
The Active Element Machine

Michael Stephen Fiske

Abstract. A new computing machine, called an active element machine (AEM),
and the AEM programming language are presented. This computing model is mo-
tivated by the positive aspects of dendritic integration, inspired by biology, and tra-
ditional programming languages based on the register machine. Distinct from the
traditional register machine, the fundamental computing elements – active elements
– compute simultaneously. Distinct from traditional programming languages, all
active element commands have an explicit reference to time. These attributes make
the AEM an inherently parallel machine, enable the AEM to change its architecture
(program) as it is executing its program. Using a random bit source from the envi-
ronment and the Meta command, we show how to generate an AEM that represents
an arbitrary real number in [0,1]. Exploiting the randomness from the environment,
this example is extended to an AEM that can recognize an arbitrary binary language
L ⊆ {0,1}∗. Finally, we demonstrate an AEM that finds the Ramsey number r(3,3),
illustrating how parallel AEM algorithms and time in the commands help compute
an NP-hard problem.

1 Introduction

We present a new computing machine called an active element machine (AEM)
and the active element machine programming language. This computing model is
motivated by the positive aspects of dendritic integration, inspired by biology, and
traditional programming languages based on the register machine. Distinct from the
traditional register machine, the fundamental computing elements – active elements
– compute simultaneously. Distinct from traditional programming languages, all ac-
tive element commands have an explicit reference to time. These attributes make the
AEM an inherently parallel machine and enable the AEM to change its architecture
(program) as it is executing its program.

Michael Stephen Fiske
Aemea Institute, San Francisco, CA, 94129
e-mail: mf@aemea.org

H. Unger et al. (Eds.): Autonomous Systems: Developments and Trends, SCI 391, pp. 69–96.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

mf@aemea.org

70 M.S. Fiske

1.1 Wilfrid Rall’s Models of Dendritic Integration

Wilfrid Rall’s research [35] in neurophysiology influenced the development of the
active element machine – in particular, his work on dendritic integration and how
this contributes to computation. Rall’s mathematical models are thorough and com-
plicated; Rall modelled the non-linearities of the neuron and much of his work fo-
cussed on the dendrites.

Our goal was to capture the critical computational properties of dendritic inte-
gration that use its computational power while keeping the mathematics as simple
as possible. Another goal was to assure that the mathematics and computing mech-
anism were simple enough to implement in silicon and other kinds of hardware
([18], [19]).

Our third goal was to make the machine and language simple enough to design
autonomous systems (implicitly program) with evolutionary methods or for a person
to explicitly program or both. Early and current neural network models [25], [31]
are complicated to program or do not have a simple programming language for
designing the network. For the above reasons, implicit and explicit programmability
were important criteria that influenced the design of the active element machine.

1.2 Register Machine Computation

Another part of this development comes from the formal model of the Turing ma-
chine [45] and the subsequent von Neumann architecture. (This section contains
some rhetorical content as a means to motivate new notions.) Today’s computers
do not conceptually work much differently than these early models. Perhaps, the
biggest difference is that today’s computers are much faster. In the current notion
of an algorithm, the relevant concepts of the Turing computing model (see [45] and
definitions 13, 14, 15, 16) are:

• There are finite number of alphabet symbols A = {a1, . . . ,an} read and written to
a tape.

• There are a finite number of machine states Q = {q1, . . . ,qm}.

• The Turing program, η , is a finite set of rules that stays fixed i.e. the rules do not
change as the program executes.

• The execution of one rule represents a computational step. During this compu-
tational step, one of the rules is selected, based on the current alphabet symbol
pointed to by the tape head and the current machine state. The output of the rule
specifies that a new alphabet symbol or the same symbol is written to the tape,
the machine moves to a new state or stays in the current state and that the tape
head moves one square to the left or right.

• Computational steps are executed sequentially with no explicit reference to time.

The Active Element Machine 71

In light of the above, it seems natural for the Turing machine to lead to the register
machine (see [1], [33], [44]). In the register machine, a program is a finite number
of instructions that are executed in a linear sequence. Further, the contents of a
register is changed in one computational step, which is analogous to writing a new
symbol on the tape during one computational step of the Turing machine. In the
register machine, there is also no explicit reference to an absolute or relative time.
Furthermore, usually one register machine instruction is executed at a time, which
creates a computational bottleneck.

1.3 Explicit Representation of Time

The register machine is a programmable machine but the program is fixed during
program execution. There is also no notion of explicit time in the register machine
model, only the order in which instructions are executed. Rall’s research does not
address programmability and has no notion of commands. His models used time,
dendritic integration and adaptability of the synapses. The active element machine
explicitly represents time in the machine commands which enables the following
useful properties.

• Parallel algorithms can be implemented in a natural way, since each active ele-
ment performs computation and all of them simultaneously compute.

• Explicit time in the active element commands enhances control over the active el-
ement machine computation because the synchronization of computation among
different groups of active elements can be coordinated. This coordination helps
avoid race conditions that can occur in the standard programming languages that
implement concurrent processes.

• The machine can change its own architecture (program) with the Meta command
while it is executing.

• The Meta command enables the active element machine’s complexity to increase
over time.

In [30], Edward Lee proposes using explicit time in a computing model and com-
puting applications.

This paper argues that to realize its full potential, the core abstractions of computing
need to be rethought to incorporate essential properties of the physical systems, most
particularly the passage of time. It makes a case that the solution cannot be simply
overlaid on existing abstractions, The emphasis needs to be on repeatable behavior
rather than on performance optimization.

1.4 Summary

Overall, we introduce the active element machine and a programming language that
can be used to explicitly or implicitly program the machine. We show that any reg-
ister machine can be computed by an active element machine. Using randomness

72 M.S. Fiske

in the environment, time and the Meta command, we show how to construct an
active element machine that corresponds to an arbitrary real number in [0,1]. Build-
ing upon this example, this AEM is extended so that it can recognize an arbitrary
language L ⊆ {0,1}∗. Finally, we demonstrate an example of an active element ma-
chine that finds the Ramsey number r(3,3) ([22], [36]), illustrating how parallel
AEM algorithms and time in the commands compute an NP-hard problem ([10],
[12], [21]).

2 Machine Architecture

An active element machine is composed of computational primitives called active
elements. There are three kinds of active elements: Input, Computational and Out-
put active elements. Input active elements process information received from the
environment or another active element machine. Computational active elements re-
ceive messages from the input active elements and other computational active ele-
ments firing activity and transmit new messages to computational and output active
elements. The output active elements receive messages from the input and compu-
tational active elements firing activity. The firing activity of the output active el-
ements represents the output of the active element machine. Every active element
is an active element in the sense that each one can receive and transmit messages
simultaneously.

Each active element receives messages, formally called pulses, from other active
elements and itself and transmits messages to other active elements and itself. If the
messages received by active element, Ei, at the same time sum to a value greater
than the threshold, then active element Ei fires. When an active element Ei fires, it
sends messages to other active elements.

Let Z denote the integers. We define the extended integers as Z = {m + kdT :
m,k ∈ Z and dT is a fixed infinitesimal}. For more on infinitesimals, see [38].

Definition 1. Machine Architecture
Γ , Ω , and Δ are index sets that index the input, computational, and output active

elements, respectively. Depending on the machine architecture, the intersections Γ
∩ Ω and Ω ∩ Δ can be empty or non-empty. A machine architecture, denoted as
M (I ,E ,O), consists of a collection of input active elements, denoted as I =
{Ei : i ∈ Γ }; a collection of computational active elements E = {Ei : i ∈ Ω}; and
a collection of output active elements O = {Ei : i ∈ Δ}. Each computational and
output active element, Ei, has the following components and properties:

• A threshold θi

• A refractory period ri where ri > 0.

• A collection of pulse amplitudes {Aki : k ∈ Γ ∪Ω}.

• A collection of transmission times {τki : k ∈ Γ ∪Ω}, where τki > 0 for all k ∈
Γ ∪Ω .

The Active Element Machine 73

• A function of time, Ψi(t), representing the time active element Ei last fired.
Ψi(t) = sup{s : s < t and gi(s) = 1}, where gi(s) is the output function of ac-
tive element Ei and is defined below. The sup is the least upper bound.

• A binary output function, gi(t), representing whether active element Ei fires at
time t. The value of gi(t) = 1 if ∑Aki(t) > θi where the sum ranges over all
k ∈ Γ ∪Ω and t ≥Ψi(t)+ ri. In all other cases, gi(t) = 0. For example, gi(t) = 0,
if t < Ψi(t)+ ri.

