
Machine Learning
with Templates

Dr. Michael Fiske
Aemea Institute

mike@aemea.org

ICAI July 19, 2012
Las Vegas

mailto:aemea@gmail.com
mailto:aemea@gmail.com

Machine Learning Motivation

Some tasks are better suited for bottom-up methods.

•	 Pattern recognition
Chris Bishop. Pattern Recognition & Machine Learning (2006).
Hertz, Krogh & Palmer.
Introduction to the Theory of Neural Computation (1991).

•	 Perception
Gerald Edelman. Neural Darwinism (1987).

•	 Vision
David Marr. Vision (1982).

Machine Learning Motivation

Some tasks are better suited for top-down methods.

•
 IBM’s Deep Blue playing chess
Hsu, Anantharaman, Campbell & Nowatzyk.
A Grandmaster Chess Machine (1990).

•	Chef program creates new cooking recipes
Hammond. Inside Case-Based Reasoning ed. Schank
& Riesebeck. (1989).

Useful Properties 1, 2

1.	Categorization is probabilistic.
For each category c, recognition algorithm outputs
µ(e, c) in [0, 1], which measures how much example
e lies in category c.

2.	Categorization is polymorphous.
During recognition, a template only eliminates a
category if has not “seen” a nearby value during
learning.

Polymorphous Rules

The polymorphous rule for category Y is that
each element has at least two of the properties:
roundness, solid color, or bilateral symmetry.

Useful Properties 3, 4

3.
Learning Algorithm is fast — no local minima.
No greedy optimization algorithm such as
gradient descent.

4.	Recognition Algorithm is extremely fast.
Uses exponential elimination.

Example: 180 million Chinese characters. If
templates on average eliminate a third (1/3) of the
remaining Chinese character categories, it takes at
most 46 steps to finish one iteration of the outer
loop.

Useful Properties 5, 6

5.	Templates can be designed by people, evolution
algorithm 6.1, other machine learning methods, or a
combination.

6.	Applicable across many domains.
 Bioinformatics
 Financial Forecasting
 Goal-based Planning
 Information Retrieval
 Machine Vision
 Natural Language Processing / Understanding
 Pattern Recognition (e.g., writing, speech, voice)

Template Recognition Algorithm
C is the category space. e is the example to categorize.

Read learned templates {T1, T2, . . . Tn} from memory.
Initialize each category score sc to zero.
Outer loop: m trials
{
 Initialize set R := C.
 Inner loop: choose ρ templates randomly.
 {
 Choose template Tk with probability pk
 For each category c ∈ R if M(Tk(e), Tk(c)) is close to 0
 then set R := R – {c}. (Remove category c from R)
 }
 For each category c remaining in R, sc := sc + 1.
}
Example e lies in category c with measure μ(e,c) = sc/m.

Sharp categorization boundary: Example e lies in categories c
satisfying sc/m > θ where θ is the category threshold

Template Definitions
C is the category space.
V is the template value space. P(V) is the power set of V.
E is the example space.
S is the similarity space.

Template value function Tk: E → V

Template prototype function Tk: C → P(V)

Matching function M: V × P(V) → S

M(Tk(e), Tk(c)) is a similarity value that measures how close
template value Tk(e) is to the set of prototypical values Tk(c).

Handwriting Example

0 5 10 15 20 25 30 35

15

20

25

30

C = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

V = {0, 1, 2, 3, . . .}

Example e of letter a ➜

Intersection Template T0
Template T0 computes the number of intersection points
with a horizontal line at 3/4 of the letter height measured
from the top.

3 intersection points:
(8.2, 17.5)
(23.8, 17.5)
(25.1, 17.5)

-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

8

16

24

32

40

T0(a) = 3

Intersection with letter b
Two intersection points: (10, 16.75) (24.6, 16.75)

-25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

8

16

24

32

40

48

T0(b) = 2

Read user designed or evolved templates {T1, T2, . . . Tn}.

Outer loop: iterate thru each template Tk
{
 Initialize X := Tk(c1).
 Initialize A := X.
 Inner loop: iterate thru each category ci.
 {
 Set E(ci) := all learning examples in ci.
 Build prototype function as follows:
 Set Tk(ci) := ∪{v} for each v = Tk(e) and e ∈ E(ci).
 A := A ∪ Tk(ci).
 Build part of matching function M(__, Tk(ci)).
 }
 If (A == X), then remove Tk from the template set.
}
Probability pk := 1/m where there are m remaining templates.
Store remaining templates.

Template Learning Algorithm

Building Templates with Evolution

Evolution Summary Part 1

For each category pair (ci, cj) , where i < j , the
building blocks { f1, f2, . . . , fr} are used to build
a population of m templates.

Construct {l1, . . . , lm} where each bit sequence lk
encodes template Tk(i, j) built from { f1, f2, . . . , fr}.

Superscript (i, j) indicates that these templates are
evolved to distinguish examples chosen from
E(ci) and E(cj).

Building Templates with Evolution

Evolution Summary Part 2

Fitness of template Tk(i, j) is measured by
how well it distinguishes examples from
E(ci) and E(cj) , amount of memory used,
and computational speed.

The population of bit-sequences is evolved using
crossover and mutation until there are at least Q
templates each with an acceptable fitness.

Current Status and Next Steps

1. Testing against the UCI Database.

2. What templates work best for what tasks?

3. Human designed versus evolved templates.

4. If commercial interest, please contact:

 Michael Fiske. michael@fiskesoftware.com

