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Malware exploits a weakness in current computer systems: user authentica-
tion [1] does not guarantee the execution of the user’s intended action (e.g., au-
thorization of a valid bank transaction), even when the authentication is tightly
integrated with strong cryptographic protocols. As aptly stated by Adi Shamir,
cryptography is typically bypassed, not penetrated [2]. In practical terms, this
weakness creates vulnerabilities in computer systems that operate critical in-
frastructure such as the air tra�c control system [3] and GPS [4]. In recent
years, malware played a significant role in cyberattacks. In 2011, the RSA Se-
curID breach [5] compromised the computer networks of more than 700 insti-
tutions even though the adversary did not possess a valid SecurID device. A
malware exploit in Adobe Flash helped launch this compromise. In a distinct
cyberattack, Stuxnet [6] further exposed these vulnerabilities, even though the
processors weren’t executing an operating system. The programmable logic con-
troller in the centrifuges was reverse engineered. Malware was planted in the
controller so that the centrifuge speed was erratically increased and decreased,
causing vibrations, while indicating that the centrifuge was operating properly.
These “malware” vibrations disabled some of the centrifuges.

Over a 20 year study, the DARPA program, CRASH [7], compared the num-
ber of lines of source code in security software versus malware. Security code
grew from about 10,000 to 10 million lines; while malware was almost constant
at 125 lines. This study found that an almost constant number of lines of malware
code can hijack a computer program, independent of the security software’s size
and complexity. It seems unlikely that detection methods [8,9,10] can provide
an adequate solution to the malware problem. First, it is known that there is no
Turing machine algorithm that can detect all malware [11]. Second, some recent
malware implementations use NP problems [12] to encrypt and hide the malware
[13]. Detection methods are not only up against fundamental limits in theoret-
ical computer science [14], but also malware, in practice, uses the same tools
(i.e., cryptography and camouflage) as white hats. In 2013, the New York Times
network was hacked; anti-virus software was unable to detect this malware, even
though it was on the network for many months [15,16].

Rather than continue to pursue detection, our research explains a register
machine’s [17,18] susceptibility to malware as a consequence of the structural
instability of conventional computation. The register machine executes instruc-
tions one-at-a-time. Programming languages such as C, Java, Lisp and Python

– that are Turing complete – depend upon branching instructions. While condi-
tional branching instructions are not required for universal computation, Rojas’s
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methods [19] still use unconditional branching and program self-modification.
Further, figure A.14 in [18] shows that over 75% of the control flow instructions,
executed on conventional processors, are conditional branch instructions. After
a branching instruction of a register machine program has been sabotaged, even
if there is a routine to check if the program is behaving properly, this friendly
routine may never get executed. The sequential execution of register machine
instructions cripples the program from protecting itself.

In contrast to substantially altering computing behavior by changing only
one memory address, the Lashley experiments [20] demonstrated that rats were
still able to navigate a maze, even though considerable portions of cortical tissue
were removed in various locations of their cortex.

To the best of the author’s knowledge, prior research [11,21,22,23] has not
attempted to understand malware susceptibility in terms of structural stability.
Stability has been studied extensively in dynamical systems [24,25,26,27,28,29].
Our research shows how the computation of a Turing machine corresponds to
the iteration of a dynamical system, composed of a finite set of a�ne maps in the
x-y plane. This correspondence induces a metric and demonstrates a structural
instability in a Universal Turing machine encoding. In practice, the instability
of conventional computation enables malware authors to sabotage the behavior
of a computer program, by making only small changes to the original, unin-
fected program. One research direction proposes to better understand instabil-
ity in conventional computation; a second direction suggests a search for stable
computation in unconventional machines such as the active element machine
[30,31,32].
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