• A set of firing times of active element Ek within active element Ei’s integrating
window, Wki(t) = {s : active element Ek fired at time s and 0 ≤ t − s−τki < ωki}.
Let |Wki(t)| denote the number of elements in the set Wki(t). If Wki(t) = /0, then
|Wki(t)| = 0.

• A collection of input functions, {φki : k ∈ Γ ∪Ω}, each a function of time, and
each representing pulses coming from computational active elements, and in-
put active elements. The value of the input function is computed as φki(t) =
|Wki(t)|Aki(t).

• The refractory periods, transmission times and pulse widths are positive integers;
and pulse amplitudes and thresholds are integers. The time t – that these param-
eters are a function of i.e. θi(t),ri(t),Aki(t),ωki(t),τki(t) – is an element of the
extended integers Z.

Input active elements that are not computational active elements have the same char-
acteristics as computational active elements, except they have no inputs φki coming
from active elements in this machine. In other words, they don’t receive pulses from
active elements in this machine. Input active elements are assumed to be externally
firable. An external source such as the environment or an output active element from
another distinct machine M (I ′,E ′,O ′) can cause an input active element to fire.
The input active element can fire at any time as long as the current time minus the
time the input active element last fired is greater than or equal to the input active
element’s refractory period.

An active element, Ei, can be an input active element and a computational active
element. Similarly, an active element can be an output active element and a com-
putational active element. Alternatively, when an output active element, Ei, is not
a computational active element, where i ∈ Δ −Ω , then Ei does not send pulses to
active elements in this machine.

Example 1. Overlapping Pulses with Different Firing Times
Consider the four element machine where X , Y , and Z are input active elements

and B is a computational active element. The parameters of the elements and their
connections are shown in tables 1 and 2.
Input elements X , Y , and Z are externally fired at times 4, 1 and 2, respectively. At
time t = 3, pulses created by Y and Z are travelling to B but have not yet arrived.
B does not fire. At time t = 4, pulses created by Y and Z arrive at B. The input to B is

74 M.S. Fiske

Table 1 Element Parameter Values

Element Threshold Refractory Firing Times

X 1 4
Y 1 1
Z 1 2
B 10 2 5

No thresholds are shown for X , Y , and Z since they are input elements.

Table 2 Connection Parameter Values

Connection From To Amplitude Width Transmission Time

XB X B 3 4 1
YB Y B 4 2 3
ZB Z B 4 2 2

AY B(4)+ AZB(4) = 8 which does not exceed B’s threshold. B does not fire. At time
t = 5, pulses created by Y and Z are still at B because their pulse widths are 2. Also
the pulse from X arrives. The input to B is AXB(5)+ AYB(5)+ AZB(5) = 11 which
exceeds B’s threshold. B fires at time t = 5. At time t = 7, the refractory period of B
has expired. The pulses created by Y and Z have passed through B. The pulse from
X is still at B. The input to B is AXB(7) = 3 which does not exceed B’s threshold. B
does not fire at time t = 7.

We intuitively summarize the machine architecture. If gi(s) = 1, this means active
element Ei fired at time s. The refractory period, ri, is the amount of time that must
elapse after active element Ei just fired before Ei can fire again. The transmission
time, τki, is the amount of time it takes for active element Ei to find out that active
element Ek has fired. The pulse amplitude, Aki, represents the strength of the pulse
that active element Ek transmits to active element Ei after active element Ek has
fired. After this pulse reaches Ei, the pulse width ωki represents how long the pulse
lasts as input to active element Ei. At time s, the connection from Ek to Ei represents
the triplet (Aki(s),ωki(s),τki(s)). If Aki = 0, then there is no connection from active
element Ek to active element Ei.

3 Active Element Machine Programming Language

In this section, we show how to explicitly program an active element machine and
how to change the machine architecture as program execution proceeds. It is helpful
to define a programming language, influenced by S-expressions. There are five types
of commands: Element, Connection, Fire, Program and Meta.

The Active Element Machine 75

Definition 2. AEM Program
In Backus-Naur form, an AEM program is defined as follows.

<AEM_program> ::= <cmd_sequence>

<cmd_sequence> ::= "" | <AEM_cmd><cmd_sequence>

| <program_def><cmd_sequence>

<AEM_cmd> ::= <element_cmd> | <fire_cmd> | <meta_cmd>

| <cnct_cmd> | <program_cmd>

Definition 3. AEM Symbols and Extended Integer Expressions
In Backus-Naur form, the AEM symbols are defined as follows.

<ename> ::= "" | <int> | <symbol>

<symbol> ::= <symbol_string> | (<ename> . . . <ename>)

<symbol_string> ::= "" | <char_symbol><str_tail>

<str_tail> ::= "" | <char_symbol><str_tail> | 0<str_tail>

| <pos_int><str_tail>

<char_symbol> ::= <letter> | <special_char>

<letter> ::= <lower_case> | <upper_case>

<lower_case> ::= a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

<upper_case> ::= A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<special_char> ::= "" | _

These rules represent the extended integers, addition and subtraction.

<int> ::= <pos_int> | <neg_int> | 0

<neg_int> ::= − <pos_int>

<pos_int> ::= <non_zero><digits>

<digits> ::= <numeral> | <numeral><digits>

<non_zero> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<numeral> ::= "" | <non_zero> | 0

<aint> ::= <aint> <math_op> <d> | <d> <math_op> <aint> | <d>

<math_op> ::= + | -

<d> ::= <int> | <symbol_string> | <infinitesimal>

<infinitesimal> ::= dT

76 M.S. Fiske

Definition 4. Element
An Element command specifies the time when an active element’s values are

updated or created. This command has the following Backus-Naur syntax.

<element_cmd> ::= (Element (Time <aint>) (Name <ename>)
(Threshold <int>)(Refractory <pos_int>)(Last <int>))

The keyword Time tags the time integer value s at which the element is created
or updated. If the name symbol value is E, the keyword Name tags the name E of
the active element. The keyword Threshold tags the threshold θE(s) assigned to
E. Refractory tags the refractory value rE(s). The keyword Last tags the last
time fired value ΨE(s).

The following is an example of an element command.

(Element (Time 2) (Name H) (Threshold -3) (Refractory 2) (Last 0))

At time 2, if active element H does not exist, then it is created. Active element H has
its threshold set to −3, its refractory period set to 2, and its last time fired set to 0.
After time 2, active element H exists indefinitely with threshold = −3, refractory =
2 until a new Element command whose name value H is executed at a later time; in
this case, the Refractory, Threshold and Last values specified in the new command
are updated.

Definition 5. Connection
A Connection command creates or updates a connection from one active el-

ement to another active element. This command has the following Backus-Naur
syntax.

<cnct_cmd> ::= (Connection (Time <aint>)(From <ename>)(To <ename>)
[(Amp <int>)(Width <pos_int>)(Delay <pos_int>)])

The keyword Time tags the time value s at which the connection is created or
updated. The keywordFrom tags the name F of the active element that sends a pulse
with these updated values. The keyword To tags the name T of the active element
that receives a pulse with these updated values. The keyword Amp tags the pulse
amplitude value AFT (s) that is assigned to this connection. The keyword Width
tags the pulse width value ωFT (s). The keyword Delay tags the transmission time
τFT (s).

When the AEM clock reaches time s, F and T are name values that must be the
name of an element that already has been created or updated before or at time s. Not
all of the connection parameters need to be specified in a connection command. If
the connection does not exist beforehand and the Width and Delay values are not
specified appropriately, then the amplitude is set to zero and this zero connection has
no effect on the AEM computation. Observe that the connection exists indefinitely
with the same parameter values until a new connection is executed at a later time
between From element F and To element T.

The Active Element Machine 77

The following is an example of a connection command.

(Connection (Time 2) (From C) (To L) (Amp -7) (Width 1) (Delay 3))

At time 2, the connection from active element C to active element L has its amplitude
set to −7, its pulse width set to 1, and its transmission time set to 3.

Definition 6. Fire
The Fire command has the following Backus-Naur syntax.

<fire_cmd> ::= (Fire (Time <aint>) (Name <ename>))

The Fire command fires the active element indicated by the Name tag at the time
indicated by the Time tag. This command is primarily used to fire input active
elements in order to communicate program input to the active element machine.

