
Toward a Mathematical Understanding of the
Malware Problem

Michael Stephen Fiske

Aemea Institute. San Francisco, CA. ??

Malware exploits a weakness in current computer systems: user authentica-
tion [1] does not guarantee the execution of the user’s intended action (e.g., au-
thorization of a valid bank transaction), even when the authentication is tightly
integrated with strong cryptographic protocols. As aptly stated by Adi Shamir,
cryptography is typically bypassed, not penetrated [2]. In practical terms, this
weakness creates vulnerabilities in computer systems that operate critical in-
frastructure such as the air tra�c control system [3] and GPS [4]. In recent
years, malware played a significant role in cyberattacks. In 2011, the RSA Se-
curID breach [5] compromised the computer networks of more than 700 insti-
tutions even though the adversary did not possess a valid SecurID device. A
malware exploit in Adobe Flash helped launch this compromise. In a distinct
cyberattack, Stuxnet [6] further exposed these vulnerabilities, even though the
processors weren’t executing an operating system. The programmable logic con-
troller in the centrifuges was reverse engineered. Malware was planted in the
controller so that the centrifuge speed was erratically increased and decreased,
causing vibrations, while indicating that the centrifuge was operating properly.
These “malware” vibrations disabled some of the centrifuges.

Over a 20 year study, the DARPA program, CRASH [7], compared the num-
ber of lines of source code in security software versus malware. Security code
grew from about 10,000 to 10 million lines; while malware was almost constant
at 125 lines. This study found that an almost constant number of lines of malware
code can hijack a computer program, independent of the security software’s size
and complexity. It seems unlikely that detection methods [8,9,10] can provide
an adequate solution to the malware problem. First, it is known that there is no
Turing machine algorithm that can detect all malware [11]. Second, some recent
malware implementations use NP problems [12] to encrypt and hide the malware
[13]. Detection methods are not only up against fundamental limits in theoret-
ical computer science [14], but also malware, in practice, uses the same tools
(i.e., cryptography and camouflage) as white hats. In 2013, the New York Times
network was hacked; anti-virus software was unable to detect this malware, even
though it was on the network for many months [15,16].

Rather than continue to pursue detection, our research explains a register
machine’s [17,18] susceptibility to malware as a consequence of the structural
instability of conventional computation. The register machine executes instruc-
tions one-at-a-time. Programming languages such as C, Java, Lisp and Python

– that are Turing complete – depend upon branching instructions. While condi-
tional branching instructions are not required for universal computation, Rojas’s

?? Email: mf@aemea.org



86 Michael Stephen Fiske

methods [19] still use unconditional branching and program self-modification.
Further, figure A.14 in [18] shows that over 75% of the control flow instructions,
executed on conventional processors, are conditional branch instructions. After
a branching instruction of a register machine program has been sabotaged, even
if there is a routine to check if the program is behaving properly, this friendly
routine may never get executed. The sequential execution of register machine
instructions cripples the program from protecting itself.

In contrast to substantially altering computing behavior by changing only
one memory address, the Lashley experiments [20] demonstrated that rats were
still able to navigate a maze, even though considerable portions of cortical tissue
were removed in various locations of their cortex.

To the best of the author’s knowledge, prior research [11,21,22,23] has not
attempted to understand malware susceptibility in terms of structural stability.
Stability has been studied extensively in dynamical systems [24,25,26,27,28,29].
Our research shows how the computation of a Turing machine corresponds to
the iteration of a dynamical system, composed of a finite set of a�ne maps in the
x-y plane. This correspondence induces a metric and demonstrates a structural
instability in a Universal Turing machine encoding. In practice, the instability
of conventional computation enables malware authors to sabotage the behavior
of a computer program, by making only small changes to the original, unin-
fected program. One research direction proposes to better understand instabil-
ity in conventional computation; a second direction suggests a search for stable
computation in unconventional machines such as the active element machine
[30,31,32].

References

1. Keith Mayes and Konstantinos Markantonakis (editors). Smart Cards, To-
kens, Security and Applications. Springer, 2008.

2. Adi Shamir. Cryptography: State of the Science. ACM. Turing Award Lec-
ture. June 8, 2003. http://amturing.acm.org/vp/shamir_2327856.cfm.

3. Michael Nolan. Fundamentals of Air Tra�c Control. 5th edition, Cengage
Learning, 2010.

4. Pratap Misra and Per Enge. Global Positioning System: Signals, Measure-
ments, and Performance. Revised 2nd Edition, Ganga-Jamuna Press, 2011.

