine is ultimately about.

From the viewpoint of algebraic logic, (the Lindenbaum-Tarski algebra of) intuitionistic propositional
logic is the free algebra on the set of propositional variables. We thus regard propositional logics as free
algebras (in varieties). And the generic notion of free algebra is given by the concept of monad in category
theory. Monads on a category C can be seen as C-structured free algebras For example, let C = Top,
and then monads on C correspond to topological free algebras. Since free algebras in our logical context
have no such additional structure, we focus on monads T on Set, which are thought of as representing
propositional logics.

For a monad T , we define a T -hyperdoctrine as a functor (an Alg(T )-valued presheaf or a C-indexed
T -algebra) F : Cop → Alg(T ) satisfying adjointness conditions (and the corresponding additional condi-
tions like Beck-Chevalley) to represent logical structures of interest, which may be quantifiers, equality,
comprehension, object classifier, and so on. Here, C is supposed to have products at least, and exponen-
tials are required as well if we are concerned with higher order logics. We are omitting those “logicality”
conditions on the monad T that are necessary for expressing adjointness conditions. We consider that
the concept of T -hyperdoctrine gives a universal form of logic (and set theory qua higher order logic).

In Categorical Universal Logic, we propose to see “Duality as Semantics”. Duality theory can actually
be used to construct models of T -hyperdoctrines. For instance, the well-known dual adjunction between
frames and topological spaces gives us a T -hyperdoctrine for (topological) geometric logic. Such duality-
based T -hyperdoctrines may be applied to prove consistency and independence results, as they can
be used to obtain sheaf models in the classic case of intuitionistic logic. We can find a lot of duality
T -hyperdoctrines in diverse contexts, some of which turn out to be particularly useful.

Dualities between Scott’s continuous lattices and convex structures (algebras of the distribution
monad or set-theoretical convexity spaces) provide T -hyperdoctrines for convex geometric logic, namely
Filt-hyperdoctrines for the filter monad Filt, where we regard continuous lattices as the propositional
logic of convex sets, or point-free convex structures as discussed in the author’s previous paper (recall
frames or locales give the propositional logic of open sets); from this perspective, Filt-hyperdoctrines
give the quantified logic of convex sets, which we call convex geometric logic.

By means of a certain duality T -hyperdoctrine of quantum nature, we can solve those difficulties
on universal quantifier and substituition that have been known in Heunen-Jacobs’ categorical quantum
logic based on dagger kernel categories. Duality T -hyperdoctrines have many more merits than can be
mentioned here, like having object classifiers in very general situations.

Categorical Universal Logic also leads us to coalgebraic predicate logic. From the duality-as-semantics
perspective, duality theory in coalgebraic propositional logic is relevant to the lifting of T -hyperdoctrine
structures from propositional dualities to Algebra-Coalgebra dualities, which turns out to be always
possible under certain conditions. Thus, we can interpret quantified modal logics via Algebra-Coalgebra
dualities. This vividly illustrates our idea that duality for propositional logics is categorical semantics
for their first order (and higher order) extensions.
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In 1939, Ludwig Wittgenstein lectured at the University of Cambridge on the topic of the Foundations of 

Mathematics. Not only did Alan Turing lecture on a similar topic that same year, but he attended the philo-

sopher's seminars. This encounter has generally been considered by critics and historians as a significant 

one, clearly underlining the differences in their respective approach to mathematics and philosophy of the 

mind.  

 

We would like to revisit these lectures in order to gain a better insight on the issues discussed and under-

stand how they led to the development of a dialogue between the mathematician and the philosopher. As 

we will see, the core of Wittgenstein's lectures on the foundation of mathematics is based on a study of the 

usage of grammar and the relationship of mathematics with everyday language. We will see how this ap-

proach forms the basis of his reading and his understanding of the concept of the Turing Machine. We will 

also look at how Turing used and extended some of the mechanical images of the human calculus in his 

later writings on Artificial Intelligence, when he attempted to conceive machine intelligence behind the 

question : “Can machines think ?”   

 

Keywords : Philosophy of Mind, Computation, Foundations of Mathematics, Turing Machine, Machine 

intelligence, Artificial intelligence, Game theory. 
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Lossless compressors:

Degree of compression and optimality
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Abstract. Lossless compressors are very useful in practice: they compress many larger files

into smaller files without losing any information. Their principle is based on the exploration

of some form of regularity, such as the existence of string repetitions. Many other forms

of lossless compressors are conceivable; for instance, a very specialized compressor would

detect if a file consists of a sequence of binary integers that were generated by the linear

congruential method ([1]), and, if so, output a much shorter description of the file. To each

compressor, corresponds a decompressor, which will be called expander. We study some

theoretical aspects of lossless compressors. As background for the rest of the paper, we

present an elementary method to transform every (lossless) compressor C into a normalized

compressor, that is, a compressor in which no word is expanded by more than one bit; this

idea is used to reformulate a particular result of Algorithmic Information theory and applied

to a real world compressor. Then, the compressibility bounds of uniform distributions, using

both general and normalized compressors, are studied. For a large class of problems, called

“inversion problems”, Levin mentioned in [2] the existence of a fixed algorithm with a time

of the same order of magnitude of any algorithm that solves any other problem in the class.

Inspired by Levin’s universal optimal search, we define, using a universal expander Turing

machine, an optimal compressor, apart from an additive constant, and within a time of the

same order of magnitude.
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In [1] Wagner described a hierarchy of ω-regular languages, which corresponds
to the existence of continuous reductions between languages, i.e., continuous
functions f : Aω → Bω such that f−1(M) = L for L ⊆ Aω, M ⊆ Bω. We would
like to develop analogous theory for regular languages of finite words. While
the space of infinite words has a natural metric definition (that of the Cantor
space), the space of finite words does not have a canonical metric. We consider
metrics defined by embeddings into the space of infinite words that preserve
prefix convergence. This last condition guarantees that the natural connection
between finite and infinite words is not lost in the process of embedding.

The space of finite words with a given metric can be considered a uniform
space. We show that under mild assumptions embeddings give only two non-
isomorphic uniform structures. In both cases the space is not compact, so the
notions of continuity and uniform continuity diverge and the hierarchies for
continuous and uniformly continuous reductions need to be described separately.

The first embedding gives a discrete metric and the hierarchies of all lan-
guages are simple. For the second embedding we define canonical automata,
similar to those defined by Wagner in [1], and show that every regular language
is equivalent to one of the languages recognized by them. In this case we describe
only the hierarchy for regular languages and show an example of a non-regular
language that is not equivalent to any of the regular languages with respect to
any reduction. In the end we examine the hierarchy of Borel languages in Σω

and Σ∗ induced by Lipschitz reductions. We show that in Σω the hierarchy of
Borel languages for 1-Lipschitz reductions is an extension of the hierarchy for
continuous reductions. Then we show that it is similar in the case of Σ∗ with
metrics defined by embeddings.

The basic tool we use is a game characterization of the existence of reduc-
tions. Thus for every kind of reduction – continuous, uniformly continuous and
Lipschitz – we define an appropriate game.
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Bases for AC0 and other Complexity Classes
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Abstract. The sets of AC0, TC0, NC1 functions and other canonical
complexity classes are de�ned as the substitution closure of a �nite func-
tion set.

Keywords: concatenation recursion on notation, substitution basis.

1 Introduction

A �nite function set F is a substitution basis for a function class C (and C is
the substitution closure of F ) when C can be de�ned using only the functions in
F , the projection functions and the substitution operator.

Recently, the class FTC0 of functions computable by polysize, constant depth
threshold circuits has been shown to be the substitution closure of {x+y, x−̇y, x∧
y, bx/yc , 2|x|2} where x ∧ y is the bitwise and of x and y [3].

In a previous paper [2], we showed that a function class closed with respect
to substitution and concatenation recursion on notation admits a substitution
basis, provided that it contains integer division. By applying this result to Clote-
Takeuti characterizations of FTC0 and FNC1[1], we obtained the above men-
tioned basis for FTC0 and a new basis for FNC1.

In this paper, we improve the techniques and results of [2]. The existence
of a basis for a function class does not need the division requirement anymore
and a basis for FAC0 is introduced. Finally, by considering complete problems
for canonical complexity classes under AC0 reductions, substitution bases for
canonical complexity classes are introduced.
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Social Networks and Collective Intelligence
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Access to global information is a fact of primary importance in a global world.
Internet contains a huge amount of documents and it has a big potential as a
news media, but the key is in the mechanism in which information is accessed.
The most important aspect is having access to the most possible independent
and unbiased information source for any specific topic or, at least, having access
to a variety of different sources. Indeed, despite the significant technological
advances, we still cannot reach the best information in real time.

Our aim is combining user friendliness of search engines and trustworthiness
of social networks in order to define an integrated platform enabling users to get
trustworthy news on their favorite topics. We called this platform Polidoxa (from
greek ”poly”, meaning ”many or several” and ”doxa” meaning ”common belief or
popular opinion”). Polidoxa works with a Trusted Rank Algorithm based on the
definition of trusted relationship between users. The immediate contacts have
more influence while the others see a reduction of their influence which is pro-
portional to their distance. Polidoxa is designed to work as a stigmergic system,
a strategy based on what can be found in biological systems. Social interaction
and networking is enhanced by the collective intelligence, which is superior to
the sum of knowledge of individuals and opinion trends can be predicted via
swarm intelligent algorithms.

Polidoxa can offer a platform for discussion which elevates users to a higher
level of knowledge, criticism and consciousness. The principle of the ”agora” (it
was a ”Gathering place” or ”Assembly” in ancient Greek city-states) is also be-
hind the concept of Polidoxa and some of its design choices. The ”agora” is the
ancient place where people used to meet and discuss. The Socratic discussion
represents the consistency check on shared information. Polidoxa reintroduces
the ”agora”, this time is a ”virtual agora” where all the advantage of the tradi-
tional ”agora” are actually amplified by means of virtual networks, better known
as social networks. Collective intelligence is the key to information and Internet
has an enormous potential to fix the problem of trustworthiness, but the current
instruments commonly used like Google and Facebook lack the most important
concept in this field: they do not embed the notion of individual trustworthiness
of a source. Polidoxa, instead, connects local knowledge making them usable for
everybody and it is conceived to promote public awareness and discussion in
total freedom, like in an open piazza.
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Solving the Dirichlet Problem Constructively
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Abstract. Working within the Bishop-style constructive mathematical
framework, we present sufficient reasonable constraints on a domain in
n-dimensional Euclidean space which ensure that if the Dirichlet prob-
lem has weak solutions on arbitrary close internal approximations to a
domain, then it has a (perforce unique) weak solution on that domain
as well. We also give Brouwerian examples which show that, even on ge-
ometrically quite reasonable domains in 2-dimensional Euclidean space,
the existence of solutions for the Dirichlet problem is an essentially non-
constructive result.
A corollary of the Brouwerian examples is that, perhaps surprisingly,
there is no universal algorithm for computing solutions to the Navier-
Stokes equations of fluid flow and that hence any existence result must
be purely theoretical.

Keywords: constructive analysis; Dirichlet problem; Navier-Stokes equa-
tions; Brouwerian example; Markovs principle; omniscience principle.
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Narratives are ubiquitous across human cultures, and building machines that com-
prehend them may lead to more natural human-machine interactions, and a deeper un-
derstanding of human cognition. We propose a logic-based approach to this challenge.

We adopt a rather generic view of narrative [1], as some partially-ordered collection
of events and facts that can be embedded (i.e., assumed to have taken place at particular
points) in time, so that the embedding is consistent with a given domain. Each domain
comprises the background knowledge and beliefs of a particular listener of the narrative
(including static laws like “whenever an entity is a penguin, it is also a bird”, and causal
laws like “turning the switch on causes the light to come on, if the fuse is okay”), and
acts as the context within which the narrative is interpreted. In case consistency with an
entire domain is not possible, the collection may still have some degree of plausibility
as a narrative, depending on the part of the domain it is consistent with. This approach
effectively allows the encoding of varying degrees of defeasible beliefs in a domain.

One may argue that plausibility is insufficient to serve as a universal determinant of
narrativeness. It may account for the coherence of a narrative, but how about other prop-
erties: syntactical meaningfulness, or cohesiveness; description of a setting, a problem,
and a resolution; relevance and informativeness for the reader; and so on? Our response
is that all these properties are simply constraints (possibly defeasible ones) that a narra-
tive is expected to respect, and may be accommodated as part of the listener’s domain.