An example is (Fire (Time 3) (Name C)), which fires active element C at t= 3.

Definition 7. Program
The Program command is convenient when a sequence of commands are used

repeatedly. This command combines a sequence of commands into a single com-
mand. It has the following definition syntax.

<program_def> ::= (Program <pname> [(Cmds <cmds>)][(Args <args>)]
<cmd_sequence>)

<pname> ::= <ename>

<cmds> ::= <cmd_name> | <cmd_name><cmds>

<cmd_name> ::= Element | Connection | Fire | Meta | <pname>

<args> ::= <symbol> | <symbol><args>

The Program command has the following execution syntax.

<program_cmd> ::= (<pname> [(Cmds <cmds>)] [(Args <args_cmd>)])

<args_cmd> ::= <ename> | <ename><args_cmd>

The FireN program is an example of definition syntax.

(Program FireN (Args t E)
(Element (Time 0) (Name E)(Refractory 1)(Threshold 1)(Last 0))
(Connection (Time 0) (From E) (To E)(Amp 2)(Width 1)(Delay 1))
(Fire (Time 1) (Name E))
(Connection (Time t+1) (From E) (To E) (Amp 0))

)

The execution of the command (FireN (Args 8 E1)) causes element E1 to fire
8 times at times 1, 2, 3, 4, 5, 6, 7, and 8 and then E1 stops firing at time = 9.

Definition 8. Keywords clock and dT

The keyword clock evaluates to an integer, which is the value of the current
active element machine time. clock is an instance of <ename>. If the current
AEM time is 5, then the command

78 M.S. Fiske

(Element (Time clock) (Name clock) (Threshold 1) (Refractory 1)

(Last -1))

is executed as

(Element (Time 5) (Name 5) (Threshold 1) (Refractory 1) (Last -1))

Once command (Element (Time clock) (Name clock) (Threshold 1)

(Refractory 1) (Last -1)) is created, then at each time step this command is
executed with the current time of the AEM. If this command is in the original AEM
program before the clock starts at 0, then the following sequence of elements named
0, 1, 2, . . . will be created.

(Element (Time 0) (Name 0) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 1) (Name 1) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 2) (Name 2) (Threshold 1) (Refractory 1) (Last -1))

. . .

The keyword dT represents a positive infinitesimal amount of time. dT > 0
and dT is less than every positive rational number. Similarly, -dT < 0 and -dT
is greater than every negative rational number. The purpose of dT is to prevent an
inconsistency in definition 1. For example, the use of dT helps remove the incon-
sistency of a To element about to receive a pulse from a From element at the same
time that the connection is removed.

Definition 9. Meta
The Meta command causes a command to execute when an element fires within

a window of time. This command has the following execution syntax.

<meta_cmd> ::= (Meta (Name <ename>) [<win_time>] <AEM_cmd>)

<win_time> ::= (Window <aint> <aint>)

To understand the behavior of the Meta command, consider the execution of

(Meta (Name E) (Window l w) (C (Args t a))

where E is the name of the active element. The keyword Window tags an interval
i.e. a window of time. l is an integer, which locates one of the boundary points
of the window of time. Usually, w is a positive integer, so the window of time is
[l, l+w]. If w is a negative integer, then the window of time is [l+w, l].

The commandC executes each time that E fires during the window of time, which
is either [l, l+w] or [l+w, l], depending on the sign of w. If the window of
time is omitted, then command C executes at any time that element E fires. In other
words, effectively l = −∞ and w = ∞.

Consider the example where the FireN command was defined in 7.

(FireN (Args 8 E1))

(Meta (Name E1) (Window 1 5) (C (Args clock a b)))

Command C is executed 6 times with arguments clock, a, b. We say the firing
of E1 triggers the execution of command C.

The Active Element Machine 79

In regard to the Meta command, we explain one assumption that is analogous to
the Turing machine tape being unbounded as Turing program execution proceeds.
(See Definitions 13 and 14.) During execution of a finite active element program, an
active element can fire and due to one or more Meta commands, new elements and
connections can be added to the machine. As a consequence, at any time the active
element machine only has a finite number of computing elements and connections
but the number of elements and connections can be unbounded as a function of time
as the active element program executes.

4 Resolving Concurrent Generation of AEM Commands

We first explain how to resolve concurrency issues pertaining to two or more com-
mands about to set parameter values of the same connection or same element at the
same time. Then we address the Fire, Meta and Program commands.

For example, consider two or more connection commands, connecting the same
active elements, that are generated and scheduled to execute at the same time.

(Connection (Time t) (From A) (To B) (Amp 2) (Width 1) (Delay 1))

(Connection (Time t) (From A) (To B) (Amp -4) (Width 3) (Delay 7))

Then the simultaneous execution of these two commands can be handled by defining
the outcome to be equivalent to the execution of only one connection command
where the respective amplitudes, widths and transmission times are averaged.

(Connection (Time t) (From A) (To B) (Amp -1) (Width 2) (Delay 4))

In the general case, for n connection commands

(Connection (Time t) (From A) (To B) (Amp a1)(Width w1)(Delay s1))
(Connection (Time t) (From A) (To B) (Amp a2)(Width w2)(Delay s2))
. . .

(Connection (Time t) (From A) (To B) (Amp an)(Width wn)(Delay sn))

we resolve these to the execution of one connection command

(Connection (Time t) (From A) (To B) (Amp a) (Width w) (Delay s))

where a, w and s are defined based on the application. For theoretical studies of the
AEM, averaging the respective amplitudes, widths and transmission times can be
useful in mathematical proofs.

a = (a1 + a2 + . . . + an) / n
w = (w1 + w2 + . . . + wn) / n
s = (s1 + s2 + . . . + sn) / n

For some applications, when there is noisy environmental data fed to the
input effectors and amplitudes, widths and transmission times are evolved and mu-
tated ([9], [14], [17], [19], [26], [27], [29]), extremely large (in absolute value)

80 M.S. Fiske

amplitudes, widths and transmission times can arise that skew an average function.
In this context, computing the median of the amplitudes, widths and delays provides
a simple method to address skewed amplitude, width and transmission time values.

a = median(a1, a2, . . . , an)
w = median(w1, w2, . . . , wn)
s = median(s1, s2, . . . , sn)

Another alternative is to add the parameter values.

a = a1 + a2 + . . . + an
w = w1 + w2 + . . . + wn
s = s1 + s2 + . . . + sn

Similarly, consider when two or more element commands – that all specify the
same active element E – are generated and scheduled to execute at the same time.

(Element (Time t) (Name E)(Threshold h1)(Refractory r1)(Last s1))
(Element (Time t) (Name E)(Threshold h2)(Refractory r2)(Last s2))
. . .

(Element (Time t) (Name E)(Threshold hn)(Refractory rn)(Last sn))

we resolve these to the execution of one element command,

(Element (Time t) (Name E) (Threshold h) (Refractory r) (Last s))

where h, r and s are defined based on the application. Similar to the connection
command, for theoretical studies of the AEM, the threshold, refractory and last time
fired values can be averaged.

h = (h1 + h2 + . . . + hn) / n
r = (r1 + r2 + . . . + rn) / n
s = (s1 + s2 + . . . + sn) / n

In autonomous applications, where evolution of parameter values occurs, the median
can also help address skewed values in the element commands.

h = median(h1, h2, . . ., hn)
r = median(r1, r2, . . ., rn)
s = median(s1, s2, . . ., sn)

Another alternative is to add the parameter values.

h = h1 + h2 + . . . + hn
r = r1 + r2 + . . . + rn
s = s1 + s2 + . . . + sn

Rules 1, 2, and 3 resolve concurrency issues pertaining to the Fire, Meta and
Program commands.

The Active Element Machine 81

1. If two or more Fire commands attempt to fire element E at time t, then element
E is fired just once at time t.

2. Only one Meta command can be triggered by the firing of an active element. If a
new Meta command is created and it happens to be triggered by the same element
E as a prior Meta command, then the old Meta command is removed and the new
Meta command is triggered by element E.

3. If a Program command is called by a Meta command, then the Program’s internal
Element, Connection, Fire and Meta commands follow the previous concurrency
rules defined. If a Program command exists within a Program command, then
these rules are followed recursively on the nested Program command.

5 Copy and Nand Program Examples

We demonstrate an active element copy program and a nand program.

Example 2. Copy Program
This active element program copies an element’s firing state to another element.

