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Dendritic Integration 
Capture useful computational properties of dendrites.   (Wilfrid Rall)

Step functions can approximate any measurable function. 

Parallel.  The machine uses time.  

Synapses.  What is being computed can change over time.  

Biological Motivation: Active Element Machine  
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Simple Math.  Easy to build in silicon and other hardware
No transfer function as in traditional neural networks.
Z = {m + k dT:  m, k are integers and dT is a fixed infinitesimal}.  

Math operators +,  > and time on Z  (extended integers). 

Machine and Programming Language
      Implicitly programmable:  evolution and machine learning. 

      Explicitly programmable:  a person can write a program.
      Five commands in the programming language.  
      Time is explicitly specified in the commands.
      Machine architecture should be able to change as it is executing.

Design Criteria for the Active Element Machine
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Parallel Computation & Algorithms.  
All active elements compute simultaneously. 
No “single instruction” at a time bottleneck.  

Avoiding Race Conditions.  
      Time in the commands helps with coordination.  dT
 
The machine can change its rules while executing.   
      Meta command and time. 

The meta command can increase program complexity over time.   
      Adaptivity and repair can be designed as part of the machine.  

  

Useful Properties of the Active Element Machine (AEM)
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Active Elements and Connections.  

Active elements compute simultaneously. 

Connections connect Elements.  
Connections determine the messages (pulses) that are sent 
between elements.  

 
Elements fire and send pulses along Connections.   

An element E fires at time s if the sum of E’s input pulses is 
greater than E’s threshold θ and E’s refractory period r has 
expired i.e.  s ≥ r + e  where e  is E’s most recent firing time.

  

AEM computation
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(Connection (Time 4) (From E) (To Y) (Amp -2) (Width 3) (Delay 5)
(Connection (Time 4) (From E) (To Z) (Amp 4) (Width 2) (Delay 3)      

If element E fires at time 4, then 

A pulse of time width 3 and amplitude -2 (height -2) arrives at
element Y at time 9.  

A pulse of time width 2 and amplitude (height 4) arrives at 
element Z at time 7.

                                                                            
                                                                            4                is sent to Z
               3                                                                      
   -2                       is sent to Y                                     2

AEM computation – Outgoing Pulses   

1

1
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Element, Connection & Fire Commands

(Element (Time 0) (Name E) (Threshold 9)  (Refractory 4)  (Last  0) )

(Connection (Time -1)(From A) (To E) (Amp 5) (Width 4+2dT) (Delay 3−dT))

 Input Active elements:   (Fire  (Time 0) (Name A))                                                                                                                         

  
Keyword  dT

dT is an infinitesimal amount of time.   dT > 0 and  dT is less than 
every positive rational. If  m < n, then  mdT < ndT.

dT helps with concurrency.  3−2dT < 3−dT < 3 <  3+dT < 3+2dT   
For every integer m > 0,   2 < 3−mdT  and  3+mdT < 4.   

            
st(k + mdT)  =  k  is the standard part of extended integer  k + mdT. 

                                                                                                                                                                                                                          

AEM Programming Language  
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Keyword  clock                                                                                                          

clock evaluates to an integer which is the standard part of the 

current time of the active element machine clock. 

Meta command  —  enables the machine to self-modify
(Meta  (Name E)  (Window b  e)  (C (Args clock))  )   

                                                                                           

If active element E fires at time s in window  [b,  e] where b ≤ s ≤ e  
then command  (C  clock) executes at time s. 

If there is no window specified, then if E fires at any time s, then    
(C  s) executes at time s.  (No restrictions on time s when E fires.)  

                                      

                                              

                                                                                                                                       

AEM Programming Language
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I.  Preserving the purpose of the machine is more fundamental 
than the confidentiality (encryption) and integrity 
(authentication)  of the data. 

Why?   The purpose of the machine can be hijacked, which can 
compromise the confidentiality and integrity of the data.

II.  Malware is the nemesis of cybersecurity.

No digital computer program can detect all malware.1  Malware 
authors use NP problems to encrypt and hide the malware.2   

1. Fred Cohen.  Computer Viruses and Experiments. Computers & Security. 22-35 (1987) 
2. Eric Filiol.  Malicious Cryptology and Mathematics. Intech. 23-50 (2012)

Cybersecurity Motivation 
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The conventional computing model.  