Determining whether a collection is indeed a narrative with respect to a domain is
not immediate, as there are infinitely many embeddings that could be considered. It can
be formally shown, however, that determining narrativeness is decidable. Furthermore,
it is possible to choose the most plausible narrative from a given set of collections, and,
therefore, to order narratives according to their plausibility. Each narrative can be also
assigned a canonical index that allows its storage and retrieval. It follows, in particular,
that narratives are computably enumerable, as one can produce them all in some order.

As with other narrative-related processes, question answering reduces to a compu-
tational problem: Search for a model (a truth-assignment to the facts and events at each
time-point that agrees with the narrative and the domain), and check whether the fact
that corresponds to a given question is made true within that model. If this is the case
for at least one model / for all models, then the question is possibly true / certainly true.

Recent work shows how the recognizing narrative similarity task can be formalized
and attacked within an extension of this work that accounts for authorial intentions [2].
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An ant collective is often used as the prototypical example of a system that is able to
achieve more than the sum of its constituent parts. Indeed, both theoretical models and
entomological studies support the conclusion that although the available sensors, delib-
eration, and actuators of each individual ant have limited capabilities, an ant collective
as a whole may overcome these limitations. Ant collectives are known to be able, for in-
stance, to sort different types of objects into piles, to find shortest paths between points
of interest, and to dispatch workers to the tasks that are most important at the time.

Novel, and rather successful, general algorithms have been conceived and built upon
the observed behavior of ants, giving rise to research areas such as Ant-Based Clustering
and Ant Colony Optimization. Unlike, however, the well-studied problem of capitaliz-
ing the modus operandi and abilities of ant-like agents, a more conceptual problem that
has received less attention is the determination of the principled capabilities of a typical
collective of ants. This latter problem we have investigated in past and ongoing work.

Building on studies of ants, earlier work [1] proposed a biologically and physically
plausible model for ants and pheromone, according to which: Ants enter / exit the sys-
tem by dropping in / out at specified locations. Ants sense pheromone in their vicinity,
and randomly choose their next location, giving preference to higher pheromone con-
centrations. Pheromone enters the system through pheromone pumps and ant secretions.
An ant secretes pheromone whenever pheromone concentration at its current location
exceeds some threshold, and this is not the case for some neighboring location. In doing
so, the ant propagates the high pheromone concentration at its current location to neigh-
boring locations through diffusion. Pheromone exits the system through dissipation.

The proposed model was shown sufficient for designing a gadget comprising paths,
pumps, and ant sources / sinks, such that: when sufficiently many (resp., few) ants enter
through a specified path, then sufficiently few (resp., many) ants exit through a certain
other path. The gadget follows the design and operation of a typical resistor-transistor
electronic inverter, establishing, thus, the principled ability to design larger gadgets
within which ant behavior can simulate the workings of full-fledged logic circuits.

Subsequent work [2] sought to validate the aforementioned principled ability, by re-
fining the original model, and implementing it through the development of a design and
simulation tool. This latter work showed how circuits found in modern computers (e.g.,
adders, memory circuits, oscillators) can be effectively simulated by an ant collective.
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The Web, arguably the greatest marvel of the modern information era, is associated
with what is, perhaps, an equally great paradox: its under-utilization. Billions of pages
of natural language text, encoding essentially the collected knowledge of our species,
are demoted to a mere collection of information, and accessed through tools that only
identify pages containing posed queries, within which one hopes to find some answers.

It is imperative to have solid ways to exploit the knowledge, not just the information,
that is woven into the Web. The time is ripe to build search engines able to compute and
return answers to queries. And certain such efforts are, sure enough, already under way.
Wolfram|Alpha, for instance, is a tool that offers tangible evidence of these efforts, as
long as one focuses on axiomatized knowledge, a certain type of knowledge for which
concrete representations and rules of inference are available, and well understood.

Even for such axiomatized knowledge, the task is by no means easy. Yet, one would
hope for a search engine able to also capitalize the vast unaxiomatized knowledge found
on the Web, encoding the collective beliefs, biases, misconceptions, and common sense
of the human race. How can such knowledge be employed to respond to a query such
as “they first met last summer at a common friend’s house” with the answer “they were
not married at the time”, even if the query does not appear on any single web-page?

We report herein on our work over the past few years in this direction, resulting in a
working prototype of such a search engine endowed with websense. The engine parses
downloaded web-pages with state-of-the-art NLP tools, and the extracted semantic and
syntactic information is then translated to a relational logic-based form [4]. Efficient and
noise-resilient learning algorithms, able to cope with missing information in principled
ways [3], populate a knowledge base with rules that determine the existence of relations
among objects, as dictated collectively by the downloaded web-pages. Given a query in
natural language, the engine first translates the query to a relational logic-based form,
and then relational reasoning is employed to derive the inferences that follow from the
knowledge base and that specific query [1]. The inferences are, finally, composed back
into natural language sentences that form the answer to the query. In earlier work [2]
we have formally shown that this process can be understood precisely in the sense that
we have suggested: as the process of drawing websense inferences from a given query.
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In a typical supervised learning scenario, an agent trains on labeled examples, con-
structs a model of the data, and applies it to predict the missing labels of new examples.
In many real-world settings, however, neither such explicit labels nor the examples are
fully observed, as assumed. Yet, one would hope that the existing, and extensive, work
on supervised learning could be still rigorously applied and exploited in these settings.

Call autodidactic learning the setting where an agent trains on partially-observable
examples, constructs a model of the data, and applies it to predict the missing values of
those attributes that are masked in new partially-observable examples. A physician, for
instance, with access to partial patient records may autodidactically learn rules govern-
ing the human physiology, and use them to predict unobserved (N.B. not unobservable)
medical conditions of new patients. Earlier work investigated how autodidactic learning
algorithms can be obtained from supervised algorithms for concept learning [2, 4].

Consider, then, an algorithm that autodidactically learns a rule to predict any single
given attribute. How should this algorithm be used so that the performance of reliably
completing missing information in new partially-observable examples is maximized?

Assume that a rule for each attribute is available. The application of the rules on an
example is: flat if no rule has access to the predictions of other rules; chained if at least
one rule is applied after another, so that the former can use the prediction of the latter
as if it were part of the example. It can be shown that there exist situations where the
chained application of rules strictly outperforms the flat application of any set of rules.

How can the provable benefits of rule chaining be attained? Learning the rules first
and then chaining them increases the completed information compared to their flat ap-
plication, but at the expense of the reliability of the predictions. Simultaneous learning
and prediction achieves the best of both worlds: learn a rule for each attribute; use a flat
application of these rules on the training examples to complete some missing informa-
tion; repeat t times on the resulting examples. Chain all available rules in the order they
were learned, and apply the chained set of rules to make predictions on future examples.
By appropriate choice of the learning parameters, it can be shown that SLAP-ing out-
performs a flat application of these rules while retaining the reliability of the predictions
(cf. experiments and theory [1, 3]), and it is fixed-parameter tractable for parameter t.
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Numerous authors have considered the notion of computable reducibility (or
m-reducibility) on equivalence relations on the natural numbers. This holds of
equivalence relations E and F (written E ≤c F ) if there exists a computable
total function f on ω such that x E y if and only if f(x) F f(y). Recent results
include both the existence of such reductions and, for many pairs of equivalence
relations, the impossibility of any such reduction.

Considering several of the proofs of non-reducibility, we have defined a weaker
notion, finitary reducibility, to help analyze these negative results. We say that E
is n-arily reducible to F , written E ≤n

c F , if there are computable total functions
f1, . . . , fn : ωn → ω such that, for all j, k ≤ n and all i1, . . . , in ∈ ω, ij E ik if
and only if fj(i1, . . . , in) F fk(i1, . . . , in). If the indices of such functions can be
found uniformly for every n, then E is finitarily reducible to F , written E ≤ω

c F .
In this talk we will give examples of how these new notions can be used. For

example, it was shown in [2] that neither of the relations Ece
min and Ece

max (defined
by equality of maxima and minima in c.e. sets) is computably reducible to the
other, but finitary reducibility gives us a better comparison: Ece

min ≤ω
c Ece

max,
whereas Ece

max 6≤2
c Ece

min. In fact, Ece
max turns out to be complete among Π0

2

equivalence relations under 3-ary reducibility, but not so under 4-ary reducibility.
The relation of equality on c.e. sets (i =ce j if and only if Wi =Wj) is complete
for finitary reducibility among Π0

2 equivalence relations, which is of particular
interest because it has been shown in [4] that there is no completeΠ0

2 equivalence
relation under ≤c.
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Some recent researches show that some classical theorems with “almost ev-
erywhere” can be converted to effective version with “for each random point”.
One example is that a real is Martin-Löf random iff each computable function
of bounded variation is differentiable at the real. The author [1] has given a
Kurtz randomness version where we find that an integral test is a useful tool
to study the relation between algorithmic randomness and computable analysis.
Here we give a version of Schnorr randomness. Consider a computable metric
space (X, d, α) and a computable measure µ on it.

Definition 1. An integral test for Schnorr randomness is a nonnegative lower

semicomputable function t : X → R+
such that

∫
tdµ is a computable real.

Theorem 1. A point z is Schnorr random iff t(z) < ∞ for each integral test t
for Schnorr randomness.

As an application we have another effectivized version of a classical theorem.

Theorem 2. Let f, g :⊆ X → R be the differences between two integral tests
for Schnorr randomness. Then f(x) = g(x) for each Schnorr random point iff
||f − g||1 = 0.

The class of the differences between two integral tests for Schnorr randomness
has some characterizations and is an important class.

Definition 2. A function f :⊆ X → R is L1-computable with an effective code
if there exists a computable sequence {sn} of finite rational step functions such
that f(x) = limn sn(x) and ||sn+1 − sn||1 ≤ 2−n for all n.

Definition 3. A function f :⊆ X → R is Schnorr layerwise computable if there
exists a Schnorr test Un such that the restriction f |X\Un

is uniformly computable.

Theorem 3. Let SR be the set of Schnorr random points. Then

{f |SR | f is the difference between two integral tests for Schnorr randomness}
={f |SR | f is an L1-computable function with an effective code}
={f |SR | f is Schnorr layerwise computable and its L1-norm is computable}
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Abstract

We present our work on program extraction and a case study on uniformly
continuous functions working in our proof system Minlog [4].

Ulrich Berger and Monika Seisenberger [1,2] inductively/coinductively de-
fined a predicate of the uniform continuity and informally extracted Haskell
programs from their constructive proofs of it. Our work enriches the Theory of
Computable Functionals [3] and its computer implementation Minlog in order
to formalize case studies by Berger and Seisenberger.

We extract from formal proofs programs which translate a uniformly con-
tinuous function on Cauchy reals in [−1, 1] into a non-well founded tree repre-
sentation, and vice versa. Via Kreisel’s modified realizability interpretation, the
extracted programs involve certain recursion and corecursion operators which
come from nested inductive/coinductive definitions. The non-well founded tree
representation of uniformly continuous functions is of ground type. In this way,
we manage to understand uniformly continuous functions through approximat-
ing non-well founded objects.
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How to Accept Turing’s Thesis without Proof or 
Conceptual Analysis, without also Feeling Qualms 
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In his  (1936), Turing  (i) presented what  is called Turing’s Thesis  (TT) today, that 
every number that can naturally be regarded as computable can be computed by 
his  universal  Turing  machine,  and  assuming  it  (ii)  solved  Hilbert’s 
Entscheidungsproblem negatively. This much is taken as a matter of course with‐
in and outside mathematics today, and (i) and (ii) are two early great mathemati‐
cal  achievements  of  Turing,  or  so  regarded. However,  there  are  various  views 
concerning  the  current  status  of  (i),  which  affects  our  understanding  of  (ii). 
Though not exhaustive, the major attitudes towards (i) consist of:  
 
a‐1) TT remains a hypothesis, which is in principle not formally provable.   
a‐2) TT is a hypothesis, which is formally provable (or already formally proved).  
b‐1) TT is already established beyond doubt, as a matter of definition.  
b‐2) TT  is already established beyond doubt, through the conceptual analysis of 
(human) computation given by Turing.  
 