(Program copy (Args s t b a)
(Element (Time s-1)(Name b)(Threshold 1)(Refractory 1)(Last s-1))
(Connection (Time s-1)(From a) (To b)(Amp 0) (Width 0) (Delay 1))
(Connection (Time s) (From a) (To b) (Amp 2) (Width 1) (Delay 1))
(Connection (Time s) (From b) (To b) (Amp 2) (Width 1) (Delay 1))
(Connection (Time t) (From a) (To b) (Amp 0) (Width 0) (Delay 1))

)

When the copy program is called, active element b will start firing if a fired
during the window of time [s, t). Further, a connection is set up from b to b so that
b will keep firing indefinitely. This enables b to store active element a’s firing state.

Example 3. Nand Program
This active element program computes a nand circuit.

(Program nand (Args s x y l h)
(Element (Time s) (Name x) (Threshold 0) (Refractory 1) (Last s))
(Element (Time s) (Name y) (Threshold 0) (Refractory 1) (Last s))
(Element (Time s) (Name h) (Threshold -3)(Refractory 2) (Last s))
(Element (Time s) (Name l) (Threshold 3) (Refractory 2) (Last s))
(Connection (Time s) (From x) (To l) (Amp 2) (Width 1) (Delay 1))
(Connection (Time s) (From x) (To h) (Amp -2)(Width 1) (Delay 1))
(Connection (Time s) (From y) (To l) (Amp 2) (Width 1) (Delay 1))
(Connection (Time s) (From y) (To h) (Amp -2)(Width 1) (Delay 1))

)

B and C are input elements. L (represents a 0 output) and H (represents a 1 output)
are output elements. The call (nand (Args -1 B C L H)) creates the connec-
tions between B, C, L and H. We verify all four cases where | is the Sheffer stroke.

82 M.S. Fiske

1. At t = 0, active elements B and C do not fire i.e. B | C = 0|0 = 1. Since the
threshold of H is −3, H fires at time t = 1.

2. At t = 0, active element B fires and C does not fire i.e. B | C= 1|0 = 1. Since one
pulse with amplitude −2 reaches H at t = 1 just as the refractory period expires
and −2 > −3, then H fires at time t = 1.

3. At t = 0, active element B does not fire and C fires i.e. B | C= 0|1 = 1. Since one
pulse with amplitude −2 reaches H at t = 1 just as the refractory period expires
and −2 > −3, then H fires at time t = 1

4. At t = 0, active elements B and C both fire i.e. B | C= 1|1 = 0. At time t = 1, two
pulses with amplitude −2 reach H so H does not fire. At time t = 1, two pulses
reach L, and each pulse has amplitude 2. L has threshold = 3, so L fires at t = 1.

6 Machine Computation

In the nand program example, we used the firing of output elements L, H to repre-
sent the low, high outputs respectively. The firing of elements was used to represent
the computation of a boolean function. We formalize firing representations, machine
computation and interpretation in the next set of definitions.

Definition 10. Firing Representation
Consider active element Ei’s firing times in the interval of time W = [t1, t2]. Let

s1 be the earliest firing time of Ei lying in W , and sn the latest firing time lying in W .
Then Ei ’s firing sequence F(Ei,W) = [s1, . . . ,sn] = {s ∈ W : gi(s) = 1} is called a
firing sequence of the active element Ei over the window of time W . From active ele-
ments {E1,E2, . . . ,En}, create the tuple (F(E1,W),F(E2,W), . . . ,F(En,W)), which
is called a firing representation of the active elements {E1, . . . ,En} within the win-
dow of time W .

At the machine level of interpretation, firing representations express the input to,
the computation of, and the output of an active element machine. At a more ab-
stract level, firing representations can represent an input symbol, an output symbol,
a sequence of symbols, a spatio-temporal pattern, a number, or even a sequence of
program instructions.

Definition 11. Sequence of Firing Representations
Let W1,W2, . . . ,Wn be a sequence of time intervals. Let F (E ,W1) = (F(E1,W1),

F(E2,W1), . . . ,F(En,W1)) be a firing representation of active elements E = {E1,E2,
. . . ,En} over the interval W1. In general, let F (E ,Wk) = (F(E1,Wk),F(E2,Wk),
. . .F(En,Wk)) be a firing representation over the interval of time Wk. From these, a
sequence of firing representations, [F (E ,W1),F (E ,W2), . . . ,F (E ,Wn)] is created.

Definition 12. Machine Computation
Let [F (E ,W1),F (E ,W2), . . . ,F (E ,Wn)] be a sequence of firing representa-

tions. [F (E ,S1), F (E ,S2), . . . ,F (E ,Sm)] is some other sequence of firing rep-
resentations. Suppose machine architecture M (I ,E ,O) has input active elements

The Active Element Machine 83

I fire with the pattern [F (E ,S1),F (E ,S2), . . . ,F (E ,Sm)] and consequently M ’s
output active elements O fire according to [F (E ,W1),F (E ,W2), . . . ,F (E ,Wn)]. In
this case, we say the machine M computes [F (E ,W1),F (E ,W2), . . . ,F (E ,Wn)]
from [F (E ,S1),F (E ,S2), . . . ,F (E ,Sm)].

An active element machine is an interpretation between two sequences of firing
representations if the machine can compute the output sequence of firing represen-
tations from the input sequence of firing representations. Using the definition of
machine computation, examples 2 and 3 help derive the following theorem.

Theorem 1. A register machine with an unbounded number of registers can be con-
structed with an active element program.

Proof. We sketch a proof. A finite boolean function can be constructed by compos-
ing a finite number of nand circuits. The repeated use of the copy program enables
an active element machine to store an unbounded amount of state in terms of bits.
A register machine can be constructed from the boolean functions and the ability to
store state. An unbounded number of registers can be supported by the active ele-
ment machine because the Element and Connection commands enable the program
to add new Elements and Connections at any time. Thus, new registers can be added
as needed during the computation of the register machine program.

Corollary 1. Any Turing computable function can be computed by some active ele-
ment machine, specified by a finite active element program.

Proof. In [44], they show that the partial recursive functions are the same as the
functions computable by their register machine model and consequently the same
as the Turing computable functions (see [45], and Definitions 13, 14, 15 and 16).
The corollary follows from this fact and Theorem 1.

Example 4. Randomness generates an AEM, representing a real number in [0,1]
Using a random process in the environment to fire or not fire one input effector I at
each unit of time, we describe an active element program with a firing representation
of an arbitrary real number in the unit interval [0,1].

This example uses a random process from the environment to either fire input ef-
fector I or not fire I at time t = n where n is a natural number {0,1,2,3, . . .}. This
random sequence of 0 and 1’s can be generated by quantum optics ([28], [43]) or
another type of quantum or physical phenomena [2].

Using the Meta command, the random sequence of bits creates active elements
0,1,2, . . . that store the binary representation b0b1b2 . . . of real number x ∈ [0,1]. If
input effector I fires at time t = n, then bn = 1; thus, we create active element n
so that after t = n, element n fires every unit of time indefinitely. If input effector I
does not fire at time t = n, then bn = 0 and active element n is created so that it never
fires. The following finite active element machine program exhibits this behavior.

84 M.S. Fiske

(Program C (Args t)
(Connection (Time t) (From I) (To t) (Amp 2) (Width 1) (Delay 1))
(Connection (Time t+1+dT) (From I) (To t) (Amp 0))
(Connection (Time t) (From t) (To t) (Amp 2) (Width 1) (Delay 1))
)

(Element (Time clock) (Name clock) (Threshold 1) (Refractory 1)
(Last -1))

(Meta (Name I) (C (Args clock)))

We explain how this program exhibits this behavior, assuming the sequence of
random bits from the environment begins with 1, 0, 1, Thus, input element I
fires at times 0, 2, At time 0, the following commands are executed.

(Element (Time 0) (Name 0) (Threshold 1) (Refractory 1)(Last -1))

(C (Args 0))

The execution of (C (Args 0)) causes the three connection commands to execute.

(Connection (Time 0) (From I) (To 0) (Amp 2) (Width 1) (Delay 1))
(Connection (Time 1+dT) (From I) (To 0) (Amp 0))

(Connection (Time 0) (From 0) (To 0) (Amp 2) (Width 1) (Delay 1))

Because of the first connection command

(Connection (Time 0) (From I) (To 0) (Amp 2) (Width 1) (Delay 1))

the firing of input element I at time 0 sends a pulse with amplitude 2 to element
0. Thus, element 0 fires at time 1. Then at time 1+dT, a moment after time 1, the
connection from input element I to element 0 is removed. At time 0, a connection
from element 0 to itself with amplitude 2 is created. As a result, element 0 continues
to fire indefinitely, representing that b0 = 1.