Finite set of states Q = {q1, . . . , qn}.   Finite alphabet  A = {a1, . . . , am}. 

Tape  T : Z → A  with an alphabet symbol on each tape square.

The Turing program  η : Q × A → (Q ∪ {h}) × A × {-1, +1} is a finite set of 
rules that stays fixed for the whole computation.   

η  doesn’t change as the program executes.  No reference to time. 

η(q, a) = (r, b, -1)  or  η(q, a) = (r, b, +1) is a computational step.  One rule is 
selected, based on state q and symbol a.  A step replaces a with symbol b on 
the tape, moves to a new state r and the tape head moves left (-1) or right (+1). 

Computational steps are executed sequentially. 

Turing Machine Model
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ICurrent processors — based on a von Neumann architecture —  
execute one machine instruction at a time, which causes a deep 
vulnerability in processor architectures.
 

To initiate execution of malignant code, malware need only 
corrupt or transform a single machine instruction. 

“One instruction at a time” deep vulnerability   

11



What is cryptography?

Transformation of a message under the control of a secret key.  
See talk aemea.org/Diffie (Whitfield Diffie).

Distinct from cryptography:  Hiding the AEM computation is a
transformation of computation, not a transformation of a message.  

Diffie’s definition doesn’t address or explain how the cryptography
transformation is securely executed.    

Does “hiding computation” help address Adi Shamir’s observation?
“Cryptography is typically bypassed, not penetrated.”
                                                                                                                                                        

Hiding computation versus cryptography
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http://www.youtube.com/watch?v=1BJuuUxCaaY
http://www.youtube.com/watch?v=1BJuuUxCaaY
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Using the R rules of quantum mechanics

Von Neumann’s axioms distinguished the U (unitary evolution)
and R (reduction) rules of quantum mechanics.
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“Now, quantum computing so far (in the work of Feynman, 
Shor, Deutsch, etc.) is based on the U process and is 
computable. It has not made serious use of the R process: 
the unpredictable element that comes in with reduction, 
measurement, or collapse of the wave function.”

– Andrew Hodges in What would have Turing done after 1954?



          
– Richard Hamming.  The Unreasonable Effectiveness of Mathematics. 
American Mathematical Monthly.  Volume 87, Number 2 (1980).  
  

Godel numbering is a special type of interpretation 
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“The Postulates of Mathematics Were Not on the Stone Tablets 
that Moses Brought Down from Mt. Sinai … 

It is not that the postulation approach is wrong, only that its 
arbitrariness should be clearly recognized, and we should be 
prepared to change postulates when the need becomes 
apparent.”



Today:           ‘H’ has ASCII binary code 0100 1000.  
Tomorrow:    ‘H’ has ASCII binary code 0100 1000. 

“What if ‘6’ were ‘9’ and ‘9’ were ‘6’ ?”   
– Haley joking about 6 and 9 being upside down.

Based on quantum randomness, the meaning of the symbols and 
the computation changes. Half the time 1 means 0 and 0 means 1.   

Changing the meaning of the symbols & computation
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0 = 0⊕0 = 1⊕1  and  1 = 1⊕0 = 0⊕1               

Level Sets.  ⊕−1{1} = {(1, 0), (0, 1)}  and  ⊕−1{0} = {(0, 0), (1, 1)}.  

(2, −2, 1, X1)                                      A     2                 −2      B

(−2, 2, 1, X2)                                    2                                       −2

                                                           X1                                                 X2                                            

 A⊕B = P
                                                                             P
Quantum random bit R1 and the meta command can dynamically 
flip the level set of active element X1. 
R1 = 1:   {(1, 0)} /{(0, 0), (0, 1), (1, 1)}.     R1 = 0:  {(0, 0), (0, 1), (1, 1) } / {(1, 0)}. 

Similarly, quantum bit R2 helps select the level set of element X2.           
R2 = 1:   {(0, 1)} / {(0, 0), (1, 0), (1, 1)}.   R2 = 0:  {(0, 0), (1, 0), (1, 1)} / {(0, 1)}.