  In  this paper  I will  first briefly  re‐examine  these  views,  and  claim  that 
each of them is not all satisfactory, leaving us with some qualms about accepting 
it without reservation. Then I shall present as a better option an alternative un‐
derstanding of TT, based on Wittgenstein’s philosophy of mathematics, large part 
of which was presented in his 1939 lectures, to which Turing himself attended.  
  According  to Wittgenstein mathematics  proceeds  with  acceptance  of 
proofs, and each time we accept a proof, that fact changes mathematical system  
as a whole, causing a systematic change of relevant (or in fact all) mathematical 
concepts. Now Turing’s argument for his thesis was basically a non‐mathematical 
contribution  to  his  solution  of  the  Entscheidungsproblem. However, when  the 
latter was accepted as a proof, our concept of “computable” underwent, unbe‐
knownst to most of us, a conceptual change, so that it would entail computability 
by Turing machine. In other words, TT became a mathematical fact as a result of 
the fact t at his demo strat n of the  insolubility  f the Entscheidungspro lem 
was accepted as a mathematical proof. This may first look a queer view, turning 
justificatory order totally upside‐down.  I will defend this view by Wittgenstein’s 
remarks on mathematics, thereby truly securing Turing’s two achievements.  
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Abstract. Suppose you want to generate a random sequence of zeros
and ones and all you have at your disposal is a coin which you suspect
to be biased (but do not know the bias). Can "perfect" randomness be
produced with this coin? The answer is positive, thanks to a little trick
discovered by von Neumann. In this paper, we investigate a general-
ization of this question: if we have access to a source of bits produced
according to some probability measure in some class of measures, and
suppose we know the class but not the measure (in the above exam-
ple, the class would be the class of all Bernoulli measures), can perfect
randomness be produced? We will look at this question from the view-
point of e�ective mathematics and in particular the theory of e�ective
randomness.

Keywords: Algorithmic Randomness, Computability, E�ective mathematics,

Markov measure, Measure theory, Randomness extraction
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Abstract. Modal dependence logic (MDL) extends classic modal logic
by an atomic dependence operator and was first introduced by Väänänen
in [3]. Let p1, . . . , pn be propositional variables. Then we can express
with the dependence atom that, on a set of worlds, the variable pn is
determined by the variables p1, . . . , pn−1.
Recently it was shown by Lohmann and Vollmer that the satisfiability
problem for MDL is NEXPTIME-complete ([2]). That the model check-
ing problem is NP-complete was shown by Ebbing and Lohmann ([1]).
In this work we study an extension of MDL, because MDL does not have
the expressive power to formulate that a dependence between variables
does not hold. For this purpose modal team logic (MTL) extends MDL
by a classical negation operator.
In this paper we consider the model checking problem for MTL. In
the main result we will show that with the classical negation alternat-
ing quantifications, like in QBF, can be expressed. This will lead to a
PSPACE completeness result for the MTL model checking problem.
We will also classify the model checking complexity for MTL operator
fragments. These fragments will mostly be intractable, but we will show
that there are also fragments which are tractable and actually paral-
lelizeable.
Furthermore we take a deeper look into the influence of the classical nega-
tion on the complexity by constraining the nesting depth within MTL
formulas. Constraining the nesting depth to k, will lead to fragments
which are Σp

k or Σp
k+1 complete.
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Veronika Halász, László Hegedüs, István Hornyák, and Benedek Nagy

Department of Computer Science, Faculty of Informatics,
University of Debrecen, Debrecen, Hungary

veronika@macko.atomki.hu, hegedus.laszlo@inf.unideb.hu,

ihornyak@namafia.atomki.hu, nbenedek@inf.unideb.hu

Important features of networks, e.g., length of shortest paths, centrality, are
defined in a graph theoretical way. Bipartite graphs are frequently applied, not
only in computer science (e.g. PetriNets), but in other sciences as well. They
are used to represent various problems, for example, in medicine or in economy.
The relations between customers and products can be represented by bipartite
graphs. Genes and various diseases can also form a bipartite graph. Here we
present a DNA computing approach for solving the mentioned graph theoretical
problems. As a counterpart of [1], we present an algorithm that computes all
shortest paths between all pairs of nodes in a graph (that may represent a so-
cial network, or some other network). From the results of the algorithm we can
compute the centrality and eccentricity of a vertex, and also the centrality of
an edge. In medical sciences bipartite graphs are used to denote the connection
between diseases and causes, or genes and characteristics, etc. [2]. Thus scientists
are interested in the direct paths from vi to vj , or all direct paths from vi to all
other vertices, or all direct paths between all vertices. We show a graph trans-
formation algorithm: Starting from a bipartite graph we obtain its projection
[3] by DNA computation, i.e., a graph with labeled edges having only vertices
from one of the sets of the bipartition. Applications related to economy, e.g.,
marketing are also presented. We present another algorithm for projection that
produces only paths of the desired length (and so it is faster and more efficient).
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Computability, physics and logicRanjit NairCentre for Philosophy and Foundations of ScienceE-36 Panchshila ParkNew Delhi 110017(e-mail: nair@cpfs.res.in)The use of terms such as ‘computability’ and of Gödel’s theorem  by mathematical physicistshss drawn criticism from mathematical logicians who emphasize the precise bounds of theseideas. Within a formal system S with a finite number of axioms and syntactic rules of reasoningor inference rules, in which a certain amount of elementary arithmetic can be done, Gödelshowed that there are undecidable sentences (first incompleteness theorem) and theconsistency of S cannot be proved within S (second incompleteness theorem). StephenHawking conceded his first bet made in 1980 concerning the completeness of physics or theattainment of a ‘theory of everything’ (TOE) in 20 years in 2002, in ‘Gödel’s theorem and theend of physics’. The same bet was repeated with the author in 2001 and with the firstconcession on logical grounds it would appear prima facie that the second bet was alsoconceded. However, from a rigorous application of the incompleteness theorems, all thatfollows is that elementary arithmetic accompanying the putative TOE is incomplete. Hawking’sconception of the centrality to self-referential sentences in Gödel’s theorem which he maps onto physics turns out to be misleading as the theorems can be proved without invoking self-refentiality. Is there then no connection between incompleteness in Gödel’s sense and inHawking’s sense? In my paper I suggest that the central feature shared is the complete absenceof semantics and a dependence on syntactic rules. While it was not patently wrong for Gödel tohave left semantics out entirely, theoretical physics as ordinarily understood, requiressemantic interpretation. Perhaps, however, that is Hawking’s point. Theoretical physics may befundamentally of an algorithmic nature, without semantic interpretations. Arguably theCopenhagen interpretation of quantum mechanics was committed to such a view, hence theconnections must not be so cavalierly dismissed.[Topics: Philosophy of science and computation, Physics and computability]
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of Alan Turing
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Abstract: We describe a liberal arts course on the life and work of Alan
Turing directed at first-year students with only a modest background in math-
ematics and computer science.
The initial segment focuses on ciphers in World War I and II, developing and
teaching the tools of cryptology to understand the achievements of Turing and
his Bletchley Park colleagues in cracking Enigma.
We continue with developing the mathematics needed to appreciate his historic
paper ”On Computable Numbers” and to create some elementary Turing ma-
chines. A third major section of the course examines the Turing Test and issues
of artificial intelligence.
We conclude with a multimedia presentation on artistic responses to Turing’s
work and life including music, opera, poetry, and film. Course readings include
biographies, novels, short stories, essays, and research papers.

1
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Global obesity rates have doubled since 1980 and are linked to higher rates of
cardiovascular disease, cancer and diabetes, with an estimated 3 million deaths
worldwide every year [1]. Assessing and responding to many patients’ risks of
chronic diseases and related complications are complex, high-dimensional, in-
formation processing problems faced by time-constrained clinicians. Innovative
algorithms and tools which combine statistical machine learning, information
visualization and electronic health data may reduce clinicians’ information pro-
cessing load and improve their ability to assess risk of disease onset and related
complications. Information visualization utilizes the high bandwidth processing
capabilities of the human visual system to more efficiently perform interactive
data exploration and glean important insights [1]. A critical element in visu-
alization is the incorporation of an expert user in the interpretation of data.
This may make visualization methods particularly useful for the primary care
setting where clinicians desire the flexibility of customizing assessments to the
needs of their unique patient populations. To our knowledge, our research is the
first study on computationally driven, contextualized, visualization techniques
for improving chronic disease risk assessment at the point of care [2].

In this research, we explore statistical and machine learning methods com-
monly used for dimensionality reduction, including Principal Component Analy-
sis (PCA) and Fisher’s Linear Discriminant Analysis (LDA) as a means for find-
ing informative two-dimensional (2-D) projections and classifying patient data
composed of arbitrary numbers of variables that are relevant to diabetes-related
risk assessment [2]. Included in this step is the identification of appropriate data
normalization procedures that conform with the selected dimensionality reduc-
tion methods and the disparate measurement of the data attributes. We establish
a set of feasible methods for pre-processing and projecting high-dimensional pa-
tient data to 2-D plots so that multiple visual enhancements that may augment a
user’s analysis can be incorporated into the framework: (a) Procedures for over-
laying decision boundaries that provide stratification into risk groups are defined
using well-known classification techniques from the statistical machine learning
literature; (b) Attracting anchor points and specifications for plotting them to
intuitively reflect an attraction metaphor have been developed; (c) Additional
use of color and/or shape that follow standard visual design techniques and may
help highlight patient groups or important risk factors are specified as elements
in the visual models. Results show that the framework may generate models
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which visually classify a large patient population with accuracy comparable to
common statistical methods.

The primary goal is to develop intelligent visual data analysis tools that can
be integrated with existing approaches to clinical data management and evalu-
ation, in order to provide practitioners with usable systems that deliver critical
information and new insights for responding to chronic disease risk among their
patients. The methodology and tool proposed here offer an interactive interface
through which clinicians can visually access, explore and compare risk predic-
tions for a large cohort of patients in the context of many risk factors. This
contextualization may make risk predictions more relevant, interpretable and
clinically actionable. Aggregating results over patients, explaining the relation-
ships between individual risk factors, and presenting information in a clinically
useful format have not been sufficiently addressed in prior research. Such cog-
nitively guided capabilities have the potential to move statistical risk models
closer to the domain of primary care practice and the goal of meeting informa-
tion needs to improve care quality. The proposed solutions may benefit multiple
stakeholders.
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Computational Creativity is the AI subfield in which we study how to build computational models of creative
thought in science and the arts. From an engineering perspective, it is desirable to have concrete measures for
assessing the progress made from one version of a program to another, or for comparing and contrasting different
software systems for the same creative task. The Turing Test is of particular interest to CC for two reasons.
Firstly, unlike the general situation in AI, the TT, or variations of it, are currently being used to evaluate
candidate programs in CC. Thus, the TT is having a major influence on the development of CC. This influence
is usually neither noted nor questioned. Secondly, there are huge philosophical problems with using a test
based on imitation to evaluate competence in an area of thought which is based on originality. While there
are varying definitions of creativity, the majority consider some interpretation of novelty and utility to be
essential criteria. For instance, one of the commonalities found by Rothenberg in a collection of international
perspectives on creativity is that “creativity involves thinking that is aimed at producing ideas or products
that are relatively novel”,1 and in CC the combination of novelty and usefulness is accepted as key. In Plucker
and Makel list “similar, overlapping and possibly synonymous terms for creativity: imagination, ingenuity,
innovation, inspiration, inventiveness, muse, novelty, originality, serendipity, talent and unique”.2 The term
‘imitation’ is simply antipodal to many of these terms.

In our talk we describe the Turing Test and versions of it which have been used in order to measure progress in
Computational Creativity. We show that the versions proposed thus far lack the important aspect of interaction,
without which much of the power of the Turing Test is lost. We argue that the Turing Test is largely inappropriate
for the purposes of evaluation in Computational Creativity, since it attempts to homogenise creativity into a
single (human) style, does not take into account the importance of background and contextual information for a
creative act, encourages superficial, uninteresting advances in front-ends, and rewards creativity which adheres
to a certain style over that which creates something which is genuinely novel. We further argue that although
there may be some place for Turing-style tests for Computational Creativity at some point in the future, it is
currently untenable to apply any defensible version of the Turing Test.