At time 1, command

(Element (Time 1) (Name 1) (Threshold 1) (Refractory 1)(Last -1))

is created. Since element 1 has no connections into it and threshold 1, element 1
never fires. Thus b1 = 0.

At time 2, input element I fires, so the following commands are executed.
(Element (Time 2) (Name 2) (Threshold 1) (Refractory 1)(Last -1))

(C (Args 2))

The execution of (C (Args 2)) causes the three connection commands to
execute.
(Connection (Time 2) (From I) (To 2) (Amp 2) (Width 1) (Delay 1))
(Connection (Time 3+dT) (From I) (To 2) (Amp 0))

(Connection (Time 2) (From 2) (To 2) (Amp 2) (Width 1) (Delay 1))

Because of the first connection command
(Connection (Time 2) (From I) (To 2) (Amp 2) (Width 1) (Delay 1))

the firing of input element I at time 2 sends a pulse with amplitude 2 to element
2. Thus, element 2 fires at time 3. Then at time 3+dT, a moment after time 3, the
connection from input element I to element 2 is removed. At time 2, a connection
from element 2 to itself with amplitude 2 is created. As a result, element 2 continues
to fire indefinitely, representing that b2 = 1.

The Active Element Machine 85

7 AEM Binary Language Recognizer

In this section, based on example 4, we show how to build a binary language recog-
nizer, but do not focus on optimizing the speed of the binary language recognition.
In the next section, we will show active elements performing simultaneous compu-
tations on an NP-hard problem.

First, we review some definitions and notation for binary strings and languages.
A binary string is a finite sequence of 0s and 1s. The set of binary strings of length
n is denoted as {0,1}n. If string w ∈ {0,1}k, then w’s length is |w| = k. The set of
all finite binary strings is denoted as {0,1}∗ =

⋃∞
n=1{0,1}n. Consider function f :

{0,1}∗ → {0,1}, then L = f−1(1) is a binary language. Every binary language can
be represented as the inverse image g−1(1) for some unique function g : {0,1}∗ →
{0,1}. For any function f : {0,1}∗ → {0,1}, define fn : {0,1}n → {0,1} such that
f restricted on {0,1}n = fn i.e. fn(u) = f (u) for all u in {0,1}n.

We can create an ordering of the strings [{0,1}∗,≺] as follows. For any two
distinct strings u,w ∈ {0,1}∗, then u ≺ w if |u| < |w|; w ≺ u if |w| < |u|. Otherwise,
|u|= |w| in which case u ≺ w if u is smaller than w, treating u,w as binary numbers;
or w ≺ u if w is smaller than u as binary numbers.

There are 2n binary strings of length n. Let φ(n) = 2n and β (n) = φ(φ(n)). From
the following diagram, it is an easy observation

000 . . .0 −→ 0 or 1
100 . . .0 −→ 0 or 1
010 . . .0 −→ 0 or 1
110 . . .0 −→ 0 or 1

. . .
111 . . .1 −→ 0 or 1

that there are β (n) distinct Boolean functions fn : {0,1}n →{0,1}. Each integer cn

satisfying 0 ≤ cn < β (n) corresponds to a distinct fn : {0,1}n → {0,1}.
This correspondence can be implemented with an active element machine that

uses the elements created in example 4 to encode for the numbers c1,c2, The
encoding of boolean function f1 is stored (represented) in the first β (1) active el-
ements 0, 1, 2, 3, which represent natural number c1. For each natural number n,
the boolean function fn is represented with the next β (n) elements generated by the
Meta command from the random input to element I, as described in example 4.

These groups of active elements representing c1, c2, . . . are called registers. In
general, register R−n stores cn as shown in table 3.

Table 3 Register encoding of Boolean functions fn and binary string a1 . . .am

Register . . . −n . . . −1 0 1 . . . m

Contents . . . cn . . . c1 m a1 . . . am

86 M.S. Fiske

The binary string of length m that is accepted or not accepted by this machine is
stored in registers R1,R2, . . . ,Rm and represented as a1a2 . . .am where each ak is a
0 or 1. Each register Rk can be represented with a single active element Jk where it
fires indefinitely if ak = 1 and never fires if ak = 0.

In order to refer to the register of a register, we use the notation RRn . If register
Rn contains −5 and the contents of R−5 = 29, then the contents of RRn = 29.

Solution 1. Binary Language Decision Steps 1 to 6
Steps 1 to 6 decide whether a binary string S = a1a2 . . .am is in the language

determined by the active element machine. Before step 1 is started, for each natural
number n ≤ m, the value cn is stored in register R−n, where 0 ≤ cn < β (n). Since
each cn uses 2n bits to store cn, input element I needs 1 + 2 + . . .2m time steps i.e.
1 + 2 + . . .2m random bits from the environment before all these register values are
assigned.

The values in registers R1, R2, . . . , Rm are 0 or 1 where Rk, such that 1 ≤ k ≤ m,
stores the value of ak. The value m is stored in register 0.

1. Read the string length m from register R0. Compute 2m. Store in register Rm+1.

2. Store 0 in register Rm+2. Store cm in register Rm+3.

3. Initialize registers Rm+5, . . . , Rm+4+2m with 0.

4. In a loop that is executed cm times,
Do
{

Increment register Rm+2.

Increment the binary number in registers Rm+5, . . . Rm+4+2m .

} Until register Rm+2 equals register Rm+3.

5. Compute (m+ 5+ binary a1a2 . . .am) stored in R1, R2, . . . , Rm.

Store 1 in register Rm+1.

Store m+ 5 in register Rm+2.

Store 0 in register Rm+3.

Store 1 in register Rm+4.

In a loop that is executed m times,
Do
{

If the contents of RRm+1 equals 1, add the value in Rm+4 to Rm+2.

Increment Rm+3.

Increment Rm+1.

Double value in Rm+4 and store back in register Rm+4.

} Until the value in Rm+3 equals m.

The Active Element Machine 87

6. If register RRm+2 contains a 1 then binary string a1a2 . . .am is in the language
recognized by this machine. Otherwise, RRm+2 contains a 0 and binary string
a1a2 . . .am is not in the language recognized by this machine.

Example 5. Steps 1 through 6 when c3 = 203
This example shows the encoding of f3 when c3 = 203 and describes steps 1, 2, ...,
6 as they are executed.

Suppose R−3 has c3 = 203 stored in it. This example demonstrates how c3 = 203
encodes for the corresponding f3 and how f3(S) is computed for any S in {0,1}3.
Decimal number 203 in reversed binary is 11010011 = 20 + 21 + 23 + 26 + 27. The
ordering of {0,1}3 = [000,100,010,110,001,101,011,111], which is iterated in
this order in the loop of step 5. The bits of 1101 0011 represent the range values
of f3 where f3(000) = the 1st bit in 1101 0011 ; f3(100) = the 2nd bit in 1101 0011
; . . . ; f3(111) = the eighth (23) bit in 1101 0011. This is summarized in table 4.

Table 4 Boolean functions f3

f3(000) = 1 f3(100) = 1 f3(010) = 0 f3(110) = 1

f3(001) = 0 f3(101) = 0 f3(011) = 1 f3(111) = 1

Before program execution starts the contents of R0 = 3, R1 = 0, R2 = 1 and R3 =
1. Thus, the program will decide whether S = 011 lies in the language determined
by this machine. Steps 1 to 6 execute as follows.

• Step 1 reads 3 from R0 and computes 23 = 8. Then 8 is stored in R4.

• Step 2 stores the contents of R−R0 = 203 in register R6. Also, 0 is stored in R5.

• Step 3 stores 0 in R8, R9 , R10, . . . , R15.

• Step 4 executes the loop 203 times. The binary counter increments registers R8,
R9, R10, . . . , R15 in reversed binary representation. After executing this loop 203
times, R8 = 1, R9 = 1, R10 = 0, R11 = 1, R12 = 0, R13 = 0, R14 = 1, R15 = 1.