5. SecurID — Wikipedia. http://en.wikipedia.org/wiki/RSA_SecurID.
6. David Kushner. The Real Story of Stuxnet. IEEE Spectrum, Feb. 26, 2013.
7. Cheryl Pellerin. DARPA Goal for Cybersecurity: Change the Game. Ameri-

can Forces Press Service, December 20, 2010.
8. John Mitchell and Elizabeth Stillson. Detection of Malicious Programs. U.S.

Patent 7,870,610, 2011.
9. Diego Zamboni (editor). Proc. of the 5th Intl. Conf. on Detection of In-

trusions and Malware, and Vulnerability Assessment. LNCS. Springer. July
2008.

10. A. Moser, C. Kruegel and E. Kirda. Limits of Static Analysis for Malware
Detection. IEEE. 23rd Annual Computer Security Applications Conf., 2007.



Mathematical Understanding of the Malware Problem 87

11. Fred Cohen. Computer Viruses Theory and Experiments. Computers and
Security, 6(1) 22–35, Feb. 1987. http://all.net/books/Dissertation.pdf.

12. Stephen Cook. THE P VERSUS NP PROBLEM. Clay Math Institute, 2013.
O�cial Problem Description. http://www.aemea.org/math/P_vs_NP.pdf

13. Eric Filiol. Malicious Cryptology and Mathematics. Cryptography and Se-
curity in Computing. Chapter 2. Intech, March 7, 2012.

14. Eric Filiol. Computer viruses: from theory to applications. Springer, 2005.
15. Nicole Perlroth. Hackers in China Attacked The Times for Last 4 Months.

New York Times, January 30, 2013.
16. Gerry Smith. Why Antivirus Software Didn’t Save The New York Times

From Hackers. Hu�ngton Post, January 31, 2013.
17. Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and

Interpretation of Computer Programs. Second Edition, MIT Press, 1996.
18. John Hennessy and David Patterson. Computer Architecture. 5th Edition,

Morgan Kaufmann, 2012.
19. Raul Rojas. Conditional Branching is not Necessary for Universal Compu-

tation in von Neumann Computers. Journal of Universal Computer Science.
2, No. 11, 756–768, 1996.

20. Karl Spencer Lashley. Studies of cerebral function in learning XII. Loss of
the maze habit after occipital lesions in blind rats. Journal of Comparative
Neurology. 79, Issue 3, 431–462, December, 1943.

21. Len Adleman. An Abstract Theory of Computer Viruses. Advances in Cryp-
tology – CRYPTO 2008. LNCS 403, Springer, 1988.

22. Fred Cohen. Computational Aspects of Computer Viruses. Computers and
Security, 8(4) 325–344, June 1989.

23. G. Bonfante, M. Kaczmarek, and J.-Y. Marion. On Abstract Computer Virol-
ogy from a Recursion-theoretic Perspective. Journal in Computer Virology.
1, No. 3-4, 2006.

24. A. Andronov and L. Pontrjagin. Systmes Grossiers. Dokl. Akad. Nauk.,
SSSR, 14, 247–251, 1937.

25. D. Anosov. Geodesic flows on closed Riemannian manifolds of negative cur-
vature. Proc. Steklov. Inst. Math. 90, 1967.

26. J. Palis and S. Smale. Structural Stability Theorems. Proc. Symp. Pure
Math. AMS. 14, 223–232, 1970.

27. John Franks. Necessary Conditions for Stability of Di↵eomorphisms. Trans.
Amer. Math. Soc. 158, No. 2, 301–308, 1971.

28. Clark Robinson. Structural Stability of C1 Di↵eomorphisms. Journal of Dif-
ferential Equations. 22, 28–73, 1976.

29. Keonhee Lee and Kazuhiro Sakai. Structural stability of vector fields with
shadowing. Journal of Di↵erential Equations. 232, 303–313, 2007.

30. Michael S. Fiske. The Active Element Machine. Proc. of Comp. Intelligence.
Autonomous Systems: Developments and Trends. 391, 69–96, Springer, 2011.

31. Michael S. Fiske. Turing Incomputable Computation. Turing-100 Proceed-
ings. Alan Turing Centenary. 10, 69–91, EasyChair, 2012.
http://www.aemea.org/Turing100.

32. Michael S. Fiske. Quantum Random Active Element Machine. UCNC 2013
Proceedings. LNCS 7956, 252–254, Springer, 2013.
http://www.aemea.org/UCNC2013.