As an alternative to Turing-style tests, we introduce two descriptive models for evaluating creative software,
the FACE model which describes creative acts performed by software in terms of tuples of generative acts, and
the IDEA model which describes how such creative acts can have an impact upon an ideal audience, given ideal
information about background knowledge and the software development process.3 These alternative measures
constitute a beginning in our efforts to avoid some of the pitfalls of the TT: they do not discriminate against a
creativity which may be specific to computers, they take contextual information into account via the framing
aspect of the FACE model, they reward genuine advances in CC and the genuinely novel over pastiche. Perhaps
most importantly, we believe that they are workable measures which will enable us to measure intermediate
progress and make falsifiable claims about our programs. We demonstrate the practicability of the descriptive
models with regard to a poetry generation system.4

1 A. Rothenberg: Creativity and Madness. The John Hopkins University Press, Baltimore, USA, 1990.
2 J. A. Plucker and M. C. Makel: Assessment of creativity. In J. C. Kaufman and R. J. Sternberg, editors, The Cambridge
Handbook of Creativity, pages 48–73. Cambridge University Press, USA, 2010.

3 S. Colton, A. Pease, and J. Charnley: Computational Creativity Theory: The FACE and IDEA descriptive models. In
2nd International Conference on Computational Creativity, 2011; and A. Pease and S. Colton: Computational Creativity
Theory: Inspirations behind the FACE and the IDEA models. In 2nd International Conference on Computational
Creativity, 2011.

4 S. Colton, J. Goodwin, and T. Veale: Full FACE poetry generation. In Proceedings of the Third International Confer-
ence on Computational Creativity, 2012.
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In his article Computing Machinery and Intelligence, Alan Turing proposed
to consider the question, “Can machines think?”. We consider the question,
“Can machines do mathematics, and how?” Turing suggested that intelligence
be tested by comparing computer behaviour to human behaviour in an online
discussion. We hold that this approach could be useful for assessing computa-
tional logic systems which, despite having produced formal proofs of the Four
Colour Theorem, the Robbins Conjecture and the Kepler Conjecture, have not
achieved widespread take up by mathematicians. It has been suggested that
this is because computer proofs are perceived as ungainly, brute-force searches
which lack elegance, beauty or mathematical insight. One response to this is to
build such systems which perform in a more human-like manner, which raises
the question of what a “human-like manner” may be.

Timothy Gowers recently initiated Polymath, a series of experiments in online
collaborative mathematics, in which problems are posted online, and an open
invitation issued for people to try to solve them collaboratively, documenting
every step of the ensuing discussion. The resulting record provides an unusual
example of fully documented mathematical activity leading to a proof, in con-
trast to typical research papers which record proofs, but not how they were
obtained.

We consider the third Mini-Polymath project, started by Terence Tao and
published online on July 19, 2011. We examine the resulting discussion from the
perspective: what would it take for a machine to contribute, in a human-like
manner, to this online discussion? We present an account of the mathematical
reasoning behind the online collaboration, which involved about 150 informal
mathematical comments and led to a proof of the result. We distinguish four
types of comment, which focus on mathematical concepts, examples, conjectures
and proof strategies, and further categorise ways in which each aspect developed.
Where relevant, we relate the discussion to theories of mathematical practice,
such as those proposed by Pólya and Lakatos, and consider how their theories
stand up in the light of this documented record of informal mathematical collab-
oration. We briefly discuss automated systems which currently find examples,
form concepts and conjectures, and generate proofs; and conclude that Turing
was right when he commented: “We can only see a short distance ahead, but we
can see plenty there that needs to be done.”
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We show a simple and conceptually new proof that the model of
measurement-only quantum computation (MOQC) is a universal model of quan-
tum computation. The simulation of unitary transformations (which are re-
versible) using measurements (which are not reversible) requires an additional
working space. As a consequence, universal resources for the MOQC model are
described as (i) a family of elementary observables and (ii) the number of an-
cillary qubits which are used to simulate any quantum evolution by composing
measurements according to the elementary observables.

It has been proved that there exists a family of three observables which is
universal using one ancillary qubit only [1], whereas there exists a family of two
observables only which is universal in the presence of two ancillary qubits [2],
leaving as an open question the existence of a universal family of two observables
when a single ancillary qubit is available.

We introduce necessary and sufficient conditions for two successive measure-
ments to be information preserving, which means that the action of the second
measurement is reversible. Using this characterisation of information preserv-
ing measurements we prove that there is no family of two observables which is
universal when a single ancillary qubit is available.
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Abstract

Our aim is to present the current stage of formation of the constructive formal
theory of computable functionals TCF+.

While the idea of a formal theory of computable functionals based on the
partial continuous functionals as its intended domain goes back to Scott’s LCF
[Scott 1969/1993], Schwichtenberg’s formal theory TCF [Schwichtenberg and
Wainer 2012], a common extension of Plotkin’s PCF and Gödel’s system T,
uses, in contrast to LCF, non-flat free algebras as semantical domains for the
base types. These algebras are given by their constructors, which can be proved
in TCF to be injective with disjoint ranges. Moreover, the underlying logic of
TCF is minimal.

The passage from TCF to TCF+ is forced by our need to have a formal the-
ory better adjusted to the intended model. Since a partial continuous functional
of a type ρ over some base algebras is an ideal of the corresponding informa-
tion system Cρ, we would like to represent within our formal theory not only
the functionals themselves but also their finite approximations, i.e., tokens and
formal neighborhoods contained in them. The system TCF+ is such a formal
theory first developed in [Huber et al. 2010].

We present an updated version of TCF+ and of the proofs within TCF+ of
a generalization of Kreisel’s density theorem and Plotkin’s definability theorem.
We also point to new case studies that could be examined within TCF+.
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Let Λ be any finite nonempty set of indices. We say that A = {Aλ}λ∈Λ
is Λ-sequence if A ⊆ N for any λ ∈ Λ. For any computable function ϕ and
Λ-sequence A we write ϕ−1(A) for the Λ-sequence {ϕ−1(Aλ)}λ∈Λ. Given two
Λ-sequences A and B we say that A is m-reducible to B if A = f−1(B) for some
total computable function f .

Let Q be a class of Λ-sequences. Then Q is called C-class if Q contains
universal Λ-sequence w.r.t. m-reducibility and ϕ−1(A) ∈ Q for any A ∈ Q and
any computable ϕ. C-classes are introduced in [1, ch. 3, §1]; it can be proved that
the universal Λ-sequence in any C-class is unique up to computable isomorphism.

We say that ν = {νλ}λ∈Λ is a (computable) numbering of the class Q of
Λ-sequences if νλ is (computable) numbering of some family of c.e. sets and
{νx = {νλx}λ∈Λ : x ∈ N} ⊆ Q. For any two numberings ν and µ of Q we
write ν 6 µ if νλ = µλ ◦ f for any λ and some total computable function f . A
computable numbering ν of Q is called principal if µ 6 ν for any computable
numbering µ of Q.

Let us call an equality any equality of the form t1(λ1, . . . , λk) = t2(λ1, . . . , λk)
where t1, t2 are the terms in the language with two binary operations ∪ and ∩,
constant symbol ∅ and variables from Λ. If e is the equality of the such form and
A is Λ-sequence we write A |= e for N |= (t1(Aλ1

, . . . , Aλk
) = t2(Aλ1

, . . . , Aλk
)).

For any set Γ of the equalities we define Q(Γ ) to be the collection of all such
Λ-sequences A that A |= e for every e ∈ Γ and Aλ is c.e. for any λ ∈ Λ.

For any finite poset P and any numbering α of P we say that α is computable
if there exists computable function 〈t, x〉 7→ αtx ∈ P such that ν0x > ν1x > . . .
and αx = limt α

tx. A computable numbering of P is said to be principal if any
computable numbering of P is reducible to it.

The author have proved that for any Γ the next conditions are equivalent: (i)
the class Q(Γ ) of Λ-sequences is a C-class; (ii) there is a principal computable
numbering of the class Q(Γ ); (iii) there is a principal computable numbering of
PΓ , where PΓ is a special finite poset defined from Γ . It follows that Q(Γ ) is
always a C-class; it also can be proved that any computable C-class is a class of
the form Q(Γ ) for some suitable Γ .
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Abstract. According to the Church-Turing Thesis, the informal notion of an effectively calculable
function has the same extension as the notion of a Turing computable function. Is there an analogue
of the Church-Turing Thesis that holds for some definition of algorithmic randomness for infinite
sequences? While several analogues have been suggested, I will argue (i) that each of these suggestions is
problematic, and (ii) that, rather than single out one definition of algorithmic randomness as capturing
the so-called intuitive conception of randomness, a more promising approach is one according to which
multiple non-equivalent definitions of algorithmic randomness play an important role in illuminating
the concept of randomness.

Keywords: the Church-Turing Thesis, algorithmic randomness, philosophy of mathematics
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Although the seasonality of respiratory diseases (common cold, influenza,
RSV, etc) is a quite ubiquitous phenomenon, the development of computational
models, which allow to reproduce it is still an actual unsolved problem of math-
ematical epidemiology and dynamical systems theory.

Basing on known in medical literature correlation between activity influenza-
like diseases and meteorological (air temperature, humidity, illumination) condi-
tions, the SIRS (Susceptible–Infected–Recovered– Susceptible) approach is used
Ṡ = −kIS + θ−1R,İdt = kIS − τ−1I, Ṙ = τ−1I − θ−1R (S + I + R = 1) with
the variable parameter k = k0 [1 + κ (T (t))], which depends on air temperature
T (t) daily varying during seasons.

It has been shown that that this system can be transformed into the second-
order non-autonomous ODE with free the term Rsθ

−1τ−1κ (T (t)), where Rs is
a fixed point for R in the case k = k0 = const. In other words, the proposed
coordinate transformation reveals the explicit form of outer excitation, which
enforce its intrinsic period to the epidemic oscillations and determines the shape
of latter as a kind of resonant filtering. As well, this reveals the origin of co-
called dynamical resonance in stochastic SIRS model [Dushoff et al., 2004], since
the phenomenon of 1:1 resonant excitation between intrinsic oscillations and
single-frequency oscillations of the reaction rate.

To validate the obtained model,
the data on flu dynamics obtained
from Google Flu Trends are com-
pared with the forecast evalu-
ated via proposed ODE system,
where corresponding weather con-
ditions (daily mean temperature)
are taken from European Climate

Assessment & Dataset.

The processing of these curves confirms the proposed mathematical model, see,
for example, the Figure above quite satisfactory reproducing normal flu level
in Berlin (localized significant exceptions corresponds to avian and swine flus
outbreaks). Thus, these results open the opportunities for automated computa-
tional forecast of normal estimated flu activity using both data of current trends
and weather forecast.
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The relation between modal logic S4 and intuitionistic logic is notoriously
given via the interpretation of necessity as provability. Constructive S4 has been
explored in the form of both Kripke and categorical semantics. Less considered
in the literature are modal translations of the contextual notion of derivability
known from natural deduction calculi and type theories. Even less so are lan-
guages including both local and global validity relations, roughly corresponding
to the idea of derivability from undischarged and discharged assumptions.

In this paper, we present a modal language for contextual computing, cor-
responding to the fragment of constructive KT with necessity and possibility
operators to interpret absolute and contextual computations as different modes
of verifying the truth of propositions. Its semantics Lcc is given as the union of
two fragments: Lver for absolute computations has formulas verified in a set of
knowledge states with models defined by an order relation on them and a verifi-
cation function; the extension to Lctx is obtained by introducing an appropriate
notion of contextual verification, simulating truth under contents that are not
directly computable in Lver, but are considered admissible. The pre-order on
states is now strictly determined by the inclusion relation of contexts for states.
An informational context Γ over Ki is admitted if and only if the evaluation func-
tions it induces are not contradictory to any of the contents validated in Lver for
any knowledge state from which Ki is accessible. Modalities are used to express
extensions of contexts as sets of such assumptions in order to define local and
global validity. This semantics has a (weak) monotonicity property, depending
on satisfaction of processes in contexts. In the corresponding axiomatic system
cKT�♦, a restricted version of the deduction theorem for globally valid formulas
holds. Soundness and completeness are proven and decidability is shown to hold
for the necessitation fragment of the language by an additional restricted finite
model property.