• Step 5 initializes Rm+2 to 8. The loop adds binary number R1, R2, R3 to 8 and
stores it in Rm+2. The purpose of register Rm+2 is that it indexes the value of
f3(011) in step 6 which decides whether 011 is in the language computed by this
machine. After the first pass through the loop, since R1 = 0, then Rm+2 = 8. After
the second pass, Rm+4 = 2, so Rm+2 = 10. After the third and final pass through
the loop, Rm+4 = 4, so Rm+2 = 14.

• In Step 6, the value of Rm+2 = 14. Thus, RRm+2 = R14 = 1. Thus, f3(011) = 1, so
011 is in the language computed by this machine.

Storing and initializing can be implemented with a register machine; increment-
ing can be implemented with a register machine; looping, doubling, counting and

88 M.S. Fiske

adding can be implemented with a register machine; and computing 2m involves
executing a doubling routine inside a loop that is executed m times. From these ob-
servations and Theorem 1, steps 1 through 6 can be implemented with an active
element machine.

Next, we present three lemmas and a theorem. These results prove that steps
1 through 6 decide whether an arbitrary binary string S = a1a2 . . .am lies in the
language determined by this active element machine.

Lemma 1. For any L ⊆ {0,1}∗, then L = f−1{1} for some f : {0,1}∗ → {0,1}.

Proof. Set Ln = L∩{0,1}n. Then Ln ∩Lm = /0 whenever n �= m. Define the boolean
function fn : {0,1}n → {0,1} as follows. For each S in {0,1}n, if S lies in L, then
define fn(S) = 1. If S does not lie in L, then define fn(S) = 0. Set f = ∪∞

n=1 fn. Then
f−1{1} = L.

Lemma 2. For each cn, satisfying 0 ≤ cn < β (n) and such that R−n contains cn

before program execution starts, then for any binary string S = a1a2 . . .an in {0,1}n,
step 6 decides whether S lies in the language of the machine. As S ranges over each
element of {0,1}n, then this determines the set Ln ⊆ {0,1}n of all binary strings of
length n, that are recognized by this machine.

Proof. Step 4 is iterated cn times where 0 ≤ cn < β (n) and each time through the
loop, the contents of registers Rn+5 . . . , Rn+4+2n are incremented as a binary number
where Rn+5 stores the 20 bit, Rn+6 stores the 21 bit, . . ., and Rn+4+2n stores the 2n

bit. As a result, step 4 creates a sequence of 0’s and 1’s, representing the binary
encoding of fn, according to the ordering of {0,1}n created in step 5. Step 6 uses
this encoding and ordering to determine whether a binary string S of length n is
recognized by the machine.

Lemma 3. Steps 1 through 6 with cn initially stored in R−n, where 0 ≤ cn < β (n)
before program execution starts, decide a unique language L ⊆ {0,1}n. If bn �= cn

and 0 ≤ bn,cn < β (n), then the languages determined by these two different values
are distinct.

Proof. Let Kn ⊆ {0,1}n be the language decided by machine K with register R−n

containing bn. Let Ln ⊆ {0,1}n be the language decided by machine L with reg-
ister R−n containing cn. When a binary string of length n is stored in registers
R1,R2, . . . ,Rn before program execution, then after step 4 is completed, the values
of whether to accept or not accept a binary string of length n are stored as Rn+5, . . . ,
Rn+4+2n . If bn stored in register R−n of machine K is not equal to cn stored in R−n

of machine L, then after step 4 is completed R j in machine K is not equal to R j in
machine L for some j satisfying n + 5 ≤ j ≤ n + 4 + 2n. This implies that language
Kn �= Ln.

Theorem 2. There is a one to one correspondence between the binary languages
L⊆{0,1}∗ and the sequence of natural numbers c1,c2, . . . ,cn, . . . , such that for each
n, the natural number cn satisfies 0≤ cn < β (n). Furthermore, if each register R−n is

The Active Element Machine 89

initialized to cn where 1≤ n≤ m before program execution of step 1 begins, then the
program execution recognizes this corresponding binary language, where the binary
string of length m to be recognized is initially stored in registers R1,R2, . . . ,Rm.

Proof. This theorem follows immediately from the three previous lemmas.

8 An AEM Program Computes a Ramsey Number

In this section, we turn our attention to computing a Ramsey number with an AEM
program. Ramsey theory can be intuitively described as the study of structure which
is preserved under finite decomposition (see [10], [22], [36]). Applications of Ram-
sey theory include results in number theory [40], algebra, geometry [15], topology
[20], set theory, logic [36], ergodic theory [20], computer science ([3], [4], [5], [6],
[7], [8], [46]), including lower bounds for parallel sorting [16], game theory [24] and
information theory ([37], [41]). Progress on determining the basic Ramsey numbers
r(k, l) has been slow. For positive integers k and l, r(k, l) denotes the least integer
n such that if the edges of the complete graph Kn are 2-colored with colors red and
blue, then there always exists a complete subgraph Kk containing all red edges or
there exists a subgraph Kl containing all blue edges.

To put our slow progress into perspective, arguably the best combinatorist of the
20th century, Paul Erdös asks us to imagine an alien force, vastly more powerful
than us, landing on Earth and demanding the value of r(5,5) or they will destroy
our planet. In this case, Erdös claims that we should marshal all our computers and
all our mathematicians and attempt to find the value. But suppose instead that they
ask for r(6,6). For r(6,6), Erdös believes that we should attempt to destroy the
aliens [42].

Theorem 3. The standard finite Ramsey theorem.
For any positive integers m,k,n, there is a least integer N(m,k,n) with the

following property: no matter how we color each of the n-element subsets of
S = {1,2, ...,N} with one of k colors, there exists a subset Y of S with at least
m elements, such that all n-element subsets of Y have the same color (See [23],
[36], [39]).

When G and H are simple graphs, there is a special case of theorem 3. Define the
Ramsey number r(G,H) to be the smallest N such that if the complete graph KN

is colored red and blue, either the red subgraph contains G or the blue subgraph
contains H. (A simple graph is an unweighted, undirected graph containing no graph
loops or multiple edges. In a simple graph, the edges of the graph form a set and
each edge is a pair of distinct vertices.) In [10], S.A. Burr proves that determining
r(G,H) is an NP-hard problem.

We show how to build an AEM program that solves a special case of Theorem
3. Color each edge of the complete graph K6 red or blue. Then there is always at
least one triangle, which contains only blue edges or only red edges. In terms of the
standard Ramsey theorem, this is the special case N(3,2,2) where n = 2 since we

90 M.S. Fiske

color edges (i.e. 2-element subsets); k = 2 since we use two colors; and m = 3 since
we seek a red or blue triangle.

To demonstrate how an AEM program can be designed to compute N(3,2,2)= 6,
we first show how to build an AEM program that verifies N(3,2,2) > 5, based on
figure 1.

Fig. 1 A 2-coloring of K5
containing no monochro-
matic K3 (triangle)

The symbols B and R represent blue and red, respectively. We put indices on B
and R to denote active elements that correspond to the K5 graph geometry. First,
we explain where the indices come from. Let E = {{1,2},{1,3},{1,4},{1,5},
{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}} denote the edge set of K5. The triangle
set T = {{1,2,3},{1,2,4},{1,2,5}, {1,3,4},{1,3,5},{1,4,5}, {2,3,4},{2,3,5},
{2,4,5},{3,4,5}}. As shown in figure 1, each edge is colored red or blue. Thus the
red edges are {{1,2},{1,5},{2,3},{3,4},{4,5}} and the blue edges are {{1,3},
{1,4},{2,4}, {2,5},{3,5}}.

We number each group of AEM commands for K5, based on the group’s purpose.
This is useful because we will refer to these groups, when describing the computa-
tion for K6.

1. The elements representing red and blue edges are established as follows.

(Element (Time 0) (Name R_12) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name R_15) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name R_23) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name R_34) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name R_45) (Threshold 1) (Refractory 1) (Last -1))

(Element (Time 0) (Name B_13) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name B_14) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name B_24) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name B_25) (Threshold 1) (Refractory 1) (Last -1))
(Element (Time 0) (Name B_35) (Threshold 1) (Refractory 1) (Last -1))

2. Fire element R_jk if edge { j,k} is red.

(Fire (Time 0) (Name R_12))
(Fire (Time 0) (Name R_15))
(Fire (Time 0) (Name R_23))
(Fire (Time 0) (Name R_34))
(Fire (Time 0) (Name R_45))

The Active Element Machine 91

Fire element B_jk if edge { j,k} is blue where j < k.