Example: Change how XOR is computed with the AEM
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I.  For an external observer, it is algorithmically impossible to reverse 
engineer the computation:   aemea.org/Turing100

II. If one accepts the assumptions in [3], then the construction 
theoretically crosses the Turing barrier; the active element firing 
pattern performing this hidden computation is a bi-immune sequence.   

Bi-immune means this random sequence of 0 and 1’s contains no infinite 
subsequence that is Turing computable.
 
III.  Let A⊕B = (A−B) ∪ (B−A).  If set R is c.e. and A is bi-immune, 
created by a quantum random number generator, then a quantum 
random AEM can compute bi-immune A⊕R.

3.  Abbott, Calude, Conder & Svozil.  Strong Kochen-Specker theorem and Incomputability of Quantum
    Randomness.  Physical Review A (2012).

Some Results  
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http://www.aemea.org/Turing100
http://www.aemea.org/Turing100


IV. These methods pertain to what a machine is capable of 
computing rather than how fast. Publicly disclosed methods in 
cryptography typically depend upon the assumption P ≠ NP.

V. Introduces the notion of non-Turing interpretations. 
Computability theory assumes interpretations (Godel coding) are 
Turing computable.  – Hartley Rogers, Jr.  Theory of Recursive Functions and 
Effective Computability  (1987). 

VI. In proofs of the undecidability of the halting problem using 
Cantor’s diagonalization method, a contradiction is no longer 
reached with a machine that performs non-Turing interpretations.  

Some Observations 
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Define mapping φ that creates a one-to-one correspondence from the Turing 
program η to a finite set of two dimensional affine functions in the x-y plane. 

Set base B = |A| + |Q| + 1.   h is the halting state. 

Define value function  ν: {h} ∪ Q ∪ A → N  where N is the natural numbers

and ν(h) = 0,  ν(ai) = i,  ν(qi) = i + |A|  and  ν(q|Q|) = |Q| + |A|. 

φ maps computational step η(q, Tk) = (r,    , +1) to the affine function 

f(x, y) = (Bx + m,  B−1y + n)  where m = −B2ν(Tk) and n = Bν(r) + ν(   ) − ν(q) 

Perspective: Turing Machine is an autonomous dynamical system
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φ maps computational step η(q, Tk) = (r,    , −1) to the affine function 

f(x, y) = (B−1x + m,  By + n)  where 

m = Bν(Tk−1) + ν(   ) − ν(Tk)  and  n = Bν(r) − B2ν(q) − Bν(Tk−1).

A machine configuration (q, k, T) ∈ Q × Z × AZ is mapped to a point in the    
x-y plane as φ(q, k, T) = (x(q, k, T),  y(q, k, T))  where the  

x-coordinate function is x(q, k, T) = Tk Tk+1 . Tk+2 Tk+3 Tk+4  . . .  in base B and

the y-coordinate function is y(q, k, T) =  q Tk-1 . Tk-2 Tk-3 Tk-4 . . .  in base B.  

. . . Tk−3 Tk−2  Tk−1   Tk Tk+1 Tk+2 . . .

 q

↵

f1(x,y) = (7x� 49,
1

7

y + 33)

p = (8
1

6

,29
1

6

)

W1 = [(8,29), (9,29), (9,30), (8,30)]

f15(x,y) = (
1

7

x+ 16,7y � 231)

p = (8
1

6

,37
1

6

)

W15 = [(8,37), (9,37), (9,38), (8,38)]

f4(x,y) = (
1

7

x+ 7,7y � 175)

p = (17
1

6

,29
1

6

)

W4 = [(17,29), (18,29), (18,30), (17,30)]

1

↵

f1(x,y) = (7x� 49,
1

7

y + 33)

p = (8
1

6

,29
1

6

)

W1 = [(8,29), (9,29), (9,30), (8,30)]

f15(x,y) = (
1

7

x+ 16,7y � 231)

p = (8
1

6

,37
1

6

)