Lcc and the axiomatic counterpart cKT�♦ are inspired by applications of
logics for modeling knowledge processes in the context of exchange of unveri-
fied or uncertain information. Possible applications are in modeling of trusted
communications of uncertain information and contextual verification methods
in distributed and staged computation.
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Abstract. In [2], open questions are raised regarding the computational
strengths of so-called ∞-α-Turing machines, a family of models of com-
putation resembling the infinite time Turing machine (ITTM) model
of [1], except with α-length tape (for α ≥ ω). Let Tα refer to the model
of length α (so Tω is just the ITTM model). I define a notion of computa-
tional strength, letting � stand for “is computationally stronger than”.
I show the following: (1) Tω1 � Tω. (2) There are countable ordinals α
such that Tα � Tω, the smallest of which is precisely γ, the supremum
of clockable ordinals (by Tω). In fact, there is a hierarchy of countable
machines of strictly increasing strength corresponding to the transfinite
(weak) Turing jump operator ∇. (3) There is a countable ordinal µ0 such
that for every countable µ ≥ µ0, neither Tω1 � Tµ nor Tµ � Tω1 — that
is, the machines Tµ and Tω1 are computation-strength incommensurable.
The same holds true if Tω1 is substituted by any larger machine.

Keywords: infinite time Turing machine, ITTM, transfinite computa-
tion, supertask, computability
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Abstract. Various works have been done in computability theory to
contrast and compare decidable sets and computable enumerable sets.
As a simple fact, we know that among all enumerable sets, only decid-
able sets can be sorted computably in an ascending usual order.
The question that naturally arises for any c.e. set A is “What computable
partial orders are accepted by A?”In this paper, the attempts are made
to expose a theory to answer the above question.
Some other questions arise in the shadow of the above question, the most
important ones are listed in the following:
1. How to investigate c.e. sets which accept the same partial orders in
the above sense?
2. Consider two non-decidable c.e. sets A and B. Is it possible the partial
orders accepted by A be the subset of partial orders accepted by B?
Throughout this paper, we show that answering the first question re-
quires defining an equivalence relation and to answer the second one we
have to define a partial ordering among c.e. sets. Therefore, a reducibility
among c.e. sets named Enumeration Order Reducibility and the related
equivalence relation are defined.
In continuing, we found out that adding some finite numbers of elements
to a non-decidable c.e. set may results a set that is not in the enumera-
tion order equivalence class of the origin set. Regarding this point, some
complexities arise. To overcome them, we define a new type of reducibil-
ity among c.e. sets.
The main goal of the present paper, is to find some properties of the
introduced relations among c.e. sets and compare them to the other fa-
mous relations in computability theory. As an example, we show that
these partial orderings are finer than Turing reducibility.
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Abstract

Constructive Analysis, introduced in 1967 by Errett Bishop ([1]), is the redevel-
opment of Mathematics based on algorithm and proof along the lines of the fa-
mous BHK (Brouwer-Heyting-Kolmogorov) interpretation. Constructive Reverse
Mathematics is a spin-off from Harvey Friedman’s famous Reverse Mathematics
program ([8]), based on Constructive Analysis ([3, 4]).

We identify a fragment of Nonstandard Analysis ([6]) which captures Bishop’s
Constructive Analysis. The counterparts of algorithm and proof in Nonstandard
Analysis are played by Ω-invariance and Transfer. Transfer expresses Leibniz’
law that N and ∗N satisfy the same properties. Furthermore, an object is Ω-
invariant if it does not depend on the choice of the infinitesimal in its definition.
Incidentally, the latter is exactly the way infinitesimals are used in Physics.
Moreover, the latter discipline tends to limit itself to Mathematics formalizable
in Constructive Analysis ([2]).

We obtain a large number of equivalences from Constructive Reverse Math-
ematics in our constructive version of Nonstandard Analysis and discuss impli-
cations of our results. In particular, we discuss how our approach is the dual of
Palmgren and Moerdijk ([5]) towards Reuniting the Antipodes ([7]).
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Shape a Language for IFS
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Abstract. Shape is a language for controlling agents designed to rep-
resent geometric transformations of compact subsets in a metric space.
Shape provides a spatial reasoning[6] framework which allows agents to
take decisions based on the structure of their surrounding metric. Like
biological cells, these agents can subdivide and replicate creating new
transformations and new subsets, while their control program or “ge-
netic code” is written in Shape. Shape is demonstrated on the inverse
problem for Iterated Function Systems (IFS) fractals[1]. Shape provides
a useful computational framework for studying development of fractal
structures, as well as a novel indirect representation[2, 4] for spatial gen-
erative models[5, 3].

Keywords: Evolutionary Representations, IFS Fractals, Agents, Bio-
logically Inspired Computing, Computer Graphics, Spatial Reasoning
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Abstract. In this paper the study of the partial ordering of the ω-Turing
degrees is initiated. Informally, the considered structure is derived from
the structure of ω-enumeration degrees described by Soskov [1] by replac-
ing the usage of the enumeration reducibility and the enumeration jump
in the definitions with Turing reducibility and Turing jump respectively.
The main results include a jump invertion theorem, existence of minimal
elements and minimal pairs.

Keywords: ω-enumeration degrees, Turing reducibility, jump hierar-
chies
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Abstract. Discussions of Church-Turing thesis, as well as that of hypercompu-
tation have only fragmentary foundations. Although the concept of computation
is usually clearly defined, the issue of what is beyond computation or what can
be reduced to computation remains vague. It seems obvious that any discussion
of the limits of computation has to be formulated in a conceptual framework
broader than that of computation. It is commonly assumed that such a more
general framework can be found in the concept of information, and computation
can be considered a kind of information processing. However, there is no consen-
sus regarding definition of information, and its study focused thus far exclusively
on its quantitative characteristics, such as Shannon’s entropy or algorithmic mea-
sures of Kolmogorov-Chaitin. In the context of computation, the latter approach
is closing a vicious circle. Computation is supposed to be explained in terms of
information processing. Information is being studied in terms of computation.
Even more serious problem in using information as a fundamental concept for
the study of limits for computation was the lack of well developed structural
theory of information. Present paper is presenting an approach to the study of
information processing based on the concept of information and its mathemati-
cal formalism developed in earlier works of the author. Its formalism, formulated
in terms of closure spaces and their general algebraic analysis, has an advantage
of uniting the selective and structural manifestations of information. Another
advantage, relevant to the issue of the limits of computation, is the possibility to
employ Tarski’s consequence operator (specific example of a closure space with
the finite character property) as a tool for the analysis of the role of logic in
the process of computing. Then, we can recognize another vicious circle in the
discussion of the limits of computation. Failing attempts to go beyond Turing’s
computation have been always assuming that the description of what could be
beyond computation has to be formulated in terms of classical, linguistic logic
which is based on closure operator of finite character. However, such an assump-
tion automatically precludes non-computability. An alternative is to consider
logic of more general forms of information. Moreover, information integration,
which is considered as defining process of consciousness, involves closure spaces
which are not necessarily of finite character. This opens a very broad perspective
on processes which are beyond Turing’s computability.

Keywords: Information, Information Integration, Information Processing, Com-
putation, Logic of information
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Alan Turing (1936) famously provided an analysis of effective computability
by formulating a set of restrictive constraints (”axioms”) on the comput-
ing agent. It is widely agreed that Turing had in mind an idealized human
agent, and that he ”makes no reference whatsoever to calculating machines”
(Gandy 1988: 83-84). My aim is to explore two very different understand-
ings of the concept of a human computer; I call them the cognitive and the
non-cognitive approaches. According to the cognitive approach, a human
computer is restricted by the limitations of certain human cognitive capac-
ities. The claim need not be that these limitations apply to human mental
processes in general, but to the cognitive abilities involved in calculation.
The non-cognitivist, in contrast, thinks that a human computer is restricted
to certain finite means, regardless of whether or not these means reflect the
limitations of human cognitive capacities. These means are simply part of
the concept of effective computation as it is properly used and as it functions
in the discourse of logic and mathematics.

The restrictive constraints that Turing formulated can be respectively
understood in two ways. The cognitivist might see them as reflections of
certain limitations of human cognitive capacities. These limitations ground
or justify the restrictive constraints. According to the cognitive approach,
computability is constrained by Turing’s constraints because these restric-
tive constraints reflect the limitations of human cognitive capacities. The
non-cognitivist thinks that the restrictive constraints do not, and need not,
necessarily reflect cognitive limitations. The non-cognitivist offers no other
justification for the constraints. In fact a call for further justification has no
place at all in the analysis of computability, according to the non-cognitivist.

I will argue that the founders of computability and their interpreters take
a stand between the approaches.

1
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In classical computing theory, recursively enumerable languages are known as
type-0 languages and accepted by Turing machines. These languages enjoy a
good set of well-defined closure properties. It has been proved that the Kleene * of
a recursively enumerable language is a recursive enumerable language again. Also
the intersection, union and concatenation of two recursive enumerable languages
are recursive enumerable again.

Are all these results still valid when shifting from languages based on clas-
sical logic to those based on quantum logic? We have found that the answer
is no. While the underlying algebra of classical logic is Boolean algebra, that
of quantum logic (in the sense of von Neumann) is orthomodular lattice where
the distributive law fails to hold. The question as to whether or not a symbol
string is a sentence of a language does not have an answer of yes/no type as in
the classical case. Rather, the answer of such questions now takes an element of
the orthomodular lattice as its value. Unfortunately, only the union operation
remains valid in the (orthomodular) lattice version. As for intersection, concate-
nation and Kleene * operations of two quantum recursive enumerable languages,
we have proved that they are not recursive enumerable in lattice valued sense.
Similar to classical complement operation, orthocomplement operation for or-
thomodular lattices does not enjoy the closure property.

Things become more complicated if we come from the (sharp) quantum logic
over to unsharp quantum case where the underlying algebraic model is extended
lattice-ordered effect algebra (or lattice-ordered QMV algebra). The situation is
more serious since also the non-contradiction law and excluding of the middle
law both fail to be valid. As a positive result we have proved that the closure
property is true for intersection operation. This is different from the case of
orthomodular lattice. On the other hand we have also proved that the closure
property for disjoint sum (that is some generalized union), concatenation, Kleene
* and orthocomplement operation does not hold. The first three properties are
true if and only if the truth valued lattice satisfies some kind of distributive law.

From the above results, we can conclude that the underlying physical proper-
ties determine the quantum logic (sharp or unsharp), while the latter determines
the algebraic models of quantum Turing machine.

? This work was supported by NSFC projects under Grant No.61073023. 973project
under Grant NO. 2009CB320701,K.C.Wong Education Foundation, Hong Kong, Na-
tional Center for Mathematics and Interdisciplinary Sciences, CAS
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Geometric Models of Computation 

by Joseph Shipman and John H. Conway 

 

We describe a general framework for models of computation that generate numbers from 

previously generated numbers by geometrical operations. Most of these involve "construction 

tools" that find a subset of the roots of polynomials whose coefficients lie in fields generated by 

previously constructed numbers. In this view, numbers are regarded as "constructible" only if 

they are given by a finte sequence of such operations, rather than by infinite processes involving 

limits. Complex numbers are considered to be constructed if their real and imaginary parts have 

been.  

 

Constructions may involve restrictions or extensions of the classical Greeks' tools of ruler and 

compass and technique of neusis or "verging", and later techniques such as origami, nomograms, 

rigid frameworks, curve-drawing tools, and linkages. We define complexity measures in terms of 

the number of operations of various types needed to complete a construction, and compare 

general constructions involving a bounded number of steps with non-uniform constructions of 

particular numbers. We establish some results about angle n-section, nth-rooter tools, regular 

polygons, and general nth-degree polynomial equations. 

 

The subfields of the algebraic numbers associated with such models can be characterized in 

various ways, such as degrees of extensions, cyclotomy, commutativity and solvability and 

composition factors of Galois groups, closedness under taking real or complex algebraic 

conjugates, or number of terms in permitted polynomials. The geometrical operations permitted 

in such a model can be characterized in additional ways, such as number of degrees of freedom 

in the configuration space of the construction tools, and the types of curves that can be drawn 

explicitly (rather than implicitly characterized by points on them). 