(Fire (Time 0) (Name B_13))
(Fire (Time 0) (Name B_14))
(Fire (Time 0) (Name B_24))
(Fire (Time 0) (Name B_25))
(Fire (Time 0) (Name B_35))

3. The following Meta commands cause these elements to keep firing after they
have fired once.

(Meta (Name R_jk) (Window 0 1)
(Connection (Time 0) (From R_jk) (To R_jk) (Amp 2) (Width 1) (Delay 1)))

(Meta (Name B_jk) (Window 0 1)
(Connection (Time 0) (From B_jk) (To B_jk) (Amp 2) (Width 1) (Delay 1)))

4. To determine if a blue triangle exists on vertices {i, j,k}, where {i, j,k} ranges
over T , three connections are created for each potential blue triangle.

(Connection (Time 0) (From B_ij) (To B_ijk) (Amp 2) (Width 1) (Delay 1))
(Connection (Time 0) (From B_jk) (To B_ijk) (Amp 2) (Width 1) (Delay 1))
(Connection (Time 0) (From B_ik) (To B_ijk) (Amp 2) (Width 1) (Delay 1))

5. To determine if a red triangle exists on vertex set {i, j,k}, where {i, j,k} ranges
over T , three connections are created for each potential red triangle.

(Connection (Time 0) (From R_ij) (To R_ijk) (Amp 2) (Width 1) (Delay 1))
(Connection (Time 0) (From R_jk) (To R_ijk) (Amp 2) (Width 1) (Delay 1))
(Connection (Time 0) (From R_ik) (To R_ijk) (Amp 2) (Width 1) (Delay 1))

6. For each vertex set {i, j,k} in T , the following elements are created.

(Element (Time 0) (Name R_ijk) (Threshold 5) (Refractory 1) (Last -1))
(Element (Time 0) (Name B_ijk) (Threshold 5) (Refractory 1) (Last -1))

Because the threshold is 5, we see that element R_ijk only fires when all three
elements R_ij, R_jk, R_ik fired one unit of time ago. Likewise, the element
B_ijk only fires when all three elements B_ij, B_jk, B_ik fired one unit
of time ago. From this, we observe that as of clock = 3 i.e. 4 time steps, this
AEM program determines that N(3,2,2) > 5. This AEM computation uses |E|+
2|T | = 5!

2!3! + 2 5!
3!2! = 30 active elements. Further, this AEM program creates and

uses 3|T |+ 3|T |+ |E|= 70 connections.
For K6, the edge set E = {{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},

{2,6}, {3,4},{3,5},{3,6},{4,5},{4,6},{5,6}}. The triangle set T = { {1,2,3},
{1,2,4},{1,2,5}, {1,2,6},{1,3,4},{1,3,5},{1,3,6},{1,4,5},{1,4,6}, {1,5,6},
{2,3,4}, {2,3,5},{2,3,6}, {2,4,5},{2,4,6},{2,5,6},{3,4,5},{3,4,6},{3,5,6},
{4,5,6}}. For each 2-coloring of E , each edge is colored red or blue. There are 2|E|
2-colorings of E . For this graph, |E| = 6!

2!4! .
To build a similar AEM program, the commands in groups 1 and 2 range over ev-

ery possible 2-coloring of E . The remaining groups 3, 4, 5 and 6 are the same based
on the AEM commands created in groups 1 and 2 for each particular 2-coloring.

This AEM program verifies that every 2-coloring of E contains at least one red
triangle or one blue triangle i.e. N(3,2,2) = 6. We make no optimizations using

92 M.S. Fiske

graph isomorphisms [32]. If we build an AEM language construct for generating
all active elements for each 2-coloring of E at time zero, then the resulting AEM
program can determine the answer in 5 time steps. (We need one more time step,
215 additional connections and one additional element to verify that every one of
the 215 AEM programs is indicating that it found a red or blue triangle.) This AEM
program – that determines the answer in 5 time steps – uses 2|E|(|E|+ 2|T |) + 1
active elements and 2|E|(3|T |+ 3|T |+ |E|+ 1) connections, where |E| = 15 and
|T | = 20.

9 Discussion and Further Work

First, we summarize the results in section 7. It is well-known ([13], [33], [45]) that
there are an uncountable number of binary languages in {0,1}∗, for which no stan-
dard Turing machine with a finite number of non-blank symbols on the tape is able
to recognize. This is also true for a finite register machine program ([13], [33], [44]).
Yet by building upon example 4, using randomness from the environment and the
Meta command, we were able to generate an AEM with a finite number of AEM
commands, that is able to recognize an arbitrary language L ⊆ {0,1}∗. This sug-
gests that evolutionary methods ([9], [14], [17], [26], [27], [29]) along with quantum
randomness ([11]) may be able to implicitly design AEMs that can exhibit useful
computing behavior, which explicit register machine programs are unable to attain.

In regard to section 8, an extension of the Ramsey theorem (large Ramsey num-
bers) occurs when the set Y is large. A set Y is large if its cardinality is larger than
its smallest element (e.g. Y = {1,2,3}). Large Ramsey numbers L(m,k,n) grow too
fast to be provably total in Peano arithmetic [34]. As a consequence of the extremely
high growth rate of large Ramsey numbers, we expect that studying the computa-
tion of these numbers with AEM programs will be of interest in terms of under-
standing how to best use parallelism, geometry and time. Another area of interest
is the trade-off of using a separate AEM to find graph isomorphisms that eliminate
isomorphic 2-colorings, when testing for a red or blue triangle [32]. An additional
area to explore would use AEM computations that rely on the simple property that
every subgraph, of a monochromatic graph G, is monochromatic.

Acknowledgements. Words can not express my depth of gratitude and appreciation for my
wonderful wife Joanne Gomez and our daughter Haley, who has been a constant source of
inspiration. I would like to thank Michael Jones, Alan Langman, David Lewis, Alex Mayer,
Lutz Mueller, Don Saari and Bruce Tow for their helpful advice.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs. MIT
Press, Cambridge (1996)

2. Agnew, G.B.: Random sources for cryptographic systems. In: Price, W.L., Chaum, D.
(eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 77–81. Springer, Heidelberg (1988)

The Active Element Machine 93

3. Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. Journal Combinatorial
Theory 29(3), 354–360 (1980)

4. Ajtai, M., Komlós, J., Szemerédi, E.: A dense infinite Sidon sequence. European J. Com-
bin. 2(1), 1–11 (1981)

5. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c logn parallel steps. Combinatorica 3(1),
1–19 (1983)

6. Alon, N.: Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Com-
binatorica 6(3), 207–219 (1986)

7. Alon, N.: Explicit Ramsey graphs and orthonormal labelings. Electron. J. Combin. Re-
search Paper 12 1, 8 (1994) (electronic)

8. Alon, N.: The Shannon capacity of a union. Combinatorica 18(3), 301–310 (1998)
9. Axelrod, R., Hamilton, W.D.: The Evolution of Cooperation. Science New Se-

ries 211(4489), 1390–1396 (1981)
10. Burr, S.A.: Determining Generalized Ramsey Numbers is NP-hard. Ars Combinato-

ria 17, 21–25 (1984)
11. Calude, C.S., Dinneen, M.J., Dumitrescu, M., Svozil, K.: Experimental Evidence of

Quantum Randomness Incomputability. Phys. Rev. A 82, 022102, 1–8 (2010)
12. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings, Third An-

nual ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York
(1971)

13. Davis, M.: Computability and Unsolvability. Dover Publications, New York (1982)
14. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-

ceedings of the Sixth International Symposium on Micro Machine and Human Science,
Nagoya, Japan, pp. 39–43 (1995)

15. Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2,
464–470 (1935)

16. Erdös, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set.
Proc. London Math. 3(2), 417–439 (1952)

17. Fiske, M.S.: Machine Learning. US 7,249,116 B2 (2003),
http://tinyurl.com/3pcgfvr, or http://tinyurl.com/3pcgfvr

18. Fiske, M.S.: Effector Machine Computation. US 7,398,260 B2 (2004), Provisional
60/456,715 (2003),
http://tinyurl.com/6l5wuhz or http://tinyurl.com/6l5wuhz

19. Fiske, M.S.: Active Element Machine Computation. US Application 20070288668
(2007),
http://tinyurl.com/62gv8ke or http://tinyurl.com/62gv8ke

20. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.
Princeton University Press, Princeton (1981)