W15 = [(8,37), (9,37), (9,38), (8,38)]

f4(x,y) = (
1

7

x+ 7,7y � 175)

p = (17
1

6

,29
1

6

)

W4 = [(17,29), (18,29), (18,30), (17,30)]

1

Turing Machine is mapped to a finite set of affine functions
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Ex:  Turing Machine as a discrete, autonomous dynamical system

  η      # a b

   q

   r

   s

 (r, a, +1)  (q, a, -1)  (q, b, -1)

 (q, b, -1)  (r, a, +1)  (r, b, +1)

 (h, #,+1)  (h, a,+1)  (h, b,+1)

Program    Alphabet  A = {#, a, b}  

States  Q = {q, r, s}  

Base B = |A| + |Q| + 1 = 7.  

ν(h) = 0,  ν(#) = 1,  ν(a) = 2,  ν(b) = 3,  ν(q) = 4,  ν(r) = 5,  ν(s) = 6.          

. . .  #   #   #   #   # . . .

q

The initial point p = (px, py) where     

px = B ν(#) +  ν(#) / (1 − 1/7) = 7 + 7/6 = 8 1/6

py = B ν(q) +  ν(#) / (1 − 1/7) = 28 + 7/6 = 29 1/6                       

Initial machine configuration                       
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q
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Ex:  Turing Machine as a discrete, autonomous dynamical system II
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  η      # a b

   q

   r

   s

 (r, a, +1)  (q, a, -1)  (q, b, -1)

 (q, b, -1)  (r, a, +1)  (r, b, +1)

 (h, #,+1)  (h, a,+1)  (h, b,+1)



  

If machine configuration (q, k, T) halts after n computational steps, 
then the orbit of p = φ(q, k, T) exits one of the unit squares on the 
nth iteration. 

If machine configuration (r, j, S) is immortal, then the orbit of      
φ(r, j, S) remains in these unit squares (the attractor) forever.

The proof of the undecidability of the halting problem depends on 
the universality (existence of universal Turing machines) of this 
class of discrete, autonomous dynamical systems. 

Halting Problem:  Does the orbit of point p —w.r.t. this discrete 
autonomous, dynamical system — remain in the attractor?
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Strong Kochen-Specker theorem and Incomputability of Quantum Randomness. 

Measurement assumption.  
Measurement yields a physically meaningful and unique result.   

Non-contextuality assumption.  The set of observables O is non-contextual.  

Elements of physical reality (e.p.r.) assumption.  If there exists a Turing
computable function f : N × O × C  → {0, 1} such that ∀ k,  f(k, ok, Ck) = xk,
then there is a definite value associated with ok   at each step. 

Eigenstate assumption.  Let  |ψ>  be a normalized quantum state and v a 
faithful assignment function. Then v(Pψ, C) = 1 and v(Pφ, C) = 0 for any
context C with Pφ  and Pψ  lying in C. 

Conclusion.  Assume the measurement, non-contextuality, eigenstate and
e.p.r. assumptions. Then there exists a quantum random number generator
that generates a bi-immune binary sequence.  http://arxiv.org/pdf/1207.2029v3.pdf                                                                                                                                                         

Theory of  Quantum Randomness 
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http://arxiv.org/pdf/1207.2029v3.pdf
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Assumptions that guide a hardware implementation.  
1.   That a physical device can be built that protects the secrecy of 
the random bits and the underlying dynamic connections. 

2.  That the firing of the active elements is the physical part of the
system that leaks electromagnetic radiation. 

Practical Applications.
A.  A superior method of stopping differential power analysis 
attacks.  No branching instructions and timing delays to exploit.

B.  Secures intellectual property and algorithms.

C.  Hinders reverse engineering and malware exploits.                                                                                                                                                                     

Two Hardware Assumptions & Practical Applications
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Quantum Randomness can be used today

Quantum Random Number Generators (QRNG) exist and work. 

Since 2006, the following tests were performed on a noteworthy
QRNG: NIST STS, pLab, Geneva test, fast version of the
Kolmogorov complexity test, minimum entropy and the Borel test.

0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 
1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0  
0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1
1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 
0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 . . .

After 6 years of testing, no flaws have been found in this QRNG. 
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