 

We will demonstrate relationships between these characterizations, and extend them to non-

geometrical operations such as price-yield functions and ultraradicals. Questions of definability, 

decidability and (classical) computational complexity are investigated. Extensions to 

transcendental fields are possible using techniques such as generating pi by rolling a paper cone 

in three dimensions, but we must then assume Schanuel's conjecture in order to prove basic 

results. We also discuss extensions to characteristic p and the usefulness of having a computable 

order relation, and other results by the authors relating the degrees of polynomials with no 

constructible roots. A historical survey connects this work to earlier results of Alperin, Baragar, 

Demaine, Gleason, Kempe, Lang, Peaucellier, et al. 
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Introduction: An emerging perception of computing as technology rather than science (Baldwin
2011) is based on a view that emphasises the role of tool use in computing.
Background and the problem domain: Any new technological development is subject to
unpredictable circumstances, and computing is no exception. For example, the question as to
whether computing can be explained in scientific terms is still unanswered and perplexing.
Nevertheless, computing technology plays – and seems likely to continue to play – a ‘game-
changing’ role in the state of human affairs. The source of the associated ‘game change’ will
inevitably determine a particular technological turn of events. We assume that any significant
change in the technologies in use is likely to be a source of change in the world in which
it operates. In particular, the need for software makes computer-based technologies different
from others. Software exists, and is constructed, exclusively in a specific artificial, non-natural,
environment. Computer-based tools take this “context-insensitive” software and place it into
human ‘context sensitive’ environments and set them to work in (assumed) harmony with other
tools; software-based in-car satellite navigation software travels along the road with the car
driver, courtesy of the car’s wheels. Computing technology has thus split human use of artefacts
from their construction environment(s). This restricts our ability to improve technology by
shifting focus between tool use and construction. As a result, it can be very difficult to be
certain that software, correct in a construction environment will prove to be ‘correct’ when used
in an artefact.
We use conflicting paradigms of computing to work out a logical analysis of the
problem domain: The above analysis has identified a potential technologically-based mismatch
between the environments of software construction and use. This ‘mismatch’ is not explicit in
computing paradigms and has provoked disputes over the ontological status and valid purpose(s)
of programming languages (PL). The differing constraints acting on PL as against natural lan-
guages (NL), for example, only implicitly appear in an extensive literature review and analysis
of computing paradigms (Eden 2007). Our approach to increasing an understanding of PL (soft-
ware) is pragmatic, using logical analysis to counterpoise two opposing views of PL, rationalist
and technocratic (Eden 2007). Due to the lack of previous work in this area, we have opposed
21st-century computing concepts – the classes and objects used in object-oriented programming
(OOP) – with the 20th-century philosophical failure to demonstrate mathematical systems as
inevitably logically self-consistent (Gefwert 1998).
Conclusion: By considering “Russell’s Antinomy” (Gefwert 1998), we conclude that “inconsistency-
tolerance” (Decker 2009) in PL is a hypothetical possibility for PLs and systems developed using
them. This tends to support technocratic views of computing that are directly opposed by a
rationalist concern for consistency that tends, for instance to value programs that have been
formally specified over those that have not. We will align the technocratic view of PL with
Wittgenstein’s view on paradoxes (Chihara 1977), and the opposing rationalist view of PL with
Russell (and Turing), as the basis for extending our analysis.
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Membrane computing is a vivid research field in natural computing and un-
conventional computing, studying a computational paradigm including a large
variety of models, called membrane systems or P systems. During the years, the
framework has been intensively investigated, especially with respect to its com-
putational power and complexity aspects. Promising applications of the theory
in biology, distributed computing, linguistics, graphics have also been identified.

A P system consists of a set of compartments i.e., regions delimited by mem-
branes, where the regions contain multisets of objects. In the generic model, the
compartments form a nested, tree-like structure. There are transformation and
communication rules associated to the regions for describing the interactions be-
tween the objects and a strategy of evolving the system. It can easily be seen
that P systems introduce in a very natural way a specific topology of the system
described, whereby membranes define compartments with local objects and in-
teracting rules, together with specific links between compartments. These links
describe communication channels allowing connected compartments to exchange
objects. Although this topology is flexible enough to model various natural or
engineering systems, there are cases when a fine grain topological structure is
requested.

In this paper we continue our previous investigations using topological spaces
as a control mechanisms for membrane systems, where a topological space was
used as a framework to control the evolution of the system with respect to a fam-
ily of open sets that is associated with each compartment. This approach pro-
vides a fine grain description of local operations occurring in each compartment
by restricting the interactions between objects to those from a certain vicinity.
Continuing the initial study on the influence of an arbitrary topology on the
way basic membrane systems compute, we examine the effect of the topological
space control on P systems with different static and dynamic underlying graph
structure and with different topologies. More precisely, we study topologically
controlled computation for purely communicating P systems (symport-antiport),
tissue P systems and population P systems, as well as P systems with membrane
division and creation.
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Linear logic deals with two kinds of conjunction, multiplicative ⊗ and additive
& . For these connectives both sequents A⊗B ⇒ A &B and A&B ⇒ A⊗B are
not derivable. Another system with two kinds of conjunction (and disjunction) is
Intersection and Union Logic IUL [3,6,5] which aims to give a logical foundation
for intersection and union types [1]. In IUL, conjunction ∧ is an asynchronous
connective and has a multiplicative definition whereas intersection ∩ being syn-
chronous is necessarily additive [3]. For these connectives, A∧B ⇒ A∩B is not
derivable whereas A∩B ⇒ A∧B is and thus intersection ∩ behaves as a special
synchronous conjunction.

To investigate further the nature of these connectives we define a translation
( )◦ of IUL in linear logic and prove a full embedding. In the translation of ∩
we take into account the additive aspect of ∩ and therefore (A∩B)◦ = A◦ & B◦,
whereas for ∧ and ⊗ we consider general elimination rules [4,2] and thus we
translate (A ∧ B)◦ = !A◦ ⊗ !B◦. Since !A⊗ !B ⇒ A&B is derivable (and not
conversely), the embedding with & is in a sense tighter than the embedding
with ⊗, which is dual to the relation of ∩ to ∧.

Keywords: intersection and union types, intersection and union logics, linear logic
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Abstract. I examine computational modeling in cognitive neuroscience
with the joint aims of expanding the scope of research on the epistemol-
ogy of computational modeling, and resolving some outstanding prob-
lems concerning the role of computational models in cognitive science.
The literature on the philosophy of simulation and modeling has focused
predominantly on examples taken from physics or economics. In fields
like cognitive neuroscience, computational models bear a different rela-
tionship to theory, for the simple reason that there are no fundamental
theories in cognitive neuroscience.
Discussions of computational modeling in the cognitive sciences have
largely ignored epistemological questions. Nevertheless, some epistemo-
logical puzzles can be extracted from the literature on the relative merits
of classical and connectionist AI architectures. There is an unresolved
tension in these discussions between computational models as bits of
mathematical theory and as physical implementations. There is also a
confusing mixture of claims about neural plausibility being a virtue, while
at the same time, simplicity and idealization are deemed essential.
I show how these apparently contradictory pairs of roles and desider-
ata can be reconciled. In particular, if the neo-mechanist picture of ex-
planation is adopted, the connectionist project appears quite coherent.
Mechanisms are simultaneously theory-like explanatory apparatus, and
physical implementations. Furthermore, a mechanism need not include
details at all levels of analysis in order to serve its explanatory purpose.
They are nearly always sketchy or schematic. The result is a pluralist
picture where computational models play a variety of roles from being
theories, to aiding in the construction of theories, to being tools that eval-
uate theories. I discuss some recent examples of computational modeling
work in cognitive neuroscience that illustrate these points.

Keywords: computational models, connectionism, mechanistic expla-
nation

130



The Analysis of Evolutionary Algorithms:

Why Evolution is Faster With Crossover

Dirk Sudholt

Department of Computer Science, University of Sheffield
211 Portobello, Sheffield S1 4DP, UK

d.sudholt@sheffield.ac.uk

Abstract. Evolutionary algorithms represent a natural computation
paradigm, mimicking the natural evolution of species in order to “evolve”
good solutions for optimisation problems. Starting with a random “pop-
ulation” of candidate solutions, search operators like mutation and cross-
over are used to construct new, innovative solutions, while selection oper-
ators drive this artificial evolution towards favouring solutions with high
“fitness”, i. e., solution quality. Evolutionary algorithms are very popular
in many engineering disciplines as they are generic, easy to apply, and
often perform surprisingly well. They are a method of choice in black-
box optimisation, where the knowledge about the problem at hand is too
limited to design a tailored algorithm.
In the past decades there has been a long and controversial debate about
when and why the crossover operator is useful. The so-called “building-
block hypothesis” assumes that crossover is particularly helpful if it can
recombine good “building blocks”, i. e. short parts of the genome that
lead to high fitness. However, all attempts at proving this rigorously
have been inconclusive. As of today, there is no rigorous and intuitive
explanation for the usefulness of crossover.
In this talk we provide such an explanation. For functions where “build-
ing blocks” need to be assembled, we prove rigorously that a simple
evolutionary algorithm with crossover is twice as fast as the fastest evo-
lutionary algorithm using only mutation. The reason is that crossover
effectively turns fitness-neutral mutations into improvements by combin-
ing the right building blocks at a later stage. This also leads to surprising
conclusions about the optimal mutation rate.

Keywords: Natural computation, evolutionary computation, genetic al-
gorithms, runtime analysis, recombination, crossover, theory
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Abstract. We discuss an O(
√

bd) iterative extension to Grover’s algo-
rithm focused on tree search.

Whilst the appropriateness of quantum random walks for searching a graph
G = (V, E) seems fairly natural, the application of Grover’s algorithm to the
same problem is not immediately apparent. In order to obtain graph-like search
behaviour the oracle Ofd

employed needs to contain information that is specific
to the graph. One possible strategy resides in evaluating if a node alongside a
sequence of edges leads to a goal state, as illustrated in Expression 1, where the
query register is decomposed into two components, namely |s〉 containing the
initial node and a sequence of edge transitions where each pair (ek, ek+1) ∈ E.
The associated function fd of the oracle employed is depicted in Expression 1,
where Sg represents a set of goal nodes and d the depth of the shallowest solution.

|q〉|a〉 = |s〉|(e0, e1), (e1, e2), · · · , (ed−2, ed−1)〉|a〉 (1)

fd(s, (e0, e1), · · · , (ed−2, ed−1)) =

{
1 , if ((e0, e1), · · · , (ed−2, ed−1)) ∈ Sg

0 , otherwise
(2)

Tree search problems represent acyclic connected graphs where each vertex
has a set of children, whose cardinality is represented through variable b, and
at most one parent node. With tree search each additional level of depth adds
exponential bd nodes to the search. When the depth of the shallowest solution is
unknown some form of iteration needs to be applied. Accordingly, we can apply
Grover’s algorithm alongside Expression 2 in order to evaluate superpositions
spanning all possible edge combinations up to depth-level d. If a measurement
yields a solution, then the algorithm terminates, otherwise the depth limit is
iteratively increased and Grover’s algorithm is applied with a new Ofd

. This
procedure which can be performed indefinitely. The overall complexity will be∑d

k=0

√
bd = O(

√
bd) remaining essentially unchanged from that of the original

quantum tree search algorithm discussed in [1].
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Abstract

In spite of its infinite expectation value, the St. Petersburg game is a gamble without
supply in the real world, but also one without demand at apparently very reasonable asking
prices. We offer a rationalizing explanation, in terms of St. Petersburg’s fractal probability
distribution function (quite heavy-tailed), for why the St. Petersburg bargain is unattractive
on both sides (to both house and player) in the mid-range of prices (finite but upwards of
about $4). Our analysis—featuring (1) the already-established fact that the average of finite
sequences of the St. Petersburg game grows with sequence length, but is unbounded and (2)
our own simulation data showing that the debt-to-entry fee ratio rises exponentially—shows
why this is just as it should be: why both house and player are quite rational in abstaining from
the St. Petersburg game. The house is unavoidably exposed to very long sequences (with very
high averages, and so very costly to them), while contrariwise even the well-heeled player is
not sufficiently capitalized to be able to capture the potential gains from long sequences of play
(short sequences, meanwhile, enjoy low means and so are not worth paying more than $4 to
play, even if a merchant were to offer them at such low prices). Both sides are consequently
rational in abstaining from entry into the St. Petersburg market in the mid-range of asking
prices. We utilize the concept of capitalization vis-à-vis a gamble to make this case.