21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

22. Graham, R.L., Rodl, V.: Numbers in Ramsey Theory. Surveys in Combinatorics. LMS
Lecture Note Series 123. Cambridge University Press (1987)

23. Graham, R.L., Rothschild, B.L.: A Survey of Finite Ramsey Theorems. In: Proc. 2nd
Louisiana State Univ. Conference on Combinatorics, Graph Theory and Computation,
pp. 21–40 (1971)

24. Hales, A.W., Jewett, R.I.: Regularity and positional games. Trans. Amer. Math. Soc. 106,
222–229 (1963)

http://tinyurl.com/3pcgfvr
http://tinyurl.com/3pcgfvr
http://tinyurl.com/6l5wuhz
http://tinyurl.com/6l5wuhz
http://tinyurl.com/62gv8ke
http://tinyurl.com/62gv8ke

94 M.S. Fiske

25. Hertz, J., Krogh, A., Palmer, R.G.: Introduction To The Theory of Neural Computation.
Addison-Wesley Publishing Company, California (1991)

26. Holland, J.H.: Outline for a logical theory of adaptive systems. JACM 3, 297–314 (1962)
27. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge

(1992)
28. Quantique, I.D., Quantis, S.: Random Number Generation Using Quantum Optics (elec-

tronic), Geneva, Switzerland (2001-2011),
http://www.idquantique.com/images/stories/PDF/quantis-
random-generator/quantis-whitepaper.pdf

29. Koza, J.R.: Genetic Programming: On the Programming of Computer by Means of Nat-
ural Selection. MIT Press, Cambridge (1992)

30. Lee, E.A.: Computing Needs Time. Technical Report No. UCB/EECS-2009-30 (elec-
tronic). Electrical Engineering and Computer Sciences, University of California at
Berkeley (2009),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-30.html

31. McCulloch, W.S.: Walter Pitts. A logical calculus immanent in nervous activity. Bulletin
of Mathematical Biophysics 5, 115–133 (1943)

32. McKay, B.D., Radziszowski, S.P.: Subgraph counting identities and Ramsey numbers.
Journal Combinatorial Theory 69(2), 193–209 (1997)

33. Minsky, M.: Computation: Finite and Infinite Machines, 1st edn. Prentice-Hall, Inc., En-
glewood Cliffs (1967)

34. Paris, J., Harrington, L.: A mathematical incompleteness in Peano arithmetic. In: Bar-
wise, J. (ed.) Handbook for Mathematical Logic. North-Holland (1977)

35. Rall, W.: The Theoretical Foundation of Dendritic Function. In: Segev, I., Rinzel, J.,
Shepherd, G. (eds.) Selected Papers of Wilfrid Rall with Commentaries. MIT Press,
Cambridge (1995)

36. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. Series 2(30), 264–
286 (1930)

37. Roberts, F.S.: Applications of Ramsey theory. Discrete Appl. Math. 9(3), 251–261 (1984)
38. Robinson, A.: Non-standard Analysis. Princeton University Press, Princeton (1996), Re-

vised Edition
39. Rothschild, B.L.: A generalization of Ramsey’s theorem and a conjecture of Erdös. Doc-

toral Dissertation. Yale University, New Haven, Connecticut (1967)
40. Schur, I.: Uber die Kongruenz xm + ym ≡ zm(mod p). Deutsche Math. 25, 114–117

(1916)
41. Shannon, C.E.: The zero error capacity of a noisy channel. Transactions on Information

Theory Institute of Radio Engineers IT-2, 8–19 (1956)
42. Spencer, J.H.: Ten Lectures on the Probabilistic Method, p. 4. SIAM (1994)
43. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum ran-

dom number generator. Journal of Modern Optics 10, 1362–3044 (2000)
44. Sturgis, H.E., Shepherdson, J.C.: Computability of Recursive Functions. J. Assoc. Com-

put. Mach. 10, 217–255 (1963)
45. Turing, A.M.: On computable numbers, with an application to the Entscheidungsprob-

lem. Proc. London Math. Soc. Series 2(42) (Parts 3 and 4), 230–265 (1936); A correction,
ibid. 43, 544–546 (1937)

46. Yao, A.C.C.: Should tables be sorted? J. Assoc. Comput. Mach. 28(3), 615–628 (1981)

http://www.idquantique.com/images/stories/PDF/quantis-random-generator/quantis-whitepaper.pdf
http://www.idquantique.com/images/stories/PDF/quantis-random-generator/quantis-whitepaper.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html

The Active Element Machine 95

Appendix

We present a Turing Machine definition, where the program definition η is explicitly
represented as a function instead of quintuples ([13], [45]).

Definition 13. Turing Machine
A Turing machine is a triple (Q,A,η) where

• Q is a finite set of states that does not contain the halt state. The states are some-
times represented as natural numbers Q = {2, ...,K}. There is a unique halt state,
represented as h or as 1.

• When machine execution begins, the machine is in an initial state s and s ∈ Q.

• A is a finite set of alphabet symbols that are read from and written to the tape.

• −1 and +1 represent advancing the tape head to the left or right square,
respectively.

• η is a function where η : Q × A → (Q∪ {h})× A×{−1,+1}. η acts as the
program for the Turing machine. For each q in Q and α in A, η(q,α) = (r,β ,x)
describes how machine (Q,A,η) executes one computational step. When in state
q and scanning alphabet symbol α on the tape:

– Machine (Q,A,η) changes to state r.

– Machine (Q,A,η) rewrites alphabet symbol α as symbol β on the tape.

– If x = −1, then machine (Q,A,η) moves its tape head one square to the left
on the tape and is subsequently scanning the symbol in this square.

– If x = +1, then machine (Q,A,η) moves its tape head one square to the right
on the tape and is subsequently scanning the symbol in this square.

– If r = h, machine (Q,A,η) enters the halting state h, and the machine halts.

Definition 14. Turing Machine Tape
The Turing machine tape T is represented as a function T : Z → A where Z

denotes the integers. The tape T is M-bounded if there exists a bound M > 0 such
that T (k) = T (j) whenever |k|, | j| ≥ M. The Turing machine definitions in [13] and
[45] assume the initial tape, before program execution begins, is M-bounded and the
tape contains only blank symbols, denoted here as #, outside the bound. The symbol
on the kth square of the tape is T (k).

Definition 15. Turing Machine Configuration with Tape Head Location
Let (Q,A,η) be a Turing machine with tape T. A configuration is an element of

the set C = (Q∪{h})×Z×{T : T is tape with range A}. If (q,k,T) is a configura-
tion, then k is called the tape head location.

Consider the configuration (p,2, . . .##αβ ## . . .). The 1st coordinate indicates that
the Turing machine is in state p. The 2nd coordinate indicates that its tape head is
currently scanning tape square 2, denoted as T (2). The 3rd coordinate indicates that
tape square 1 contains symbol α , tape square 2 contains symbol β , and all other
tape squares contain the # symbol.

96 M.S. Fiske

Definition 16. Turing Machine Computational Step
Given Turing machine (Q,A,η) in current configuration (q,k,T) such that T (k)=

α . After the execution of one computational step, the new configuration is deter-
mined by one and only one of the four cases

1. (r,k−1,S) if η(q,α) = (r,β ,−1) for non-halting state r

2. (r,k + 1,S) if η(q,α) = (r,β ,+1) for non-halting state r

3. (h,k + 1,S) if η(q,α) = (h,β ,+1) for halting state h

4. (h,k−1,S) if η(q,α) = (h,β ,−1) for halting state h

such that for all four cases the new tape S(j) = T (j) whenever j �= k and S(k) = β .
In cases (3) and (4), the machine execution halts.

If the machine is currently in configuration (q0,k0,T0) and over the next n steps the
sequence of machine configurations (points) is (q0,k0,T0), (q1,k1,T1), (q2,k2,T2),
. . . ,(qn,kn,Tn), then this execution sequence is sometimes called the next n+1 com-
putational steps.

	The Active ElementMachine

	Introduction
	Wilfrid Rall's Models of Dendritic Integration
	Register Machine Computation
	 Explicit Representation of Time
	Summary

	Machine Architecture
	Active Element Machine Programming Language
	Resolving Concurrent Generation of AEM Commands
	Copy and Nand Program Examples
	Machine Computation
	AEM Binary Language Recognizer
	An AEM Program Computes a Ramsey Number
	Discussion and Further Work
	References

