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Among the fundamental questions in computer science, at least two have a
deep impact on mathematics. What can computation compute? How many steps
does a computation require to solve an instance of the 3-SAT problem? Our work
addresses the first question, by introducing a new model called the ex-machine
[3]. The ex-machine executes Turing machine instructions and two special types
of instructions. Quantum random instructions are physically realizable with a
quantum random number generator [4, 6]. Meta instructions can add new states
and new instructions, or replace instructions.

A countable set of ex-machines is constructed, each with a finite number of
states and instructions; each ex-machine can compute a Turing incomputable
language, whenever the quantum randomness measurements behave like unbi-
ased Bernoulli trials. In 1936, Alan Turing posed the halting problem for Turing
machines and proved that this problem is unsolvable for Turing machines. Con-
sider an enumeration Ea(i) = (Mi, Ti) of all Turing machines Mi and initial
tapes Ti, each containing a finite number of non-blank symbols. Does there exist
an ex-machine X that has at least one evolutionary path X→ X1 → X2 → . . . →
Xm, so at the mth stage ex-machine Xm can correctly determine for 0 ≤ i ≤ m
whether Mi’s execution on tape Ti eventually halts? We construct an ex-machine
Q(x) that has one such evolutionary halting path.

The existence of this path suggests that David Hilbert [5] may not have been
misguided to propose that mathematicians search for finite methods to help
construct mathematical proofs. Our refinement is that we cannot use a fixed
computer program that behaves according to a fixed set of mechanical rules.
We must pursue methods that exploit randomness and self-modification [1, 2] so
that the complexity of the program can increase as it computes.
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