Our treatment demonstrates that fair asking prices, which are fundamentally solutions typ-
ically reached in negotiation (real or virtual) between differentially affected parties, with dif-
ferent strategic orientations and different “business models” vis-à-vis the relevant transaction,
are incompletely analyzed in traditional appraisals of risky prospects, and no less so in the
fictional case of the St. Petersburg gamble. Traditional analysis is especially incomplete in
cases characterized by probability distribution functions with divergent, unknown or unde-
fined means—cases with quite substantial representation in the marketplace and high-profile
public policy issues.
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Let T “ t0, 1, Ku where K is
the bottom character which means
undefinedness. We call an infinite
T-sequence with at most n copies
of K an nK-sequence and denote
by Tω

n the set of nK-sequences. We
have the Scott topology on Tω and
its subspace topology on Tω

n . 0 0.5 1.00.25 0.75

In [Tsuiki 2002, TCS] and [Gianantonio 1999, TCS], they independently in-
troduced a topological embedding of the unit interval I into Tω

1 . The above
figure depicts this embedding φG which we call the Gray-embedding, where, for
an “ φGpxqpnq pn “ 0, 1, . . .q, gray and black lines show that an is 0 and 1 on the
lines, respectively, and an is K at their endpoints. Therefore, φGp1{2q “ K10ω

for example and it gives a unique Tω
1 -representation to each number. Through

this embedding, one can consider that a machine which can input/output a
Tω

1 -sequence is operating directly on real numbers.
However, a machine gets stuck if it tries to read in the value of the bottom

cell. In order that a machine can input the sequence after a bottom, the author
introduced a machine called an IM2-machine which has two heads on each in-
put/output tape. If the cell-value at one of the input head is not bottom, then it
inputs the value and the heads move to the first two unread cells of the tape. If
both of the cells under the heads have values, it has two possible behaviors and
therefore it is indeterministic. Here, I use the word “indeterministic” instead of
“nondeterministic” because our machine should have a correct output not de-
pending on the way it reads the input. In this way, if there is a bottom on the
input tape, one head waits for the value of the cell eternally and the other one
reads in the rest of the sequence. An IM2-machine outputs an 1K´sequence in a
similar way starting with the tape state Kω. It is proved that the computability
notion induced on the reals by an IM2 machine with Gray-embedding is equal
to the standard one. Note that we have a unique representation to each number,
where the representation used by Turing in his “Correction” and more generally
admissible representations of real numbers are redundant.

After this, the author studied generalizations of this result to other spaces.
In particular, it is proved in [Tsuiki 2004, MSCS] that a separable metrizable
space is n-dimensional if and only if it can be embed in Tω

n . It means that the
dimension of a space, which is a purely mathematical notion, is characterized by
the number of extra heads a machine needs to have to input from that space.
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Social learning is an effective way to reduce uncertainty about the environ-
ment, helping individuals to adopt adaptive behaviour cheaply. Although this is
evident for learning about temporally stable targets, such as acquisition of an
avoidance of toxic foods, the utility of social learning in a temporally unstable
environment is less clear, since knowledge acquired by social learning may be
outdated. An individual can either depend entirely on its own foraging infor-
mation (individual forager) or that provided by the environment or shared by
other agents. We are interested in scenarios where individual foraging might be a
useful and effective strategy and how the topology and distribution of resources
in the network/environment might affect this. We investigate the adaptive value
of social learning in a dynamic environment both theoretically and empirically.

Some group-living species have evolved effective social mechanisms for re-
ducing uncertainties in their environments. Examples include is a system of
reciprocal exchange and sharing of resources such as food. These social mecha-
nisms secure a stable supply of resources by collectively buffering uncertainties
associated with their acquisition. In the biological world, evolution has created
a large number of distributed systems which balance utility and resource usage.
Can we better understand the incentive structures of distributed applications on
the internet through examination of biologically inspired algorithms?

Foraging can be modelled as an optimisation process where an animal seeks
to maximise the energy (information) obtained per unit time spent foraging.
We have overviewed research in foraging theory, relevant to both individual and
collective foraging, and significance of these areas to optimisation.

The work 1has advanced through examination of the behavioural, evolution-
ary and game-theoretic underpinnings of well-known biological social systems,
and used to understand distributed applications through the creation of a sim-
ulation environment, in which the similarities between existing and proposed
adaptive information dissemination protocols and the foraging behaviour of ants,
bees and similar creatures is modelled to investigate the dynamics of social in-
teraction in the context of resource discovery and information dissemination.

1 Umre, A., Wakeman, I., Economics of Cooperation: Social Foraging in Distributed
Systems, Journal of Research on Computing Science: Advances in Artificial Intelli-
gence Theory. Alexander Gelbukh & Raul Monroy (Eds.) 16, (2005).
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Abstract. An attempt has been made to understand the spatiotemporal
dynamics of good biomass (fishes and floating vegetation like Nymphoides
indicum, Nymphaea nouchali etc.), bad biomass (Paspalum distichum
and its family) and bird population in the biotic system of the wetland
part of Keoladeo National Park (KNP), India. Spatiotemporal distribu-
tions of species biomass are simulated using the diffusivity assumptions
realistic for natural wetland systems. We observed that growth rate and
carrying capacity of water availability for the bad biomass, higher value
of the carrying capacity and half saturation constant of the good biomass
are responsible for the good health of the wetland ecosystem. The study
also demonstrates that spatial movements of good biomass acquires sta-
ble stationary patterns in the presence of bad biomass which performs
swinging motion and selects a steady state spatial pattern, thereby en-
suring the persistence as well as extinction of multiple species in space
and time. The patterns observed seem to have a similar structure that is
uniformity in space, with plateau for good biomass, concentration onto
two distinct humps for bad biomass, and extinction for bird population.
This will usually be the case in real world scenarios, unless the parameter
controlling the death rate of bird population is sufficiently decreased.The
mechanisms evolved for the space time survival of these species are thus
regulated by interspecific spatial interaction.
The present study suggests that the bad biomass species pull towards
dynamic stability and the spatial movement leads towards spatial in-
stability, resulting in the emergence of good biomass and bird popula-
tion species in inhomogeneous biomass distributions over space and time.
Thus, the species of the bad biomass present within the biomass commu-
nity itself can be viewed as a potential self-regulating candidate, which,
combined with physical movement of the biomass species and the struc-
ture of the biomass distribution, boosts the emergence of the species in
the wetland ecosystem. The overall results may potentially explain the
sustainability of biodiversity and the spatiotemporal emergence of good
biomass and bird population under the influence of bad biomass com-
bined with their physical movement in the wetland ecosystem.

Keywords: Flood plain wetland; Good biomass; Bad biomass; Spatial patterns.
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A special feature of glycolysis is its oscillatory character, which is close con-
nected with an efficiency of the energy metabolism of almost any living or-
ganisms [1]. The parameter of a glycolytic system, which can be practically
controlled, is the substrate influx into a sphere of reaction that determines a
continuing interest to study its details, see e.g. [2].

In our work, we focus on the study of sequential variation of the periodic
influx within the classical model of glycolysis: two-dimensional Selkov system.
Extensive numerical experiments demonstrate an entrainment of solutions for
this qubic non-linear system by the influx and subdivision of parameter plane
via Arnold tongues. We determine detailed dynamical regimes exploring the
oscillation type inside and between Arnold tongues via Lyapunov characteristic
exponents.

This analysis shows that the influx periodicity leads to rich set of oscilla-
tory dynamics: i) limit cycles in the domains of entrainment (Arnold tongues);
ii) chaotic regime (strange attractors) between the tongues; iii) stable two-
dimensional tori on the borders of tongues.

Thus, the obtained results explain experimental findings [3] detecting oscil-
lations having periods multiple-times the input period as well as chaotic oscil-
lations. Finally, it should be pointed out that the recent research [4] reveals
the possibility to model new experimentally found spatio-temporal patterns by
Selkov model with non-uniform influx. Thus our results on temporal oscillations
have a perspective to be generalized for study of mechanisms of more complex
structures studying by modern biophysics.
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Study of behaviour dynamics for large number of processes in physical, chem-
ical and biological systems is closely connected with systems of nonlinear differ-
ential equations containing diffusion terms. Such reaction-diffusion equations are
used for the description of dynamical spread processes in population dynamics
and chemical front propagation as well as for pattern formation (see e.g. [1]).

In the present work we consider the computational analysis of processes con-
nected with glycolytic reaction [2] taking place in an open chemical reactor. The
main point of the simulation is taking into account spatial three-dimensionality
of the experimental system. For this reason we consider reaction-diffusion sys-
tem with unidirectional reaction in the bulk supplied by feedback terms stated
as boundary conditions on the lower boundary of the reactor.

The numerical solution of proposed model stated mathematically [3] confirms
the existence of the experimentally observed glycolytic travelling waves [2]. The
analysis of the curvature of the reagents distribution curves proves the kine-
matic character of the observed waves. But their origin relates to the diffusion
of reagents in a vertical reactor cross-section. This phenomenon distinguishes
glycolytic travelling waves in an open spatial reactor from travelling reaction-
diffusion waves occurring in Fisher - Kolmogorov model. Study of the solutions
for the concerned reaction-diffusion model in the case of different diffusion coef-
ficients allows to find the regimes of Turing structures.

Thus, we can conclude that considerable model successfully describes the
experimentally observed nonlinear regimes and allows to explain the reasons of
such a behaviour.
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Cognition is demonstrably computational and computation is mathematical by definition: procedures are run
to determine the symbolic outputs (values) of functions given symbolic inputs (arguments); in the domain
of the brain, the running of procedures is referred to informally as “thinking.” In a successful model of this
process, functions would be “completely determined” (Turing) by rules and representations so “perfectly
explicit” (Chomsky) as to be automated, for “if you can’t program it, you haven’t understood it” (Detusch).
The successful model would be descriptively and explanatorily adequate: it would completely describe what
the system of rules and representations is and completely explain how internal and external factors determine
the genotype-to-phenotype expression of the cognitive system. The model might even go beyond explanatory
adequacy to answer the biggest question of all: Why does the system assume this one form out of the infinity
of conceivable forms? Decomposing these big questions into smaller solvable problems, I propose to model
mathematically important aspects of intelligent thought in the domain of language. In particular, I intend
to adopt a rigorous and empirical definition of “language” as an I-language: a cognitive computational
system—an intensional function—internal to an individual of the species Homo sapiens sapiens. I assume
that I-language, as a computational system, can be defined as a type of Turing machine; modeling the former
as a type of the latter would precisify the nature of linguistic computation so as ultimately to be unified
with a yet to be formulated model of neurobiological computation.

A linguistic Turing machine LTM is the 5-tuple (Q,Γ, δ,#S ,#H)

Q : set of states/instructions (i.e., linguistic principles and parameters)

Γ : set of symbols for syntactic objects (e.g., lexical items, phrases, etc.)

δ : Q× Γ→ Q× Γ (i.e., transition function from state/symbol to state/symbol by a search/merge procedure)

#S (∈ Γ) : start (boundary) symbol

#H (∈ Γ) : halt (boundary) symbol

LTM recursively generates syntactic structures mappable via formal semantics and rule-based morphology-
phonology to interfaces with conceptual-intentional and sensory-motor systems, respectively. LTM is thus a
system of discrete infinity analogous to the natural numbers: a finite system that in principle can “strongly
generate” an infinite set of hierarchically structured expressions by recursively combining discrete elements.
Descriptive adequacy: I propose to describe some of the rules and representations of language by con-
ducting typological research on linguistic universals; if LTM is the correct model of the mathematical sys-
tem implemented in the brain, then its rules and representations are predicted to be universal (species-
typical). Explanatory adequacy: I propose to explain (prove) how a PAC algorithm (with an oracle) de-
fined in terms of strong generative capacity enables the rules and representations of LTM to be acquired.
Beyond Explanatory Adequacy: I propose to investigate whether the system of rules and representations of
LTM can be derived from mathematics of computability and complexity. (NB: I-language could be uncom-
putable, with profound implications.) For this I need to revamp the Chomsky Hierarchy from specifying
strings (weak generation) to specifying structures (strong generation). To the extent that this research
program succeeds, unification of computational cognitive science and computational neuroscience becomes
possible. It could thus render commensurable the computational ontologies of linguistics and neuroscience.
I thus need to define the linguistic primitives formally so that “linking hypotheses” (not mere correlations)
to neurobiological primitives can be formed. If I-language were precisified as a form of TM, our imagination
for how language functions in abstract computation and how that relates to concrete computation in the
brain would be profoundly expanded—so as, perhaps, to compass the truth. “[Imagination] is that which
penetrates into the unseen worlds around us, the worlds of Science [. . . ]. Those who have learned to walk on
the threshold of the unknown worlds [. . . ] may then with the fair white wings of Imagination hope to soar
further into the unexplored amidst which we live” (Lady Lovelace).
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Alan Turing was born in June 1912, just one year before Maurice Wilkes. His
Cambridge undergraduate program from 1931-34 coincided with that of Wilkes,
and they knew each other personally. Maurice Wilkes, who supervised my gradu-
ate program in “Numerical Analysis and Automatic Computing” during 1953-54,
informed me of Turing’s death which occurred in June 1954 while I was taking
the final examination for my post-graduate diploma. I continued to interact with
Maurice throughout my career, and invited him to lecture at Brown when he was
working in Boston after completing his stint as head of the Cambridge computer
science department.

Wilkes and I both admired Turing’s technical contributions but questioned
the characterization of the Turing machine as a comprehensive model of comput-
ing and problem-solving. Maurice asserted that Turing, although a great thinker,
was unable to create a Turing machine because his ability to direct collaborators
was weaker than his ability to formulate ideas. He praised my questioning of the
view that the Church-Turing thesis provided a complete basis for computation
and accepted my assertion that Turing machines are a powerful but incomplete
model of computing, and that modern computing machines are more powerful
than Turing machines.

When I visited Sir Maurice at his Cambridge home in 2008 (two years before
his death), we discussed both the power and the limitations of Turing’s model
of computation, as well as the view that a complete model of computation (just
as a complete model of mathematics, physics, or science as a whole) does not
yet exist. We can expand our understanding of computation and other scien-
tific methodologies, but are as yet unable to develop complete descriptions of
underlying disciplines.
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Abstract. In this paper we review τN -theories as environments that are
suitable for expressing concepts that arise in the Incompleteness Theorems. We
describe discrete- and continuous-time dynamic systems as categories in which
to build models of such theories and we explore structure-preserving mappings
between them. This work is motivated by a program aimed at developing new
logic-based artificial intelligence capabilities that blend analogical reasoning with
machine deduction and new logic-based machine learning techniques that sym-
bolically manipulate complex structures.

Keywords: category, dynamic system, higher-order logic, incompleteness
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Abstract. All biological patterns, from population densities to animal
coat markings, can be thought of as heterogeneous spatial-temporal dis-
tributions of reactive agents. Many mathematical models have been pro-
posed to account for the emergence of this complexity, but, in general,
they have consisted of deterministic systems of differential equations,
which do not consider the stochastic nature of population interactions.
One particular, pertinent, criticism of these deterministic systems, is that
the exhibited patterns can often be highly sensitive to changes in initial
conditions, domain geometry, parameter values, etc. Due to this sensi-
tivity, we seek to understand the effects of stochasticity and growth on
biological patterning paradigm models. In this paper, we extend spa-
tial Fourier analysis and growing domain mapping techniques to encom-
pass stochastic Turing patterning systems. Through this we find that the
stochastic systems are able to realise much richer dynamics than their
deterministic counterparts, in that patterns are able to exist outside the
standard Turing parameter range. Further, it is seen that the inherent
stochasticity in the reactions appears to be more important than the
noise generated by the growth. Finally, although growth is able to gen-
erate robust pattern sequences in the deterministic case, we see that
stochastic effects destroy this mechanism of pattern doubling. However,
through Fourier analysis we are able to suggest a reason behind this lack
of robustness and identify possible mechanisms by which to reclaim it.

woolley@maths.ox.ac.uk
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Degrees of Relations on Ordinals
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Downey, Khoussainov, Miller, and Yu showed that the degree spectrum of
any computable unary relation on (ω, <) either contains only the computable
degree, or contains ∅′—that is, if the relation is not intrinsically computable,
then it contains ∅′. However, their proof does not extend to n-ary relations,
nor does it extend to relations on structures other than ω. We will show that
their results can be extended in both of these directions, first by showing that
the same result holds for n-ary relations on ω, and then showing that a more
general version holds of unary relations on arbitrary computable ordinals.

The first extension of the original result is as follows:

Theorem 1. Let R be any computable n-ary relation on (ω, <) that is not in-
trinsically computable. Then there is a computable copy M of (ω, <) such that
RM computes ∅′.

While the construction used in the proof follows the same basic structure as the
construction used by Downey, Khoussainov, Miller, and Yu, several combinato-
rial lemmas are required in this setting which were not required in the unary
case—in particular, we use both Ramsey’s theorem and the theory of well quasi
orderings in setting up the construction.

The second extension is the following:

Theorem 2. Let α be a computable ordinal, and R a computable unary relation
on a copy of (α, <) satisfying certain computability conditions. Let ν be any
computable ordinal, and assume that for all µ < ν there is a copy B of α such
that RB 6≤T ∅(µ). Then there is a copy A of α such that RA ≡T ∅(ν).

That is, the degree spectrum of a computable relation on a computable ordinal
always has a maximum degree, and that degree is always ∅(α) for some ordinal
α. The proof of this theorem relies on results about back-and-forth relations in
order to build copies of ordinals, using results of Ash and Knight.
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Abstract. Description Logics (DLs) are logical formalism widely used
in knowledge-based systems. DLs both explicitly represent knowledge in
form of taxonomy, and infer new knowledge out of the presented struc-
ture by means of a specialized inference engine. The representation lan-
guage, called concept language, comprises expressions with only unary
and binary predicates, called concepts and roles. Concept languages dif-
fer mainly in the constructors adopted for building complex concepts and
roles, and they are compared with respect to their expressiveness, as well
as with respect to the complexity of reasoning in them. The language AL
is usually considered as a “core” one, having the basic set of construc-
tors: ¬A (atomic negation), C u D (intersection), ∀R.C (universal role
quantification), and ∃R.> (restricted existential role quantification).
We introduce new concept constructors, called part restrictions (denoted
by P), which are capable to distinguish a part of a set of successors. These
are MrR.C and (the dual) WrR.C, where r is an arbitrary rational
number in (0,1), R is a role, and C is a concept. The intended meaning
of MrR.C is “More than r-part of all R-successors of the current object
has the property C”. Part restrictions essentially enrich the expressive
capabilities of Description Logics.
We explore the complexity of the main reasoning task in Description
Logics—checking the subsumption between concepts. We prove NP-com-
pleteness of subsumption in the basic Description Logic with part restric-
tions ALP, and in semantically equivalent to it ALEP, adopting also full
existential role quantification (E). The hardness part of the proof uses
simulation of the later constructor via M -constructor (E-P-simulation).
Correctness of the simulation is shown in the language ALCP, adopt-
ing in addition to ALP full existential role quantification and union of
concepts (U) (or full negation—C). For the “in” part of the proof an
appropriate completion calculus based on tableau technique is used.
We use E-P-simulation also to prove PSPACE-hardness of subsumption
in ALUP. Then, we consider Description Logic ALCQP (Q is for quali-
fied number restrictions, more expressive variant of number restrictions,
N ). ALCQP is a syntactical variant of modal logic GGML, for which
the satisfiability problem is PSPACE-complete. This yields the PSPACE-
completeness of subsumption in ALCQP and in its sublanguages ALUP,
ALCP, and ALCNP.
Key Words: Description Logics, Part restrictions, Complexity.

? The work on this presentation was granted by Science Fund of SU, contract no.
176/2012.

144



MIND as IRIS versus Mind as Machine: An

Alternative Analogy for the Mind

Aziz F. Zambak

Department of Philosophy, Yeditepe University, Istanbulx
aziz.zambak@gmail.com

Abstract. Mind-as-machine is the essential metaphor of cognitive sci-
ence employing computer-based terminology in the explanation of mental
phenomena. The mind-as-machine metaphor seems very practical and at-
tractive to psychologists and AI researchers since it provides a scientific
ground for the intelligibility of mind. Moreover, the mind-as-machine
metaphor indicates a technological possibility for a non-biological form
of the human mind. The notion of computer has dominated the science
of cognition and this domination forces us to describe a mental phe-
nomenon only in a representational system (e.g., symbol-processing sys-
tem) that restricts seeing the conditions of/for human mind. In addition
to that, describing a mental phenomenon in purely mechanistic terms
prevents seeing the agentive character of the human mind. The mind-as-
machine metaphor has two basic forms: the representational form and
the Cartesian form. In the representational form, the mind is consid-
ered as a mechanistic device that can be represented in an algorithm.
In AI, this algorithm is described in a very restricted range of specific
problems (e.g., expert systems), and for AI it is possible to enlarge these
algorithms for every cognitive skill of the human mind. In the Carte-
sian form, AIs central paradigm, cognition as computation, refers to two
independent entities such as brain as hardware and mind as software
(program). Therefore, modern AI considers that internal brain processes
can be functionalized and embodied in a separated and self-governing
computational algorithm. In other words, AI conceives software as an
independent and sufficient entity in order to realize the particular func-
tions of the brain (i.e., hardware).
We defend the idea that the methodology of cognitive science (e.g., mind-
as-machine metaphor) does not imply any principle to the model of
mind in AI since AI requires a distinctive and original modeling strat-
egy peculiar to machine intelligence. In other words, the theoretical and
methodological issues in cognitive science are not the subject matter of
AI in order to develop a model of mind. Therefore, AI should situate its
methodological position out of the discussion of whether the mental phe-
nomenon and cognitive skills can be explained in a computer-based and
mechanistic terminology. What AI should do is develop a mental analogy
associated with the conditions of/for the human mind. We propose mind-
as-IRIS [Idealized-Reflective-Informational-System] as a proper analogy
for the mental models in AI, rather than the mind-as-machine analogy.
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Abstract 

A quantum logic should be the logic underlying a quantum system, whose state is described in terms of some pairs of conjugate 

variables, which satisfy some uncertainty relations. It follows that a logic is quantum if and only if the propositions themselves of its 

language obey some (logical) uncertainty principle. In this regard we will consider the atomic propositions of a quantum logical 

language, or quantum object-language (QOL), that can be asserted, in the quantum metalanguage (QML) [1], with an assertion 

degree  , which is a complex number (within the formalism of sequent calculus, such assertions are denoted by A ). This fact 

requires that the atomic propositions in the QOL are endowed with a fuzzy modality “Probably” [2] and have fuzzy (partial) truth-

values [3]. The latter, moreover, sum up to one. In general, such a set of probabilistic propositions is a subset of a bigger set, 

including also non-probabilistic ones. We found an uncertainty relation between the (partial) truth-values 
2

iiv   (i =1,2…n) , 

where n is the number of probabilistic propositions, and the total number N of propositions [4]. Also, we defined as “quantum 

coherent propositions” those propositions of the QOL, all having the same partial truth value 
2

 , which minimize the logical 

uncertainty relation mentioned above. This definition follows from the fact that the corresponding assertions in the QML having 

assertion degree can be physically interpreted as the coherent states   of Quantum Optics (Glauber states) [5] , which are 

eigenstates of the annihilation operator a , with eigenvalue  , that is:  a . We recall that in Quantum Theory the 

displacement operator  aaD *†

exp)(    is the unitary operator which displaces the vacuum state 0  to the coherent 

state  , that is:  0)(D . We look for the logical analogous of the operator )(D  in order to build up an assertion with 

assertion degree   starting from an assertion with assertion degree 0 . The latter is the assertion of a logical proposition A 

with truth value 0v , that is, a false proposition:    AA0
. Then, given a (linear) flux of time ),(  T  as in 

Temporal Logic [6], we consider the valuation   on  , namely,    1,0: T  , where  denotes the set of 

propositions 
iPp  (“Probably” 

ip ). Therefore, if at time t  a proposition 
iPp  is false, we have:  0))(( iPpt , 

ii vPps ))(( , where ]1,0[iv  with the constraint 1
n

i

iv , and  stTs   is the future of  t. In this way, it is 

possible to build up, along the flow of time, propositions with partial truth values starting from a false proposition. It is to be 

remarked that in Quantum Theory, the so-called bosonic transformation [7] is a displacement of the annihilation operator:  

      aaDaD †
. Then, the original vacuum state 0  is not anymore annihilated by the displaced annihilation 

operator: 00)(  a . The old vacuum can be then viewed as a coherent vacuum state, in the sense that it is an eigenstate of 

the displaced annihilation operator with eigenvalue  . This means that the original vacuum does not logically correspond anymore 

to the assertion of a false proposition. One can however define a new vacuum state:   00 D , which is annihilated by 

 a . Notice that the original vacuum state 0  can be obtained from the coherent vacuum  0  by the action of the inverse 

     DD-1
 of the displacement operator. In logical terms,  1D  corresponds to the inverse of the valuation, namely 

1 . This entails that we can recover a false proposition from a coherent proposition with probabilistic fuzzy truth value 
2

  by 

means of the inverse of the map  , that is: ii vPpt  ))((1 , 0))((1 

iPps , which is equivalent to interchange the 

modality “Future” with the modality “Past”. 
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